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Abstract

Many approaches have been introduced for representing and
solving multiagent coordination problems. Unfortunately,
these methods make assumptions that limit their usefulness
when combined with human operators and real-life hardware
and software. In this paper, we discuss the problem of using
agents in conjunction with human operators to improve coor-
dination as well as possible models that could be used in these
problems. Our approach – Space Collaboration via an Agent
Network (SCAN) – enables proxy agents to represent each of
the stakeholder agencies in a space setting and shows how the
SCAN agent network could facilitate collaboration by identi-
fying opportunities and methods of collaboration. We discuss
this approach as well as the challenges in extending models
to 1) take advantage of human input, 2) deal with the limited
and uncertain information that will be present and 3) combat
the scalability issues in solution methods for a large number
of decentralized agents. As a first step toward providing rich
models for these domains, we describe a method to bound the
solution quality due to bounded model uncertainty.

Introduction
In today’s world, people are increasingly connected to many
other people and many sources of information, providing
more opportunities than ever for tasks such as working more
efficiently with others and discovering helpful information.
Unfortunately, the vast scale of information can be over-
whelming. As computers become more powerful and per-
vasive, software in the form of personal assistant agents can
provide support in many situations.

For example, with the increased deployment and use of
space assets, a number of interesting and challenging prob-
lems have come to the fore. The persistent nature of space
surveillance (i.e., 24/7 operations), the mass of data, the var-
ied data sources, and the heterogeneous needs of consumers
and producers throughout the community all point to a press-
ing need for an enhanced Space Situation Awareness (SSA)
picture, one that can only be achieved by a coordinated,
collaborative approach to the collection, dissemination and
sharing of information.

For the foreseeable future, the challenges in the U.S. Na-
tional Space Policy will demand human-in-the-loop partic-
ipation. This is particularly relevant given the amount and
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importance of data and knowledge not held in any database,
or streaming in bits through the ionosphere, but that resides
in the minds of individuals or the institutional knowledge of
a team. The criticality of an enhanced situation awareness
and its subsequent deployment suggests a focus on three dis-
tinct areas:
• Compile an index of human knowledge so that both the

requestors and receivers of information know what data
are available, who can support timely anomaly prediction
and resolution, and how to determine the best courses of
action going forward.

• Establish common methods and procedures for collab-
oration, so that communication between and among in-
terested and relevant parties can be efficiently facilitated,
while preserving the security of the information being ex-
changed.

• Integrate these methods within the existing workflow, ob-
viating the need to add additional tools.
While these three foci are distinct, their solution requires

a coherent, integrated approach, viewing the space domain
as a socio-technical system, within which the human plays
an integral part. Several diverse agencies are stakeholders
and produce and/or consume information related to space.
Each agency has its own organizational structure and proto-
cols, so the solution must be versatile enough to allow for
effective inter-agency collaboration while still maintaining
the standard practices of each.

Further, the human operator network alone is not suffi-
cient to create adequate SSA. There is an enormous amount
of data recorded from sensors on satellites, ground stations
and other periodic collectors. The human operator is over-
loaded by the transmission, capture, cataloging, and sense
making of these data. The optimal solution for enhanced
SSA is a synergistic, collaborative effort between networks
of humans and automated agents.

The Space Collaboration via an Agent Network (SCAN)
approach enables proxy agents to represent each of the
stakeholder agencies for space and to facilitate collabora-
tion by identifying opportunities and methods for collabora-
tion. This allows humans to have access to large amounts
of data through their agents, while personalizing them given
the users specific preferences and capabilities. These agents
can then communicate with each other with varying levels
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of input from the user for tasks ranging from retrieving in-
formation, securing the services of another agency or team
formation for complex tasks.

Many agent models have been developed for solving de-
centralized problems requiring cooperation. For SCAN,
we assume a sequential problem in which series of deci-
sions need to be made, each affecting the subsequent. Lim-
iting the sequential models for multiagent cooperation to
those based on decision theory, a large number of mod-
els can still be used (Becker, Lesser, and Zilberstein 2004;
Bernstein et al. 2002; Boutilier 1999; Nair et al. 2005;
Guestrin, Koller, and Parr 2001). Nevertheless, each of these
models makes assumptions that cause it to be inappropriate
for a domain such as SCAN. These assumptions include: a
full model of the problem with the value other agents de-
rive from all actions or the results of these actions, perfect
knowledge of the current state of the system (or a common
estimate), a shared objective function, a centralized solu-
tion method. An ideal model for our domain would relax
these assumptions to permit only local knowledge and solu-
tion methods, self-interested agents, model uncertainty and
independence between groups of agents.

The remainder of this paper is organized as follows. We
first discuss the SCAN domain in more detail as well as the
progress made to date. We also discuss several models that
could be used to represent this problem and their shortcom-
ings. Finally, we discuss key assumptions that we are in-
terested in relaxing in these approaches and the challenges
involved in doing so. The goal in this project is to produce a
system of personal assistant agents with accompanying so-
lution methods that maintain tractability and high solution
quality.

Overview of SCAN approach
The approach used in SCAN represents each of the stake-
holder agencies for space with proxy agents and facilitates
collaboration by identifying opportunities and methods for
collaboration. It demonstrates the suitability of our human-
agent solution to address the three critical aspects above, that
is: 1) Knowledge and mental models of human operators, 2)
Collaboration methods and barriers to collaboration and 3)
Integrating solutions that conform to preferred workflows.

A variety of factors shape the opportunities for collabora-
tion and the constraints on collaboration. The SCAN Agent
architecture incorporates these components into the SCAN
Proxy Agent Architecture. The need to collaborate varies
based on an interaction of the demands of the mission, the ar-
chitecture of the team and its resources, and the distribution
of expertise within the team. Collaboration becomes nec-
essary when mission-critical expertise is distributed among
multiple people, and resources and responsibilities are like-
wise divided between people.

A team’s ability to collaborate depends on a number of
factors, including available technology, team members col-
laboration skills, and team composition. The factors affect-
ing the ability to collaborate directly affect the products of
collaboration (e.g., assessments and plans), as well as the
apparent coordination of the team as a whole. Collabora-
tive critical thinking is intended to provide active support to
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Figure 1: SCAN Proxy Agents being used to facilitate col-
laboration between the heterogeneous stakeholders in space.

teams above and beyond the three factors affecting a team’s
ability to collaborate. Figure 1 shows a top-level diagram
of our proposed solution: Space Collaboration via an Agent
Network (SCAN). It shows proxy agents, each of which rep-
resents a stakeholder for space. We implemented an initial
version of this infrastructure by developing agent interac-
tions to carry out the use case(s), and tested the resultant
model by generating results to show dynamic constraints,
changing parameters, and making modifications to the use
cases(s) that show the benefit of agent use. This solution
will fit integrally into the current workflow, without the need
for additional tools for users to learn, and will make privacy
issues explicit.

It is important to note that our approach to SCAN is to
have the human remain in control and drive the collabora-
tion. The proxy agent is designed to facilitate the human
operators and point them in the right direction to improve
interagency collaboration. Human operators will not be sur-
prised or superseded by the SCAN proxy agent’s actions.

The SCAN framework

In conceiving an agent-based architecture, we identified the
following benefits to individual agencies of agent-based col-
laboration:

1. Fusion/Integration of agency plans

2. Locating potential collaboration opportunities

3. Forewarning: An agency may anticipate future events
based on an alert from another agency

4. Increased Quality/Accuracy of data

5. Facilitating levels of automated collaboration

6. Detecting collaboration failures

7. Adjusting to realtime changes in policy/capabilities

8. Learning preferences of agencies

9. Persuading agencies to cooperate through incentives
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We selected areas (1), (2), and (7) as areas for further
study.

Use case

In order to study the above, we constructed a working Use
Case. The requirements for the Use Case were:

Scalability: The initial Use Case should describe a sim-
ple problem that can easily scale to more complex problems.
This allows us to demonstrate our solution initially in an eas-
ily controllable environment, but also set the stage for our
solution to handle a larger set of more complex problems.

Generalizability: The Use Case should be representative
of a general class of collaboration problems, so that the so-
lution will be applicable to the needs of other agencies as
well as those mentioned in the Use Case. The Use Case was
based on interviews with space weather analysts from the
Air Force Weather Agency (AFWA), and their information
needs as primary producers of information on environmen-
tal effects to agencies such as NASIC, JSpOC, and the Air
Operations Center (AOC)

We identified two important facets to examine in develop-
ing the use case: (P1) How does the SCAN agent know when
to initiate collaboration? (P2) What is the message structure
necessary to handle collaboration? The message structure
will be driven by the type of collaboration, therefore (P1)
must be considered before (P2). For (P1), the following se-
quence of steps should take place in the Use Case: (S1) NA-
SIC’s communication to the satellite goes down (S2) NA-
SICs SCAN agent attempts to diagnose the reasons (S3) Two
causes are identified, a solar flare or a system problem (S4)
Collaboration IDs are generated for each of the two causes
(S5) NASICs SCAN agent sends a query to the other agents
to collaborate (S6) Agents on behalf of the other agencies
provide an affirmative response to the collaboration request
(S7) The agencies are connected.

This protocol is motivated by Signaling System 7 (SS7) of
the telephone network (Modarressi and Skoog 1990) which
separates data from service. This property is particularly
desirable, as it allows an agency to limit the amount of data
it discloses to non-collaborating agencies. In the future, the
topology of the SCAN agents will be further refined.

Basic model

From the perspective of a SCAN agent receiving collabo-
ration requests, this agent is called the Collaboration Fa-
cilitator (CF). The requesting agent is called the CR. As
stated previously, each SCAN agent will have a model of the
other agents and agencies. The model will be used to derive
such information as an arrival rate of resource requests, λ(i).
Based on the model of the requests coming in, the model will
also predict a service rate of these requests, μ(i). The model
will also predict the benefits of each collaboration from each
organization. Likewise, from the perspective of the CF, it
is possible that a collaboration initiated by another agency
will require collaboration with a third agency, and that only
the CF and not the CR knows about this collaboration. In
this case, it will NOT be the role of the CF to request col-
laboration with the third agency. This could reproduce the
well-known “dining philosophers” problem from Operating

Systems literature which is essentially that a bottleneck re-
sults when multiple processes compete for a limited set or
resources. As a consequence of that bottleneck, system per-
formance is degraded. Instead, the CF agent passes the in-
formation about the 3rd party back to the CR agent and the
CR agent submits the request for collaboration to the third
agency.

The motivation behind this model is that a SCAN agent
receiving a collaboration request may be able to make de-
cisions like: (1)“Well, technically I could collaborate you;
after all I have enough resources to do it. However I know
I’m about to get some high priority requests from impor-
tant agencies soon, so... collaboration request denied.” (2)“I
can’t collaborate with you right now. But my model says
I’ll be free in a few hours, do you want to book my time in
advance?”

Multiagent models of interest

To model the type of problems described above, we need to
consider the following requirements: sequential decisions,
uncertainty regarding outcomes and other agents’ decisions
and decentralized control. Sequential decisions are needed
because agents’ decisions at the current time will affect the
future outcomes. That is, suggesting to collaborate with one
agency rather than another may have consequences in terms
of time and resources required, affecting future collabora-
tion possibilities. Uncertainty is present in these scenarios
as well considering that information may be unavailable or
outside forces could cause the situation to change. Also,
users may decline collaboration and the actions of the other
agents are often unseen, causing uncertainty about the other
agents. The system must also be decentralized for similar
reasons. Agents must make choices based solely on local in-
formation due to the lack of updates from other agents. This
local information may also be uncertain or incomplete infor-
mation about the human user or other humans and agents in
the system.

This type of modeling can be accomplished with decision-
theoretic approaches. In general, these representations have
probabilities which represent the uncertainty in action out-
comes and seek to maximize an objective function in an at-
tempt to optimize the sequence of decisions by the agents.
As agents are built for ever more complex environments,
methods that consider the uncertainty in the system have
strong advantages. Developing effective frameworks for rea-
soning under uncertainty is a thriving research area in arti-
ficial intelligence and we discuss some of these approaches
below.

DEC-POMDPs

A DEC-POMDP (Bernstein et al. 2002) can be defined with
the tuple: 〈I, S, {Ai}, P,R, {Ωi}, O, T 〉 with
• I , a finite set of agents
• S, a finite set of states with designated initial state distri-

bution b0• Ai, a finite set of actions for each agent, i
• P , a set of state transition probabilities: P (s′|s,�a), the

probability of transitioning from state s to s′ when the set
of actions �a are taken by the agents
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• R, a reward function: R(s,�a), the immediate reward for
being in state s and taking the set of actions �a

• Ωi, a finite set of observations for each agent, i
• O, a set of observation probabilities: O(�o|s′,�a), the prob-

ability of seeing the set of observations �o given the set of
actions �a was taken which results in state s′

• T , a horizon or number of steps after which the problem
terminates

A DEC-POMDP involves multiple agents that operate un-
der uncertainty based on different streams of observations.
At each step, every agent chooses an action based on their
local observation histories, resulting in a global immediate
reward and a local observation for each agent. Note that
because the state is not directly observed, it may be bene-
ficial for the agent to remember its observation history. A
local policy for an agent is a mapping from local observa-
tion histories to actions while a joint policy is a set of lo-
cal policies, one for each agent in the problem. The goal is
to maximize the total cumulative reward until the horizon is
reached, beginning at some initial distribution over states. In
the infinite-horizon problem, T is infinity and the decision
making process unfolds over an infinite sequence of steps.
In order to maintain a finite sum over the infinite-horizon, in
these cases a discount factor, 0 ≤ γ < 1, is employed.

The DEC-POMDP model is very general, but has a very
high complexity (NEXP-complete1). Algorithms for solving
DEC-POMDPs also typically assume that all model param-
eters are known in advance and the solution is found in a
centralized manner, providing policies that each agent can
implement in a decentralized way. This model also assumes
no communication (except as part of the observations) and
full cooperation between the agents. The high complexity
and large number of assumptions make the DEC-POMDP
model currently inappropriate for the scenarios we are in-
terested in for SCAN with a large number of agents with
limited knowledge of the full problem model.

Communication and learning have also been studied in
the DEC-POMDP model. Recent work has examined using
communication for online planning in DEC-POMDPs (Wu,
Zilberstein, and Chen 2009). This type of work could be
useful in our contex because communication is used when
inconsistencies are detected between the agents. Unfor-
tunately, it still requires knowledge of the full model and
a DEC-POMDP to be solved for some number of steps.
Rather than assuming the model is known, it can also be
learned or policies can be learned directly (Dutech, Buffet,
and Charpillet 2001; Peshkin et al. 2000). Direct policy
learning may be an appropriate approach in that it does not
require a model, but in order to calculate the gradient the
model must be sampled. This sampling requires many in-
stances and still is not guaranteed to converge to an equilib-
rium.

DEC-MDPs and MMDPs

We can restrict DEC-POMDPs in various ways to simplify
solution calculations. For instance, we can assume that each

1This results in doubly exponential complexity as long as
P!=NP.

agent can fully observe its own local state, but not the global
state. This is a form of the DEC-MDP model (Becker,
Lesser, and Zilberstein 2004), which has been shown to have
more efficient solutions in some cases, but in general has
the same complexity as the general model (NEXP-complete)
(Bernstein et al. 2002). If we consider problems in which the
agents have independent transitions and observations and a
structured reward model (IT-IO DEC-MDPs), the complex-
ity drops to NP-complete (Becker et al. 2004). Recent work
has shown that subclasses of DEC-POMDPs which have in-
dependent rewards, but dependent observations and transi-
tions as well as those with certain structured actions retain
the same complexity as the general problem (Allen and Zil-
berstein 2009). Some other modeling assumptions and the
resulting complexity are studied in (Goldman and Zilber-
stein 2004), but none of these seems appropriate for our case
as they continue to assume centralized solution methods and
knowledge of the model.

DEC-MDPs can be further simplified by assuming that
the state of the problem is fully observed by each agent,
resulting in a multiagent MDP (MMDP) (Boutilier 1999).
There has been work on efficient planning solutions for these
problems (modeled as factored MDPs) (Guestrin, Koller,
and Parr 2001), which allow algorithms to exploit indepen-
dence between agents. While this is a useful quality (which
is discussed in more detail in the context of ND-POMDPs),
centralized solution methods are used and full model knowl-
edge is required, limiting the applicability of these models to
our scenario.

ND-POMDPs

Another way of simplifying DEC-POMDPs is to assume
agents interact in a limited way based on locality. This
assumption often considers agents that can only interact
with their neighbors and thus is more scalable in the num-
ber of agents in the problem. This has been studied us-
ing the networked distributed POMDP (ND-POMDP) model
for the finite-horizon case (Nair et al. 2005) as well as
a more general factored models (Oliehoek et al. 2008;
Witwicki and Durfee 2010).

The ND-POMDP model is similar to the DEC-POMDP
model except for the following: states can be factored
S = ×Si × Su for each set of states for each agent
i and an unaffected state set, actions and observations
can be factored similarly with A = ×Ai and Ω =
×Ωi for each agent, transition independence where the
unaffected state and each agent transition independently
P (s′|s, a) = P (s′u|su)

∏
i P (s′i|si, ai) and observation in-

dependence where O(o|s′, a) = ∏
i Oi(o

′
i|si, ai). Also, re-

wards can be broken up based on neighboring agents and
summed as follows:

R(s, a) =
∑
l

(sl, . . . , slk, su, 〈al, . . . , alk〉)

where l represents a group of k = |l| neighboring agents.
The ND-POMDP model also assumes that a the belief state
(the state distribution estimate) is known by all agents.

A solution to an ND-POMDP can be computed in a dis-
tributed manner using message passing to converge to a local
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Model Pros Cons
DEC-POMDPs Very rich model of cooperative agents Assumes known model parameters,

fully cooperative, high complexity

IO-IT DEC-MDPs Somewhat rich, Limiting model assumptions (agents interact only through rewards),
less complex than full model Assumes known model parameters, fully cooperative

MMDPs Low complexity Limiting model assumptions (centralized knowledge),
Assumes known model parameters, fully cooperative

ND-POMDPs Exploits locality, distributed solution, Limiting model assumptions (very limited interaction),
less complex than full model Assumes some known model parameters, fully cooperative

Graphical games Allows self interest, exploits locality Assumes some known model parameters, not sequential

I-POMDPs Allows self interest, exploits locality Assumes known model parameters, high complexity

Table 1: Model pros and cons for distributed personal assistant domains.

optimum. This approach can be very efficient in cases where
the agents are only loosely connected. Nevertheless, strong
assumptions are still made such as knowing the model in the
local neighborhood and additive rewards across neighbor-
hoods.

Game theoretic representations

If we assume that agents may have different interests that
may not necessarily align perfectly (which is likely to be the
case in many real-world scenarios), we could use a game
theoretic approach. A model that retains the idea of agents
loosely connect into neighborhoods is the graphical game
(Kearns, Littman, and Singh 2001). This approach combats
the tabular (and thus exponential) representation of n-agent
games by using an undirected graph where two agents are
connected if they can affect each others’ payoffs. Assump-
tions in this model are that each agent can calculate a best
response, which means that it knows the payoffs for the dif-
ferent actions given the other agents’ choices. This is also
not a sequential model, so all possible horizon T policies
would have to be considered as actions, resulting in an ex-
ponential increase in action size and intractability to solve.

Sequential game theoretic models have also been studied.
A generalization of DEC-POMDPs to the case where agents
may have different rewards results in a partially observable
stochastic game (POSG). Thus, if we assume POSGs with
common payoffs for all agents, it is equivalent to the DEC-
POMDP model (Hansen, Bernstein, and Zilberstein 2004).
This model relaxes the assumption that all agents are fully
cooperative, but retains the intractability and knowledge of
the model assumed by the DEC-POMDP. Another game
theoretic view of multiagent POMDPs from the Bayesian
perspective is the interactive POMDP (I-POMDP) model
(Gmytrasiewicz and Doshi 2005). An extension of the I-
POMDP model to graphical representations, allowing agent
independence to be exploited is the interactive dynamic in-
fluence diagram (I-DIDs) (Doshi, Zeng, and Chen 2009).
While both of these models are interesting in that they can
represent problems with estimates of other agent behavior
based on observations that are seen, a full model is again as-
sumed and complexity is at least as high as the correspond-
ing DEC-POMDP models.

Extensions

As shown in Table 1, the models discussed have varying pros
and cons. It is often the case that a choice must be made
which balances the trade-off between model richness and
computational tractability. Incorporating richness into mod-
els to allow them to more accurately represent real-world
problems as well as developing models with a lower compu-
tational footprint, while still preserving the structure of the
problem are both very important goals. We plan to pursue
extensions to these models which fit the personal assistant
agent domain, without markedly increasing complexity. We
discuss one such step below.

Bounded model uncertainty

As a first step towards relaxing assumptions of these models,
we consider the case where there is model uncertainty. We
begin with the simple case where a model is known, but a pa-
rameter may only be known within some error ε. That is, in
the reward case for DEC-POMDPs, reward error could cause
the true reward to be in the interval [R(s,�a)−ε, R(s,�a)+ε].
Similar model uncertainty can cause the transition and ob-
servation model parameters to only be known within ε. We
consider the DEC-POMDP model, but similar results can be
shown for the other models.

We first show that the value of a set of polices can be
bounded when such an ε error is introduced.

Assuming policy �p for the set of agents, we can evaluate
this policy with

V (s, �p) = R(s,�a�p)+ γ
∑
s′,o

P (s′|s,�a�p)P (�o|s′,�a�p)V (s′, �p�o)

where �a�p represents the first action defined by �p and �p�o rep-
resents the next step policy that is followed after �o is seen by
the agents.

We can define Vmax(s, �p) as the maximum reward found
by introducing a maximum error in the reward function as
follows Vmax(s, �p) =

R(s,�a�p) + ε+ γ
∑
s′,o

P (s′|s,�a�p)P (�o|s′,�a�p)Vmax(s
′, �p�o)
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Because this is an additive error, we get the following

= R(s,�a�p)+ε+γ
∑
s′,o

P (s′|s,�a�p)P (�o|s′,�a�p)[V (s′, �p�o)+Vε]

= R(s,�a�p)+ε+γ
∑
s′,o

P (s′|s,�a�p)P (�o|s′,�a�p)V (s′, �p�o)+γVε

This is true because Vε does not depend on s
or �o (observe that on the last level of recursion∑

s′,o P (s′|s,�a)P (�o|s′,�a)ε = ε). Thus, it can be seen
that Vε = ε+ γε+ . . .+ γT−2ε and

Vmax(s, �p) = V (s, �p) +
1− γT+1

1− γ
ε

A similar result can be found for the minimum value given
the model parameters. Therefore, the true value for any state
will be will be

Vtrue =

[
V (s, �p)− 1− γT+1

1− γ
ε, V (s, �p) +

1− γT+1

1− γ
ε

]

This analysis can also be conducted for both the transi-
tion and observation models. The result of an ε error in
both models is 1−γT

1−γ γ|S||Ω|ε2 or 1−γT

1−γ γ|S|ε for just the

transition model and 1−γT

1−γ γ|Ω|ε for just the observation
model. When the horizon is infinite, 1/1 − γ will replace
1− γT+1/1− γ.

While this type of model uncertainty can be bounded, it
does not mean that all current solution techniques may be
used without change. For instance, pruning in dynamic pro-
gramming for DEC-POMDPs (Hansen, Bernstein, and Zil-
berstein 2004; Bernstein et al. 2009) must be adapted to
remove only policies that are dominated by 2ε now to en-
sure they truly have lower value. This will result in more
policies being retained and thus higher resource usage. Sim-
ilarly, changes must be made in other algorithms for other
models as well when an ε error is introduced.

Conclusion
In this paper, we discussed a real-world domain for facil-
itating collaboration between organizations and people, the
SCAN proxy agents. We described the characteristics of this
domain which require sequential and decentralized decision-
making. Various decision-theoretic models for representing
these problems are presented along with their shortcomings
in this domain. In order to begin to address these shortcom-
ings, we present one approach for bounding the value error
when the model error can be bounded by ε. In the future, we
are interested in further extending decision-theoretic mod-
els so they can be applied in this context. This work will
include topics such as fully decentralized decision-making,
other forms of model uncertainty and self-interested behav-
ior. These algorithms will be implemented and tested in the
SCAN domain.
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