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Abstract 
          The cost-effectiveness and accuracy of a multidisciplinary 
design optimization (MDO) process is highly dependent on 
designers’ ability to flexibly formulate the optimization problem 
for specific challenges. Designers need to rapidly modify how 
object parameters are assigned to groupings of objects in the 
product model. Our research has developed a Reference-Based 
Optimization Method (RBOM) to enable this type of flexible 
problem formulation. However, the responsibility still falls on the 
designer to manage the problem formulation and MDO process, 
which can lead to inefficient and costly design decisions. By 
means of artificial intelligence, in particular knowledge-based 
systems, these potential barriers to MDO adoption in the 
Architecture, Engineering, and Construction (AEC) industry 
could be mitigated, resulting in more efficient design processes 
and, ultimately, energy-efficient built environments. 

 Introduction
Managing and reducing the environmental impacts in 
design is urgently important. For example, reducing the 
carbon footprint of buildings is a focus of building 
stakeholders and the architecture, engineering, and 
construction (AEC) community. The American Institute of 
Architects (AIA) in the Architecture 2030 Challenge (AIA 
2011) and the Federal Government in the Energy 
Independence and Security Act (FEMP 2007) both call for 
net-zero energy (NZE) consumption for new building 
designs by the year 2030. Maximizing energy 
performance, however, has proven elusive to industry for 
many years. The precedent-based design processes that are 
commonly used in industry do not allow for the design 
exploration required to meet NZE requirements (Clevenger 
2009). Performance-based designs are complex multi-
criteria problems that require more structured and 
systematic definition and exploration of design spaces 
(Papamichael and Protzen 1993). Designers need more 
information about the performance trends and interactions 
of the potential design spaces available to them, 
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particularly during the conceptual design stage, when 
design decisions have largest impact on building 
performance (Struck, de Wilde et al. 2009).  
          To achieve anything approaching NZE buildings, 
designers need to generate far larger spaces, and 
systematically vary all the parameters in question 
gradually, in order to be able to comprehend and visualize 
performance trends and interactions (Mourshed, Kelliher et 
al. 2003). However, a number of tool and process 
limitations result in narrow explorations of design spaces. 
One limitation is that the designers’ tools usually generate 
static design alternatives and are not intended to help 
define and explore design spaces (Shea, Aish et al. 2005, 
Mora, Bédard et al. 2008). A second limitation is that these 
tools do not produce information that is represented in a 
form that facilitates multidisciplinary analysis (Wang, 
Rivard et al. 2005, Holzer, Tengono et al. 2007). However, 
even when these limitations are overcome, designers must 
tread carefully, as design spaces quickly become unwieldy 
or infinite (Woodbury and Burrow 2006).  
          To demonstrate the magnitude of the design spaces 
facing conceptual building designers, consider the simple 
example of a rectangular building with 2 windows on each 
side and 10 desired construction types. A designer may 
want to determine the impact of independently modifying 
the construction type for all the windows, the windows on 
each orientation, and each individual window. The possible 
alternatives in each of these scenarios are 10, 10,000, and 
100,000,000, respectively. Each of these three scenarios 
represent three different problem formulations with their 
own vast alternative and impact spaces that designers 
cannot adequately explore using conventional methods. 
Designers need efficient methods to define and explore 
alternative spaces that specifically address the questions 
they want to answer. No overarching methodology to 
enable and guide effective formulation and execution of 
optimization problems currently exists. This paper will 
discuss a method we developed to enable effective 
problem formulation for product model-based 
multidisciplinary design optimization (MDO) and how 
artificial intelligence (AI) and knowledge-based systems 
could guide it. 
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Product Model-Based MDO 
MDO is a growing engineering discipline concerned with 
the formalization of iteration and coordination between 
groups working on the design of complex engineering 
systems and sub-systems and with creating an environment 
conducive to these formal methods (AIAA 1991). At its 
core is the notion that design is a goal oriented decision-
making process driven by performance feedback (Malkawi 
2004) and the application of MDO methods to support 
thorough investigation of design spaces in AEC holds 
much promise (Shea, Aish et al. 2005, Caldas 2008, Geyer 
2009). 
          Performance-based design supported by product 
models, also called building information models (BIM), 
allows practitioners to flexibly and efficiently generate and 
modify geometric and semantic models. The successful use 
of product models for analysis, however, requires some 
method to pass information between the product model and 
the analysis application that meets the needs of the user. 
There is widespread support for a product model-centric 
approach to MDO in literature (Townsend, Samareh et al. 
1998, Mourshed, Kelliher et al. 2003, Lazzara 2008). 

Flexible Problem Formulation 
To further investigate the potential of MDO for AEC, the 
authors implemented a simple classroom case study for its 
structural integrity, energy consumption, daylighting, and 
initial capital and life-cycle costs (Flager, Welle et al. 
2009). The results supported the assertion that the use of 
MDO in AEC could compress design cycle time, increase 
design knowledge, and yield substantive product quality 
and performance gains. The automation process 
implemented between the selected design and analysis 
applications, however, lacked flexibility. The chosen 
structure of exchange requirements constrained the data 
workflows. An exchange requirement (ER) is “a set of 
information that needs to be exchanged to support a 
particular business requirement at a particular stage of a 
project” (buildingSMART 2009). ERs may be used for 
data transformation, reduction and simplification, 
translation, and/or interpretation (Bazjanac and Kiviniemi 
2007). The exchange requirement structure for the case 
study only allowed the optimizer to modify the 
construction type for all the exterior windows at the same 
time. The construction type for various facade orientations 
or for individual windows could not be optimized 
independently. Such rigid systems require major 
modifications to handle new problems that differ from the 
original one by only a few minor variations in the decisions 
the MDO is being asked to support (Wang, Rivard et al. 

2005), or in the use of a problem formulation that either 
cannot support the design challenge or supports it 
inefficiently (Berends and Tooren 2008). MDO 
formulations must support project-specific goals (Geyer 
2009), and this functionality must be supported by the 
selected automation process.  Failure to do so will 
negatively impact MDO cost-effectiveness and accuracy. 
          Literature defines problem formulation in the context 
of MDO as pertaining primarily to the automation process 
downstream of executing the analysis applications (O. and 
C. 1998, Isaacs, Sudhakar et al. 2003). For example, 
literature identifies the need for flexibility in problem 
formulation construction in the selection of various 
optimization algorithms and sequences (Eason and Wright 
1992, Mourshed, Kelliher et al. 2003, Kroo 2004), the 
configuration of complex branching though a visual 
programming interface (Haymaker, Kunz et al. 2004), and 
in connecting, replacing, deleting, and adding processes to 
the problem (O. and C. 1998). However, the limitations in 
problem formulation capabilities encountered in our case 
study were due to decisions made upstream of the analysis 
applications, where geometry and other required inputs are 
generated and structured for analysis. No MDO literature 
addresses this component of problem formulation. 
          Therefore, we proposed an additional requirement 
for flexible problem formulation called a dynamic 
exchange requirement structure. In product model-based 
MDO, ERs are passed between the product model, the 
optimization interface (herein Optimization GUI), and/or 
the analysis application(s). How an ER is passed between 
these various stages of an MDO framework may vary, 
resulting in different ER assignment strategies. Figure 1 
shows how the ER “Construction Type” may be assigned 
to different subsets of “Window” objects independently in 
a product model using three different ER assignment 
strategies.
          The ability to rapidly reconfigure ER assignment 
strategies between optimizations without the need for 
software development results in a dynamic exchange 
requirement structure. With a methodology and some 
additional resource investment during the initial 
automation process to enable this functionality, overall 
costs in the application of MDO to support multiple 
problem formulations may be minimized. No MDO 
methods currently exist to support a dynamic exchange 
requirement structure, limiting the practical applicability 
of MDO to AEC. To fill this research gap, we developed, 
implemented, and validated an MDO method that enables 
flexible problem formulation through a dynamic exchange 
requirement structure called the Reference-Based 
Optimization Method (RBOM) (Welle and Haymaker 
2011). 
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Reference-Based Optimization Method 
Our research proposes one specific method to support 
flexible problem formulation through a dynamic exchange 
requirement structure called RBOM. The method uses the 
product model concepts Object ID, Object Type, Object 
Group, and Object Attribute (Eastman 1999). The ultimate  

goal of RBOM is to help users match Object IDs from the 
product model with Object Attributes required for analysis 
in the desired configuration. It uses the concept of 
References to enable various mapping strategies to achieve 
this goal. A Reference is a mechanism to isolate unique 
instances of Objects for a given Object Type. The primary 
RBOM References are Global, Grouping, and Detailed. 
The Reference Grouping is further subdivided by the user 
to describe the unique nature of the group, for example 
Grouping:Orientation, Grouping:SpaceType, 

Figure 1: A Dynamic Exchange Requirement Structure enables designers to assign optimization parameters to objects in 
a product model using different ER assignment strategies.

Figure 2: RBOM guides the user through 7 steps for dynamically assigning exchange requirements.
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Grouping:FloorLevel, etc. Using these References, Object 
Atributes are assigned to either all instances of a given 
Object Type (Global), subsets of instances of a given 
Object Type (Grouping), or a single instance of a given 
Object Type (Detailed), matching the requirements of the 
three ER Assignment Strategies in Figure 1. The steps the 
user executes in RBOM, along with the corresponding data 
flows that result for each Reference, are shown in Figure 2 
for a general product model-based MDO process. 
          More than one Reference may be assigned to a single 
Object Type. For example, if the user wants to isolate a 
group of Object Types located on the third floor of the 
south orientation, rather than creating a new Reference (i.e. 
Grouping:OrientationandFloorLevel), the user could assign 
two Groups in Step 3, then assign the two References
Grouping:Orientation and Grouping:FloorLevel in Step 5.  

Knowledge-Based Systems for RBOM 
Engineering design automation involves: (1) identifying 
the relevant design knowledge; (2) providing a formalism 
for representing and processing the knowledge; and (3) 
implementing the formalism in a computer environment 
(Reddy, Gupta et al. 1992). We have just presented one 
specific technique for MDO design automation to provide 
the user the flexibility to formulate problems as necessary 
to meet their design challenge. However, few designers 
have the level of knowledge or heuristic capacity to handle 
the multiple sources of complexity during the MDO 
implementation process, resulting in its limited use in 
AEC. Knowledge-based systems have the potential to 
provide methods to assist designers in effectively 
managing MDO processes (Jiaoying, Feng et al. , Arora 
and Baenziger 1986, Boyle 1989). 
          Research has identified a wide range of AI 
applications for MDO, including evolutionary algorithms 
for parameter optimization and design space exploration 
(Bäck and Schwefel 1993), optimizer selection (Rogers 
and Barthelemy 1986), optimizer performance diagnosis 
(Arora and Baenziger 1986), Artificial Neural Networks 
(ANN) to improve the speed of GA-based building 
simulation environments (Magnier and Haghighat 2010), 
constraint specification and management (Gelsey, 
Schwabacher et al. 1998), objective specification (Boyle 
1989), design variable modifications (Arora and Baenziger 
1986), analysis preparation (Andrews Vogel 1990), and 
distributed computing (Girimonte and Izzo 2007). Many of 
these applications are supported by knowledge-based 
systems.  
          Knowledge-based systems, or expert systems, are 
computer programs containing knowledge about a narrow 
domain for solving problems within that domain, and 
consist of a knowledge base (domain knowledge expressed 
as general facts, rules and heuristics) and an inference 
mechanism (reasoning engine) (Pham and Pham 1999). 

Two types of knowledge bases can be used in MDO: (1) an 
existing knowledge base about a class of design problems 
developed over time and (2) a generated knowledge base 
that is developed for a particular design problem (Arora 
and Baenziger 1986). Remembering and reusing past 
events through Case-Based Planning (CBP) (Humm, 
Schulz et al. 1991) is one particular method that would 
strengthen an AEC knowledge base due to frequent 
similarities in energy performance trends for a given 
building type in a given climate. MDO knowledge bases 
must be integrated over various design domains to achieve 
robust knowledge bases (Curran, Verhagen et al. 2010). 
The use of knowledge-based systems for design 
optimization has many benefits, including improvements in 
cost and reliability and the documentation of the entire 
design process, from how goals are set to design 
assumptions to why decisions are made, among others 
(Stephanopoulos 1990) . 
          Several of the aforementioned AI applications for 
MDO deal with the issue of problem formulation. The 
application of AI to the component of problem formulation 
that RBOM addresses through a dynamic exchange 
requirement structure has never been discussed in 
literature, though the potential applications are significant. 
Though RBOM enables the ability to flexibly formulate 
information flows throughout an optimization to meet the 
needs of the user, it still relies on designers to understand 
what their needs are and make appropriate decisions as to 
when to apply certain References and when not to. These 
decisions are not always clear, frequently quite complex, 
and are impacted by specific design objectives, building 
physics, schedule and budget constraints for the project, as 
well as the resources available to continually assess the 
ongoing MDO process and be able to identify if the 
selected problem formulation was the right choice or not 
based on some set of criteria (which may evolve over time 
during the course of the design project as well).  
          For example, it may be decided by a design team 
that the appropriate RBOM Reference for a particular 
daylighting study is the Detailed Reference, for they 
believe optimizing for the construction type for every 
window in the building is preferable given the building 
footprint, climate, and diverse external shading profiles for 
the site. The team may be confident with the decision 
based on building physics alone, but soon realize that the 
size of the design space is 100,000 possible alternatives 
with an estimated simulation time for the optimization of 
around 15 days given the computing resources at their 
disposal and the long simulation times of their selected 
analysis applications. This time requirement may not meet 
their projected schedule constraints. Even if the MDO 
process time requirements fit within the schedule 
constraints, there may be diminishing returns to occupying 
their computing resources for that long given a set of 
alternative uses they could allocate them to. Additionally, 
after several days of running the Detailed Reference MDO, 
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the results of the optimization may start to show that using 
a Grouping Reference based on facade orientation would 
have been sufficient in determining the primary impacts of 
the design alternatives on performance objectives, but at a 
fraction of the computing resources their initial decision 
incurred. A decision will need to be made whether to stop 
the optimization, start a new one, or use the results of the 
partially completed optimization.�
          This example highlights just a few of the challenges 
designers face in appropriately selecting a problem 
formulation method. Artificial intelligence research in the 
fields of computer-aided process planning (CAPP) 
(ElMaraghy 1993) and reconfigurable manufacturing 
systems (RMS) (Ismail, Musharavati et al. 2008) has a 
significant potential to help manage the wide range of 
uncertainties design teams face when deciding how to 
structure and manage their MDO process due to their 
common goal of maximizing process efficiency given a set 
of constraints, goals, and objectives. The same principles 
that motivate CAPP and RMS to identify and enable an 
ideal assembly line or manufacturing process given a range 
of technological or economic constraints to create a 
product also motivate the identification and enabling of the 
most efficient data structure and data flow for an MDO 
process in AEC (or any other industry) to create a product. 
RBOM provides a data structure that enables this type of 
problem reconfiguration to happen once the preferred 
problem formulation is identified, however it is the process 
of intelligent reasoning to determine what the problem 
formulation should be in the first place that still remains a 
major challenge for the industry. Rapid reconfigurability or 
redesign (Boyle 1989) of an MDO process is critical to the 
widespread adoption and effectiveness of MDO in today’s 
design environments given the high first-costs of 
implementation. Knowledge-based systems that have the 
intelligence to determine cost-effective responses to 
unpredictable changes in design requirements given a set 
of goals, constraints, and objectives applied to the MDO 
process itself rather than the alternative generation and 
analysis process hold much promise. 
          The development of an MDO problem formulation 
knowledge base for energy-efficient building design is a 
formidable challenge. When considering just the domain of 
passive thermal performance, which refers to all non-

mechanical energy flows in a building, potential domain 
knowledge that could be used for a baseline knowledge 
base includes the following: 

Building Physics 
� Daily, seasonal, and annual temperature profiles 
� Daily, seasonal, and annual solar profiles 
� Daily, seasonal, and annual wind profiles 
� Daily, seasonal, and annual external shading 

profiles 
� Internal load profiles (occupant, lighting, and 

equipment) 
� Conditioning requirements 
� Ventilation requirements 
� Operating schedules 
� Building shape, dimensions, and other geometric 

parameters 
� Building construction types 
� Passive thermal design strategy (passive heating 

and cooling, thermal mass, natural ventilation, etc.) 
� Control strategies 
� Case-based performance evaluations 

Project Constraints and Objectives 
� Budget 
� Schedule 
� Energy code and sustainable design rating system 

compliance 

MDO Process Constraints and Objectives 
� Design and analysis application simulation times, 

accuracy, and reliability 
� Optimizer performance 
� Design variable and performance constraint 

performance relative to design objectives 

          While research has suggested that the use of AI, in 
particular knowledge bases, is well suited to the field of 
engineering design (Arora and Baenziger 1986) and the 
early stages of building design (Sabouni and Al-Mourad 
1997) due to the prevalent use of rules-of-thumb developed 
over the years, this same tendency to rely on precedent-
based design, typically using antiquated rule-of-thumb 
based on empirical data from buildings built over 30 years 
ago, is a major barrier to successfully realizing high-
performance built environments in AEC. Caution must be 
used to ensure that any knowledge bases developed and 

 Figure 3: RBOM guides the user through 7 steps for dynamically assigning Exchange Requirements.
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leveraged for MDO problem formulation in the domain of 
energy-efficient buildings employ effective learning 
mechanisms for the continual improvement of both domain 
knowledge and the inference engine. Figure 3 shows a 
high-level overview of how a knowledge-based system for 
passive thermal MDO problem formulation could operate 
using RBOM. 

Conclusions
Sustainable building design requires a new paradigm of 
performance-driven design processes. Design teams must 
leave behind antiquated precedent-based processes to 
engage in rapid multidisciplinary design and analysis to 
truly optimize the multidisciplinary performance of their 
designs. The variability in the challenges faced by 
designers requires that they be able to flexibly formulate 
the structure of the optimizations. This paper describes one 
method to enable such flexible problem formulation. 
          Choosing the correct problem formulation remains a 
challenge for designers, even given this new flexibility. 
Ironically, this is where precedent-based knowledge can 
have an important constructive role in the formulation of 
optimization problems. Appropriately structured 
knowledge bases, intelligent methods to uses this 
knowledge in formulating good optimization problems, 
and advanced techniques in improving the knowledge 
bases over time are important developments for lowering 
the cost and improving the effectiveness of MDO in AEC.  
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