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Abstract

Just as special purpose computers and mainframes grew
into the general purpose personal computers we use ev-
eryday, special purpose industrial robots are evolving
into more general purpose personal robots. As robots
become more capable and universal, their applications
are less well-defined or even unknown at design time.
We will have to design robots for classes of tasks rather
than specific applications. Having guidelines for how to
best organize, interface, and implement robot systems
and reason about trade-offs, as we do in computer ar-
chitecture, will become crucial for success. In this pa-
per we introduce and adapt some useful notions and
principles from computer architecture to robot systems
architecture. We argue that notions such as locality of
reference, balanced architectures, and boundedness (in
terms of IO, memory, and CPU) can be leveraged in
robot systems design, and in particular, in the design of
distributed robot systems.

Keith J. O’Hara

Introduction

Like computer architects, robot designers must address mul-
tiple, possibly competing, requirements by balancing trade-
offs in terms of processing, memory, communication, and
energy to satisfy design objectives. For example, architects
might strive to minimize the energy use or cost of a memory
subsystem, or maximize the reliability or availability of a
storage system. However, unlike computer architects, robot
designers have the additional dimensions of sensing and ac-
tuation to consider.

Robots live in the real world, sensing and effecting exter-
nal physical phenomena. This leads to a key consideration
that is sometimes lost in traditional computing system de-
sign. Where is the robot computing system located in physi-
cal space? This consideration amplifies the role distribution
plays in robot system design. The allocation and organiza-
tion of the sensing, computing, actuation, energy, communi-
cation resources throughout physical space is at the core of
distributed robot systems architecture. The physical distribu-
tion of resources let’s us exploit the locality of the particular
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task in a similar manner as the design of a memory subsys-
tem let’s us exploit the locality of a computational problem.
Robot architects currently lack the design guidelines, orga-
nizing principles, rules of thumb, and tools that computer
architects rely upon. This paper takes a step in this direc-
tion, by analyzing the roles of heterogeneity and distribution
in robot systems architecture.

Robot systems are increasingly built as large distributed
systems. Robot systems are built in a distributed fashion for
both essential and incidental reasons. This leads us to our
first way of classifying the role of distribution in robot sys-
tems.

• Distribution is Essential – The fact the robot system has
multiple networked components is paramount in its de-
sign. For example, consider a team of unmanned aerial
vehicles providing situational awareness. The multiplic-
ity of vehicles is necessary to satisfy the performance and
fault tolerance objectives.

• Distribution is Incidental – The fact that the robot soft-
ware system is distributed across multiple machines is
only an implementation detail and often an afterthought.
Typically, the systems are distributed to allow off-loading
of computation for practical performance reasons or to
provide a remote user interface during development.

The use of distribution in robot systems is not novel – in
fact, just the opposite, it is ubiquitous. Practically all real,
fielded, robot systems are built as distributed systems; how-
ever, the distributed systems aspects of robot systems are
often seen as ancillary and overlooked as “implementation
details” rather than being a fundamental problem. Opportu-
nities are lost by considering distribution too late in the de-
velopment cycle. The first argument this paper puts forward
is that all robot systems are inevitably going to be distributed
systems, and the earlier this is taken into consideration the
better.

In both the essential and incidental scenarios, distribution
let’s us exploit the locality of the robotic task by placing the
hardware resources close to where the robotic computation
needs to take place. Moreover, by using a collection of spe-
cialized platforms in a coordinated fashion, we can further
exploit the locality of a task. Typical approaches that use a
collection of identical platforms for parallel speed-up and
fault tolerance through redundancy do not exploit this fact.
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This leads us to our second way of classifying distributed
robot systems, by their composition. Is the robot system
homogeneous or heterogeneous? Are all the hardware plat-
forms identical, or near identical, or are the resources allo-
cated in an asymmetric manner?

• Homogeneous Composition – The entities in the dis-
tributed robot systems are largely identical. Many multi-
robot systems rely on multiple homogeneous platforms to
perform tasks in a parallel or fault-tolerant fashion. The
notion that we can achieve reliable, sophisticated perfor-
mance from a multitude of unreliable, simple platforms is
at work here.

• Heterogeneous Composition – The entities in the dis-
tributed robot system have differences in their hardware.
For example, different robots might have different sens-
ing or computational resources. Many systems that rely on
distribution incidentally are highly heterogeneous. For ex-
ample, a system might perform computational off-loading
for practical performance reasons or to provide a remote
user interface.

Just as we strive to achieve reliable performance from a
multitude of unreliable, simple homogeneous platforms, we
can also aim to achieve generality from a multitude of spe-
cialized platforms. The second argument this paper offers is
that robot systems can be constructed from a collection of
specialized robots that are both sufficiently general to solve
the task and sufficiently specialized to exploit the task’s lo-
cality.

Robot Systems Architecture

Just as special purpose computers and mainframes grew
into the general purpose personal computers we use every-
day, special purpose industrial robots are evolving into more
general purpose personal robots. Robot systems have been
proposed for a wide variety of tasks, from canonical robot
tasks such as autonomous navigation to providing a moti-
vating context for education. As robots become more capa-
ble and universal, their applications are less well-defined or
even unknown at design time. We will have to design robots
for classes of tasks rather than specific applications. Having
guidelines for how to best organize, interface, and imple-
ment robot systems and reason about trade-offs, as we do in
computer architecture (Hennessy and Patterson 2003), will
become crucial for success.

This paper takes a systems architecture approach to the
design of robot systems, and in particular, understanding the
use of distributed robot systems to achieve design objectives.
The IEEE Standard 1471-20001 defines Systems Architec-
ture as “the fundamental organization of a system, embod-
ied in its components, their relationships to each other and
the environment, and the principles governing its design and
evolution.” Likewise, we define Robot Systems Architecture
as “the fundamental organization of a robot system, embod-
ied in its computation, communication, sensing, and actua-
tion resources, their relationships to each other and the envi-
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ronment, and the principles governing its design and evolu-
tion.”

It’s quite natural in robot architecture to decompose a task
into loosely coupled subtasks in service of more effective
design, development, maintenance, and reuse, but it stops
at the level of software. This approach goes beyond “Robot
Software Architecture” which typically assumes the hard-
ware necessary for the task is available and the details of
the hardware are abstracted away. A robot software archi-
tecture (like subsumption (Brooks 1986), RCS (Albus et al.
1992), Aura (Arkin and Balch 1997)) gives the roboticist a
set of principles, guidelines, and tools to compose a robot’s
software system. Robot systems architecture puts the hard-
ware and software on equal footing in terms of emphasis and
abstraction. We are concerned with the organization of hard-
ware resources, and to some degree the environment, since
the interface to the physical world is such a crucial part of
any robot system, and particularly in exploiting the local-
ity of the particular robot task. Modern advances in wireless
communication have enabled a new level of composability
in terms of hardware, allowing us to repurpose hardware
analogously to how we reprogram software.

Task and Architecture

Traditionally, robots have been designed with very a clear
task in mind, for example, robot arms assembling automo-
biles. This is in contrast to personal computers that are de-
signed for a wide variety of applications. Because personal
computers can be reprogrammed to perform almost any task,
they are designed in a way to accommodate many different
applications. Similarly, as robot systems become more gen-
eral purpose, designers will not have the luxury of a single
specific task objective. Instead, robots will be reprogrammed
and reconfigured for their particular task.

For some tasks, like robots exploring Mars, it’s plausible
to design a robot system from start to finish for a specific
task or handful of tasks. However, for more commercial sys-
tems, it will be more economical to mass produce more gen-
eral purpose robots that later can be reprogrammed and re-
configured. Therefore, although we might be able to design
a robot system from beginning to end, and in fact, maybe de-
sign it optimally in some sense, there are few situations were
this is economical. Therefore, we need to identify classes
of applications we expect the robot system to address and
design accordingly. Two concepts, boundedness and local-
ity, from computer systems design are useful for describing
tasks from an architectural point of view. Both of these ways
of thinking about computational processes abstractly, can be
leveraged in the design of robot computer systems.

Although both of these notions are abstract they aren’t
theoretical, a real, concrete program must be involved.
Moreover, the locality of a program, or whether its IO-
bound, is not only determined by the computational process,
but also by the architecture. So while these concepts are use-
ful for describing tasks generally, they are not independent
of the underlying architecture.
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The Locality Principle

In computer architecture (Hennessy and Patterson 2003), the
concept of “locality of reference” is crucial in the design
and organization of a computer system’s memory, inform-
ing things as diverse as the design of software virtual mem-
ory systems and web caches, and the hardware organization
of cache memories (Denning 2005). The locality of a com-
putational process characterizes its memory access behavior.
If a computational process has a high level of spatial locality
then memory accesses are local in terms of space, i.e. nearby
memory locations are more likely to be accessed in the fu-
ture. Likewise, if a computational process is temporally lo-
cal then the same memory locations will be accessed often.
Things like web caches exploit the temporal locality of web
browsing behavior, i.e. storing web pages that are likely to
be accessed again. Pre-fetching or read-ahead buffering are
mechanisms to exploit spatial locality. Similar concepts can
be used to describe robot processes and in the design of robot
computing systems.

We define the concept of “physical locality” to be the en-
vironmental access behavior of a robot process. If a robot
process has a high level of spatial locality then nearby loca-
tions are more likely to be accessed in the future. Likewise,
if a robot process is temporally local then the same locations
will be accessed often. For instance, if a robot task is tempo-
rally local, but not spatially local – we need to monitor dis-
tant locations frequently – then a pervasive sensor network
is well suited for the problem. Reciprocally, when the robot
process is spatially local, but not temporally local – we visit
environmental regions in a “sequential” manner, but rarely
visit the same point twice – a mobile robot is well suited for
the problem. Therefore, the locality of a robot process can
help us decide what kind of architecture is more suitable.

Access Mechanism

Consider two classes of robot computing systems: mobile
robots and sensor networks. Both types of systems can be
used to solve many of the same robot computing problems
(e.g. environmental monitoring), but there also exist appli-
cations for which each is particularly suited. Both mobile
robots and sensor networks provide access to large-scale
phenomena – mobile robots via mobility, and sensor net-
works via pervasiveness. Thus, we term both mobility and
pervasiveness as “access mechanisms”.

A large class of robot computing tasks that are suitable
for both mobile robots and sensor networks fall under the
heading of “monitoring”. For instance, consider tasks such
as forest fire detection, military reconnaissance, security pa-
trolling, and urban mapping. In these tasks, we want to col-
lect sensor data from a large area and distill it down to the
information of interest. Any of the 4-D’s of robot tasks: dirty,
dangerous, difficult, and dull may make robotic monitoring
useful.

Whether to use, and how to use, mobility or pervasive-
ness as the access mechanism is one of the most interesting
robot architectural trade-offs. We term it the “access trade-
off”. One mechanism may be more suited for the task, or
some mixture of both. After all, mobile robots can benefit

from pervasiveness, likewise, sensor networks from mobil-
ity. Rather than just building a fully mobile sensor network
or a fully pervasive robot swarm to exploit these benefits, we
can take a more nuanced approach.

Boundedness

In addition to describing a computational process by its ac-
cess pattern, its locality, we can also note what percentage
of time, energy, or money the task devotes to computing, ac-
cessing memory, sensing, or effecting the environment. The
boundedness of a task is the limiting factor. For instance, the
performance (measured in time til completion) of a memory-
bound task is limited by primarily by memory access times.

The notion of boundedness from computer systems design
is a useful concept for thinking about robot tasks. Differ-
ent computational processes might spend a majority of their
time processing, doing input or output, or accessing mem-
ory; a computational process can be CPU-bound, IO-bound,
or memory-bound. If a process is memory-bound then we
can identify the memory-subsystem as the bottleneck. If we
plan to improve the system, we are wise invest on improving
that bottleneck rather than the other areas.

We can apply the same idea to robot systems architecture.
A robot process might be bound by its sensor bandwidth,
the amount of CPU processing it has, or by the speed of
its wheels. A robot that is performing a batch mapping task
might be limited by its laser scanning bandwidth. This no-
tion also helps us identify, and correct, bottlenecks in robot
system architecture. This idea enables us to group different
tasks according to the how they are bounded.

Case Studies

We have designed and implemented three robot systems that
exploit heterogeneity and distribution in novel ways.

Gnats The Gnats robot system (O’Hara, Walker, and
Balch 2008) used heterogeneity and distribution to exploit
the spatial locality of the path planning, coordination and
foraging task. A technique was developed for performing
path planning, coverage, and foraging using a system of het-
erogeneous robots. The locality of the path planning and
coverage tasks was exploited by using a minimal, immo-
bile sensor network, reducing the mobility and coordination
resources needed by the mobile robots. Moreover, the re-
sources necessary for the mobile robots (e.g. specific sensors
or effectors) application are contained on the mobile robots
lowering costs and providing flexibility. Empirical evidence
showed the utility of the technique in tasks such as navi-
gation and foraging. Experiments included simulation and
some of the largest robot experiments in this domain.

AutoPower The AutoPower system (O’Hara et al. 2006)
used heterogeneity and distribution to effectively manage
energy in robot teams. A system-level model for character-
izing the energy behavior of distributed robot software sys-
tems was developed and applied to a multi-robot search and
rescue mission. Distributed computing mechanisms were
leveraged not only to speed-up computation, but to prolong
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the lifetime of the team. Experimental results using emula-
tion of real robot software was used and the lifetime of the
system was extended by 57%.

IPRE We have developed a distributed robot system for
computing education. (Balch et al. 2008) The distributed
robot system uses a standard laptop for computation as well
as providing some extra input and output modalities, such as
a joystick, text-to-speech, and on-screen graphics. The lap-
top commands a mobile robot over a bluetooth wireless link.
The mobile robot (the scribbler) is augmented with a circuit
board (the Fluke) that provides more on-board computation,
communication, and sensing. This particular allocation of
resources was decided in order to satisfy our pedagogical
goals, thus we looked to maximize robustness, ease-of-use
and expressiveness, while minimizing cost.

Balanced Architectures

Although Gene Amdahl is typically known for his law (Am-
dahl 1967) of diminishing returns concerning parallel com-
putation, his rule of thumb (also known as his other law)
(Gray and Shenoy 2000) is concerned with the architecture
of computer systems. It says that for a computer to be useful,
for every instruction per second of computation, the com-
puter must also have one byte of memory, and one bit per
second of IO. His rule of thumb provides a scaling rela-
tionship between the constituent parts of a computer system,
and also the notion of a balanced computer system. Similar
questions can be asked about robot computing systems. For
instance, for a household mobile robot, what is a useful pro-
portion of computing to memory, to sensing, to actuation?
Although, a full answer to this question is beyond the scope
of this paper, we do point out that a “balanced” robot archi-
tecture does not have to mean equally balanced, but rather
just some desired proportioning of resources.

Amdahl’s rule of thumb gives us a new way to compare
and reason about different robot systems: how are the sys-
tems’ resources allocated? Is the robot equally-balanced,
with its resources equally allocated across sensing, comput-
ing, and effecting or is the robot rather asymmetric, for ex-
ample, with sensing dominating? Some tasks, might not re-
quire symmetry, in fact they might benefit from specialized,
asymmetric architectures. However, one could argue that for
general purpose robots intended to provide a wide variety
of applications, much like general purpose computers, a bal-
anced architecture is beneficial. Generally, striking a balance
in terms of architecture can help alleviate architectural bot-
tlenecks.

We can arrive at a balanced robot system in a variety
of ways. One possibility is for an individual robot to be
balanced from its initial design. Another possibility is to
achieve balance through composition. By connecting a col-
lection of specialized platforms, a more general system re-
sults. The idea of using distribution to achieve a balanced
system architecture is a powerful idea. For example, in de-
signing a robot for education we arrived at a balanced,
general-purpose platform from a collection of specialized
platforms. This particular platform which is composed of a
mobile base (the scribbler), a bluetooth sensor board (the

fluke), and a laptop. The laptop is very computation cen-
tric, the scribbler mostly focused on mobility (and thus ac-
tuation), and the fluke on sensing. The ternary diagram in
Figure 1. visualizes how the individual specialized platforms
allocated their resources in terms of cost to the sensing, com-
puting and effecting subsystems.

Figure 1: The resource allocation of the individual special-
ized platforms of the IPRE robot system.

Robot Design Constellations

The use of ternary diagrams to reflect on an architecture’s
balance and to compare different robot designs is useful in
understanding robot systems; however, it only allows us to
compare along three dimensions. In Figure 1, we chose to
compare the robot platforms in terms of the budget allocated
toward computing, sensing, and effecting. To move beyond
only three dimensions, we have adopted the star (or radar)
chart (J. M. Chambers, W. S. Cleveland, B. Kleiner, and P.
A. Tukey 1983) for describing robot system architectures.
As noted by Chambers et al. star charts are particularly good
for comparisons, the authors remark, “one of the main pur-
poses of such multi-code schemes (like star charts) is to ob-
tain a symbol with a distinctive shape for each observation,
so that a viewer can look for pairs or groups of symbols with
similar shapes, or individual observations that are very dif-
ferent from the rest.”

We use the term “robot design constellation” to describe
the use of star charts to visualize a collection of connected
robot platforms. In Figure 2 we visualize the IPRE educa-
tional robot system as a design constellation. Again, this di-
agram clearly illustrates the platform’s “balance”, and how
each of the constituent platforms differ. Figure 3 depicts the
Gnats and AutoPower systems similarly

Design constellations not only support comparison be-
tween platforms, but also allow architects to interactively
explore design trade-offs. In describing star charts, Cham-
bers et al. suggest that “It can be helpful to cut the symbols
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Figure 2: Design constellation of the IPRE robot system for education.
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Figure 3: Design constellations of the Gnats and Autopower systems.

apart (along with their labels) onto separate slips of paper,
and to slide them around on the table grouping them in in-
teresting ways.” We created a program to construct these star
charts and slide them around as the authors suggest to sup-
port comparisons. A Processing sketch was implemented to
allow architects to interact with the constellation in order to
explore trade-offs. The user can add (or subtract) resources
to (or from) a particular dimension and see how the overall
platform is impacted.

Conclusion

This paper argued that a perspective based on robot systems
architecture, enables and elucidates novel trade-offs, not ob-
vious in traditional approaches to the design and implemen-
tation of robot systems. Distributed robot systems architec-
ture combines methods, techniques, principles, and prob-
lems from computer architecture, advanced software sys-
tems, and robotics. As evidence for the utility of this per-
spective, we highlighted three distributed robot architectures
for tasks as varied as energy-aware search and rescue, com-
puting education, and multi-robot foraging. Each of these
systems uses a heterogeneous collection of robot platforms
in a novel manner and helps us elicit important properties
of distributed robot system architectures in general. By ar-
chitecture we are not only including the organization and
guiding principles of the software, but also the interface, or-
ganization, and implementation of the underlying hardware.
In each case study, the software, as well as the computation,
communication, sensing, and actuation resources are orga-
nized to satisfy design objectives in terms of performance,
energy, or cost. We also introduced robot design constella-
tions as a way for robot architects to interactively explore
design trade-offs and compare platforms.
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