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Abstract

The goal of our research is to find patterns of EEG activity
that will allow us to correctly identify seizures in living rats
using machine learning techniques. Features are extracted
from the EEG to characterize the signal over time. We per-
form model selection to reduce the set of features, as the goal
is to have the algorithm running on a small personal device.
The chosen features are used within a supervised classifier,
based on randomized forests, in order to separate the differ-
ent brain states. One of the challenges of this research is to
detect all seizures, while preserving a low false positive rate,
and low detection latency. We present results showing we
can achieve this using data from three separate animals. The
long-term goal of this research is to use this seizure detection
method as part of a closed-loop adaptive neuro-stimulation
device to reduce the incidence and duration of seizures.

Introduction
Epilepsy is a chronic neurological disorder characterized by
spontaneous seizures. This disease affects roughly 50 mil-
lion people worldwide, with 20% to 30% of the patients
achieving no significant symptom reduction with standard
pharmacological treatments (Loscher 1997). The causes
are often unknown, varying from genetic pre-dispositions to
head traumas, tumors, or infections.

The electroencephalogram (EEG), consisting of record-
ing electrical signals from the brain, is often used to study
the disease. EEG recordings provide large amounts of
data which can be used to achieve automatic computational
seizure detection.

The problem of automated seizure detection is the first
step towards tackling many related problems, such as seizure
prediction, prevention, and early seizure abortion. Auto-
mated seizure detection and prediction have been exten-
sively studied in the context of human epilepsy (Mormann
et al. 2007). Yet some of the more challenging problems,
in particular seizure abortion and prevention using neuro-
stimulation methods, are currently being studied in animal
models of epilepsy (both in-vitro and in-vivo). Thus it is
important to develop solid seizure detection techniques for
these animal models also.
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The work described below uses data collected from live
(in-vivo) rats with chronic epileptiform activity. This animal
model of epilepsy is highly isomorphic to human epilepsy,
duplicating the disorder except for the aetiology (Curia et al.
2008).

The literature on automatic classification of seizures in-
vivo is limited. Most detection procedures proposed to ex-
tract a single type of feature EGG; that feature is either used
as input to a classifier, such as a neural network (Schuyler
et al. 2007), or simply thresholded (Talathi et al. 2008). In
general, the size of the moving windows on which features
are computed is hand-selected. In cases where a classifier
is used, it is trained on EEG recordings taken from different
rats, and thus may not be a good fit for any of them.

As mentioned above, the literature on detection and pre-
diction of human seizures is substantially more developed.
A detailed survey indicates, amongst other findings, that
seizure characteristics could vary substantially between pa-
tients (Mormann et al. 2007). This could be caused by the
inherent heterogeny in either the type of epilepsy, the kind
of manifestations or even treatments taken among individu-
als (Talathi et al. 2008). Thus, it was important to consider
patient-specific classification criteria. The survey performed
by Mormann et al. also observed that many previous work
was limited, as in the in-vivo literature, to only a small set of
features, often hand-selected, whereas many other features
may be useful. Finally, the paper also raised the concern
of poor statistical validation of performance in many earlier
papers, and outlined a sound evaluation methodology.

Our approach to seizure detection tries to address these
major concerns. First, we consider data collected on multi-
ple animals, and optimize personalized classifiers using data
from each animal. Multiple features (both single-channel
and multi-channel) are computed from the EEG signal us-
ing a range of moving window sizes. An automated greedy
feature selection is performed to select which type of fea-
ture and time resolution provide the best expected perfor-
mance. This subset of features is passed to an ensemble
classifier based on randomized forests. We select the classi-
fication thresholds using cross-validation within the training
set, such as to simultaneously satisfy the key metrics: high
detection accuracy, low false positive rate and low detection
latency. Our method is validated using data from three sep-
arate animals, on which was recorded a total of 27 seizures.

45

Computational Physiology — Papers from the AAAI 2011 Spring Symposium (SS-11-04)



EEG

Data Pre-
processing

Univariate
Feature

Extraction

Bivariate
Feature

Extraction

Feature
Selection

Classification
of Events

Detection

Figure 1: Flowchart describing the steps taken by the algo-
rithm.

The methodology outlined in the paper may be useful for
recognition and detection of dynamic events from a wide
range of physiological sensors.

Methods
Figure 1 outlines the key steps taken by our algorithmic ap-
proach. Note that these steps are performed independently
for each individual rat.

EEG Data and Preprocessing
A rat pilocarpine model of temporal lobe epilepsy was
used to collect electroencephalographic data (Levesque et
al. 2011). Status epilepticus was induced in three Sprague-
Dawley rats (250-300 g.) by intraperitoneal injection of pi-
locarpine. Then, surgery was performed to place recording
electrodes in the CA3 region of ventral hippocampus, the
medial entorhinal cortex, the ventral subiculum, and the den-
tate gyrus. All procedures were approved by the Canadian
Council of Animal Care and all efforts were made to mini-
mize the number of animals used and their suffering.

Original recordings were sampled at 2000Hz, but down-
sampled to 200Hz without filtering. The dataset contained
27 seizures lasting an average of 79 ± 27 seconds. We ex-
tracted segments of approximately 5 minutes per seizure,
such that the seizure is located in the middle, preceded and
followed by non-seizure activity. These 27 seizures were
observed between the 4th and 15th day after the pilocarpine
injection. Only those with no artifacts nor signal saturation
on all 4 electrodes were retained. The precise beginning

Segments / Rat Rat A Rat B Rat C
Seizure 6 7 14

Seizure free 6 7 14

Table 1: Distribution of Segments

and end of each seizure was annotated via spectral analy-
sis of the EEG by an electrophysiologist. We also extracted
27 seizure-free segments of 5 minutes; these segments were
chosen such that no seizures occurred in the preceding or
following hour of recording. The selected segments were
distributed between the three rats as outlined in Table 1.

Univariate Feature Extraction
Univariate features were computed on moving windows x
of {1, 2, 5} seconds, with {0, 1, 4} seconds overlaps respec-
tively, independently for each of the four channels of the
EEG recordings. For each channel and window size, the fol-
lowing features were computed:

• The mean.

• The variance.

• The line length, defined to be the sum of the absolute dif-
ference of the amplitude of each consecutive pair of sam-
ples:

N−1∑
i=1

|x(i)− x(i+ 1)|. (1)

• Frequency components in the range [1 − 100]Hz, where
a Hann window is first applied to the moving window to
reduce edge effects.

• The mean of the convolution, performed in the frequency
domain, with a finite impulse response filter equiva-
lent to a Daubechies 4 wavelet at levels {0, 1, 2, 3, 4, 5}.
See (Osorio, Frei, and Wilkinson 1998) for details.

Thus, 327 different feature points were created per channel,
for a total of 1308 feature points per second of EEG record-
ing.

Multivariate Feature Extraction
Multivariate features were computed on pairs of moving
windows (x, y), such that x and y are extracted from dif-
ferent channels of the EEG recording. The moving window
lengths considered were {1, 2, 5} seconds, with {0, 1, 4}
seconds overlaps respectively, assuming always that x and y
have the same length. The multivariate features were cho-
sen based on those presented in (Mormann et al. 2007).
Those can be split into two different categories, symmetric
and non-symmetric:

Symmetric features (i.e. f(x, y) = f(y, x)):

• The Maximum Cross-Correlation, defined as:

Cmax = max
τ

{∣∣∣∣∣ Cxy(τ)√
Cxx(0) · Cyy(0)

∣∣∣∣∣
}
, (2)

46



where

Cxy(τ) =

{
1

N−τ

∑N−τ
i=1 x(i+ τ)y(i) τ ≥ 0

Cxy(−τ) τ < 0
. (3)

All τ ∈ [−0.5, 0.5] seconds were considered, as previ-
ously done in (Mirowski et al. 2009).

• The Maximum Cross-Correlation Index, defined as:

CImax = argmax
τ

{∣∣∣∣∣ Cxy(τ)√
Cxx(0) · Cyy(0)

∣∣∣∣∣
}
, (4)

where τ ranged as above.

Non-symmetric features (i.e. f(x, y) �= f(y, x)):
• Linear Coherence, defined as:

Γ(f) =

∣∣∣∣∣ Gxy(f)√
Gxx(f) ·Gyy(f)

∣∣∣∣∣ , (5)

where
Gxy(f) = FTx(f) · FT ∗x (f), (6)

with FTx(f) denoting the Fourier transform of x at fre-
quency f and ∗ the complex conjugate. The Linear Co-
herence was computed for f ∈ {10, 15, . . . , 95}Hz.

• Two measures of non-linear interdependence, x|yS and
x|yH .
Let {�xi} be the state space trajectory of {xi}, where

�xi = (x(i− (d− 1)τ), . . . , x(i− τ), x(i)), (7)

with d being the dimension and τ the lag. We define αij

and βij to be the time indices of the j ∈ {1, . . . , k} near-
est neighbour of �xi and �yi in their state space, respec-
tively. The two measures are:

x|yS =
1

N

N∑
i=1

xR
(k)
i

x|yR(k)
i

(8)

and

x|yH =
1

N

N∑
i=1

log
xR

(N−1)
i

x|yR(k)
i

, (9)

where

xR
(k)
i =

1

k

k∑
j=1

(�xi − �xαij )
2 (10)

and

x|yR(k)
i =

1

k

k∑
j=1

(�xi − �xβij )
2. (11)

The parameters used were d = 10, τ = 5 (≈ 23ms.) and
k = 5, as proposed in (Mirowski et al. 2009).

• Three measures of phase synchronization, μps, λcp and
ρse.
The phase of a channel x at time t, denoted φx(t), was
extracted by convoluting the signal with a complex Gabor
function Gf,α(t):

Gf,α(t) = e−α2t2ei2πft (12)

yielding the convolved signal Wx(t), from which the
phase was extracted:

φx(t) = arctan
Im(Wx(t))

Re(Wx(t))
. (13)

We converted Gf,α(t) to a finite impulse response filter by
assuming that ∀t such that e−α2t2 < 10−7, Gf,α(t) = 0.

– Mean phase coherence, defined as:

μpc =

∣∣∣∣∣∣
1

N

N∑
j=1

eiφx−y(tj)

∣∣∣∣∣∣ , (14)

where
φx−y(tj) = φx(tj)− φy(tj) (15)

is the phase difference between the two signals.
– Conditional probability index, defined as:

λcp =
1

L

L∑
l=1

|rl|, (16)

where
rl =

1

|Ml|
∑
j

φx(tj)∈Ml

eiφy(tj), (17)

with

Ml =

{
φx(tj)

∣∣∣φx(tj) ∈
[
l

L
2π,

l + 1

L
2π

]}
. (18)

L determines the number of bins present in [0, 2π]. Its
value is set to be L = e0.626+0.4 ln(N−1) as defined
in (Mormann et al. 2007).

– Shannon entropy index, defined as:

ρse = 1 +
1

lnL

L∑
l=1

pl ln pl, (19)

with

pl =

∣∣{φx−y(tj)|φx−y(tj) ∈
[
l
L2π,

l+1
L 2π

]}∣∣
|{φx−y(tj)}| . (20)

Multiple different parametrization of the Gabor func-
tion were used. We chose f and α such that 95% of
the frequency response of Gf,α was in the following
ranges: [0 − 4]Hz, [4 − 7]Hz, [7 − 13]Hz, [13 − 15]Hz,
[14, 30]Hz, [30−45]Hz and [45−100]Hz, again as defined
in (Mirowski et al. 2009).

Thus, a total of 792 feature points per second of EEG
recording were created.

Feature Selection
The computation of the full set of univariate and multivari-
ate features F for an EEG is expensive. Therefore, we need
to find a subset S ⊂ F that is small, but descriptive enough
to obtain good detection performance.
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The receiver operating characteristic (ROC) curve is com-
monly used for model selection. We calculate the area under
the ROC curve, which we denote AUC, for each feature, us-
ing a training dataset. In the case of binary classification,
the AUC is equivalent to the probability that the classifier
will rank a randomly selected positive sample higher than a
randomly selected negative sample (Fawcett 2006). The fol-
lowing three greedy selection schemes were used to selects
subsets of F .

I. Suni contained the 30 univariate features with the high-
est AUCs.

II. Smixed contained the 15 univariate and 15 multivariate
features with the highest AUCs.

III. Seach was designed to select, for each type of feature,
the parameterization (e.g. window length) with the
highest AUC. The best Fourier transform parameters
for each segment of 10Hz in the range [1−100]Hz were
selected, yielding 10 features. As for the linear co-
herence, the computed frequencies ({10, 15, . . . , 95})
were also cut into segments of 10Hz, from which we
selected the best feature parameters, yielding another 9
features. The best parameters for the other 11 features
(e.g. mean, variance, . . . , Shannon entropy index) were
selected, for a total of 30 features.

Feature vectors were then created by concatenating windows
that end at the same time point for each feature present in the
subset. Therefore, a feature vector containing 30 features
exists for each second of EEG recording.

Classification of Events
We used a Forest of Extremely Randomized (Extra)
trees (Geurts, Ernst, and Wehenkel 2006) to classify each
feature vector. Each tree in the ensemble is built using the
entire training set. At each node, K candidate tests are cho-
sen randomly such that each contains an element of the fea-
ture vector and a random cut point. Then, a score based on
the information gain is calculated for each candidate test.
The best test is retained and the others are discarded. The
data is split according to the test and children nodes are
built. The process continues until either the split dataset
becomes correctly separated (i.e. all feature vectors in the
set are from the same class) or its size reaches a minimum
nmin. The label of a leaf is set to be the majority class of
the split data set. We built a forest of M = 200 trees with
K = 	√|S|
+1 = 6 and nmin = 	log2 |Training set|
+1.

To reach a final decision, each randomized tree in the for-
est is queried and the fraction of trees labeling the feature
vector as seizure is reported by the forest. The forest out-
put is then thresholded to separate the two classes: seizure
or non-seizure. The threshold was chosen to be the middle
point between the highest value for which all seizures were
detected and the lowest value that did not cause any false
alarms in seizure-free segments (considering again only the
training set).

Evaluation
A 5-fold cross-validation was performed on each rat such
that testing sets contained at least one seizure segment and

Performance on rat A
S ⊂ F Seizure detection Latency (s.) SFFP
Suni 7 / 7 3.71± 5.44 0 / 7
Smixed 7 / 7 3.57± 5.32 0 / 7
Seach 7 / 7 5.86± 5.49 0 / 7

Performance on rat B
S ⊂ F Seizure detection Latency (s.) SFFP
Suni 6 / 6 3.00± 1.26 0 / 6
Smixed 6 / 6 4.83± 2.23 0 / 6
Seach 6 / 6 5.50± 2.07 0 / 6

Performance on rat C
S ⊂ F Seizure detection Latency (s.) SFFP
Suni 13 / 14 6.77± 6.92 1 / 14
Smixed 13 / 14 7.62± 7.11 1 / 14
Seach 13 / 14 8.08± 7.30 0 / 14

Table 2: Performance criterions for each rat using personal-
ized classifiers.

one seizure-free segment. Feature selection and training of
the classifier were performed using only the training data
sets. The testing sets were used only to compute the follow-
ing performance criterions:

i. Fraction of seizures detected: This is an indication of
the quantity of seizures the algorithm successfully de-
tected.

ii. Latency: The latency is the time between the start of a
seizure and the first detection of the algorithm. If the
seizure is missed, no latency is calculated. The average
latency over the cross-validation is reported.

iii. Seizure-Free False Positives (SFFP): This number rep-
resents the quantity of seizure free segments for which
at least one alarm was raised.

Given that we view the task of seizure detection within the
larger therapeutic context, it is important to consider the set-
ting within which the classifier will be used when selecting
the performance criteria. In the context of a deep brain stim-
ulation device designed to cause early seizure abortion based
on detection events, a lower latency and higher seizure de-
tection rate will be preferred, where as the cost of SFFP will
be less important (presuming low side effect burden from
the stimulation, which seems to be consistent with current
devices). On the other hand, if the classifier is to be used to
alert a third party that the patient is suffering from a seizure,
such that help can be provided for the recovery, a low SFFP
rate will be prioritized over a low latency. In general, we
can trade-off between these different metrics by selecting
the classification threshold appropriately. In our case, since
the classifier was built for the general task of seizure detec-
tion, we optimized it for the best overall performance (i.e.
the highest detection rate with the lowest SFFP and latency
possible).

Results
Table 2 shows the performance criterions of the algo-
rithm for each rat, with all three different feature selection
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Performance on rat B
S ⊂ F Seizure detection Latency (s.) SFFP
Suni 5 / 6 6.20± 5.26 0 / 6
Smixed 5 / 6 25.4± 5.73 0 / 6
Seach 5 / 6 9.40± 2.07 0 / 6

Table 3: Performance criterions on rat B using a generalized
classifier that was trained on data from all rats.

schemes. We observe that the latency using the subset of
features Suni is generally lower compared than the one us-
ing Smixed or Seach. The latency tends to be greatest when
selecting features of different types (Seach).

Rat C is the only one for which seizures were missed and
SFFP occurred. The same seizure and the same seizure-
free segment caused problems for both Suni and Smixed. Us-
ing Seach, a different seizure was missed, but the classifier
produced no SFFP. It is important to note that even if the
seizures were missed by the overall classifier, the forest still
captured some amount of information as the fraction of trees
labeling the seizure correctly reached up to 60%. A differ-
ent choice of threshold would have resulted in the correct
classification of all seizures, albeit at the cost of more SFFP.

It is well documented that seizures differ substantially be-
tween individuals. For this reason, our current method pri-
oritizes personalized detection techniques. As we can see
in Table 3, when we train a general classifier using EEG
recordings from all the three rats, the performance dimin-
ishes. We find for rat B that a seizure is missed and the
latency increases significantly. Yet it is possible that some
aspects of the process, for example some of the feature se-
lection, may generalize or transfer between individuals. A
deep investigation of these questions is ongoing.

Conclusion
This paper outlines an algorithmic approach for automatic
seizure detection. We discuss many of the methodological
issues that arise when designing such a system, including
feature selection, classifier training, and evaluation and in-
terpretation of results. The approach is validated in the con-
text of detecting seizures in living rats, where we show good
performance on three main criteria: detection accuracy, la-
tency, and false alarms.
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