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Abstract

A multi source domain adaptation based learning for ad-
dressing subject based variability in myoelectric signals
(SEMG), enabling generalized framework for detecting
stages of fatigue.

Extended Abstract

Surface Electromyogram (SEMG) signals are physiological
signals processed to assess the intensity of activity and the
fatigue state of the muscles, non-invasively (Kumar, Pah,
and Bradley 2003; Georgakis, Stergioulas, and Giakas 2003;
Koumantakis et al. 2001; Gerdle, Larsson, and Karls-
son 2000). However researches observed significant dif-
ference between the data collected from different subjects
though they performed the same activity under similar ex-
perimental conditions (Contessa, Adam, and Luca 2009;
Gerdle, Larsson, and Karlsson 2000). Because of their
highly subject specific nature the SEMG based fatigue as-
sessment requires subject specific calibration and are hence
confined to clinical environments related to training and re-
habilitation. A generalized framework for detecting differ-
ent stages of fatigue would enable a wider deployment of
SEMG in broader applications including muscle health mon-
itoring in every day movement, industrial work, geriatric
care etc. Such a system would also be able to detect fa-
tigue at an early stage, thus preventing many of the accidents
caused due to fatigue and the consequential medical cost and
loss of life. The greatest challenge in developing generalized
framework for physiological signals is subject based vari-
ability, which causes differences in data distribution across
subjects. Consecutively, most of the classification frame-
works, dealing with physiological signals have moderate to
poor generalization across subjects (Leon et al. 2007),(Kim
and Andre 2008). In the quest to address this challenge and
develop a generalized framework for early detection of fa-
tigue from SEMG signals, we propose a new multi source
domain adaptation method, based on ’Transfer Learning’
methodologies, which addresses the distribution difference
between the subject data and enables knowledge transfer
across subjects leading to the design and development of a
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generalized framework for a highly subject specific physio-
logical signal.

Traditional machine learning algorithms assume that
Training data X represents the population of a domain ex-
haustively and test data is i.i.d. drawn from the population
of the same domain. The learning task is then to determine a
hypothesis h that best represents the concept over the entire
population X . The fundamental assumption being, any hy-
pothesis found to approximate well over a sufficiently large
set of training examples will also approximate well over
other unobserved examples (Mitchell 1997), belonging to
the same distribution as the training data. But if this ba-
sic assumption is violated as in the case of SEMG data over
multiple subjects, direct application of traditional data min-
ing and machine learning methods would not work. Figure 1
shows a typical distribution of SEMG data for three different
subjects, collected over a fatiguing exercise at varying speed
representing the four physiological phases corresponding to
four classes (l) low intensity of activity and low fatigue, (2)
high intensity of activity and moderate fatigue, (3) low in-
tensity of activity and moderate fatigue and (4) high inten-
sity of activity and high fatigue. The data distribution shown
in Figure 1 is of factor scores obtained as a result of fac-
tor analysis done on the twelve dimensional feature vectors
derived from raw SEMG signals. The details of the feature
vectors, and the factor analysis results can be found in our
earlier papers at (Chattopadhyay, Panchanathan, and Prad-
han 2010; Pradhan, Chattopadhyay, and Panchanathan 2010;
Chattopadhyay, Pradhan, and Panchanathan 2009). We ob-
served that data distribution during each stage or class varies
from subject to subject. This variation leads to predomi-
nantly conditional probability differences across subjects .

There has been several domain adaptation methodologies
suggested so far in literature to address the differences in dis-
tribution so as to be able apply the traditional learning algo-
rithms. But most of this work is primarily addressed towards
reducing the gap in marginal probability differences. Shi-
modaira et al (Shimodaira 2000) biased the training samples
by their test-to-training ratio to match the marginal distribu-
tion of the test data. Sugiyama et al (Sugiyama et al. 2008)
tried to reduce the gap in marginal probabilities by minimiz-
ing the KL-divergence between test and weighted training
data and Bickel et al (Bickel, Brückner, and Scheffer 2009)
by discriminating training against test data with a proba-
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Figure 1: Three sample subjects (subjects 1, 2, 4) with four classes (four physiological stages) in our SEMG data set: Differ-
ences in marginal probabilities with conflicting conditional probabilities.

bilistic classifier. There are several other methods based on
marginal probability differences only, Huang et al (Huang et
al. 2007) re-weights the instances in source domain so as
to minimize the marginal probability difference between the
source and target domain, referred as Kernel Mean Matching
(KMM), using Maximum Mean Discrepancy (MMD) (Borg-
wardt et al. 2006) as the measure. Method suggested by Pan
et al (Pan et al. 2009) is based on feature mapping so as
to reduce the marginal probability differences between the
source and target distribution based on minimizing MMD,
referred as Transfer Component Analysis (TCA). Domain
adaptation machine suggested by Duan et al (Duan et al.
2009) is also based on marginal probability differences mea-
sured using MMD as the metric. There has been some work
addressing conditional probability differences, but it is very
limited. Gao et al (Gao et al. 2008) addresses conditional
probability differences between the distributions, but this
approach is restricted by the assumption that the test data
follows a ’clustering’ manifold. There is yet another ap-
proach suggested by Zhong et al (Zhong et al. 2009) which
addresses both marginal and conditional probability differ-
ences between the distributions, referred as KMapEnsemble
(KE), based on domain mapping using Kernel Discriminant
Analysis, followed by cluster based instance selection. This
methodology assumes a clustering manifold in the mapped
domain. Also, except the frameworks suggested by Gao et
al (Locally Weighted Ensemble) and Duan et al (Domain
Adaptation Machine) all other domain adaptation method-
ologies are single domain based.

In order to address the difference in distributions across
subjects, we propose a multi source domain adaptation
methodology based on predominantly conditional probabil-
ity differences between the source and target distributions.
The proposed target function is learned using a few la-
beled and unlabeled samples of the test subject data, la-
beled using an unsupervised conditional probability based
weighing scheme. The proposed weighing scheme com-
putes the similarities or weights between the target do-
main data and the different auxiliary sources (formed by
different subject data) in a joint optimization framework,

thus taking into account the interaction among the multi-
ple auxiliary sources. This unique feature in our frame-
work helps in addressing conflicting conditional probabil-
ities between the sources leading to generating labels for
the target domain data with higher accuracies compared to
those obtained using methodologies based on weights com-
puted independently for each source (Duan et al. 2009;
Gao et al. 2008). Also since each class has different sim-
ilarities and dissimilarities across the subjects as shown in
Figure 1, hence different weights (with respect to target sub-
ject) are computed for each class for each subject data in the
source domain.

We validated our framework on Surface Electromyogram
signals collected from eight people during a repetitive grip-
ping activity. We extracted 12 amplitude and frequency
domain features from the SEMG signal. Comprehensive
experiments on the SEMG data set demonstrate that the
proposed method improves the subject independent clas-
sification accuracy by 32% to 37 % over the cases with-
out any transfer learning. We implemented many of the
existing popular domain adaptation methodologies on the
SEMG data and proved the requirement of a multi source
approach addressing conditional probability differences in
addition to marginal probability differences. The proposed
multi source transfer learning methodology outperforms the
existing multi source as well as single source domain based
methodologies.

We also suggested a new feature selection technique
based on robustness to subject based variability. This tech-
nique provided a gain of 10% to 18% on the subject indepen-
dent classification accuracies. The details of the feature vec-
tors, the statistical tool used to measure subject based vari-
ability in features is presented in detail in our paper (Chat-
topadhyay, Pradhan, and Panchanathan ).

Further, we have also deployed a fatigue grading frame-
work for real time monitoring and grading the physiologi-
cal state of the subject. The PC based system reads in the
SEMG signals from the SEMG sensors placed on the sub-
ject muscle, over a USB port, processes it and displays the
status of fatigue and intensity level on a scale of 0 to 1 on the
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monitor at real time. This work has been explained in detail
in our earlier paper at (Chattopadhyay, Panchanathan, and
Pradhan 2010).
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