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Abstract 
Processing high-density clinical signal data (data from bio-
medical sensors deployed in the clinical environment) is re-
source intensive and time consuming.  We propose a novel 
approach to storing and processing clinical signal data based 
on the Apache HBase distributed column-store and the 
MapReduce programming paradigm with an integrated web-
based data visualization layer.  An integrated solution ne-
gates the need to marshal data into and out of the storage 
system while also easily parallelizing the computation, a 
problem that is becoming more and more important due to 
increasing numbers of sensors and resulting data.  We esti-
mate upwards of 50TB of clinical signal data for a 200-bed 
medical center within the next 5 years.  Consequently, effi-
cient processing of clinical signal data is a vital step towards 
multivariate analysis of the signal data in order to develop 
better ways of describing a patient’s clinical status. 

 Background   

Clinical Significance 
Computational physiology is relatively new and there are 
increasing efforts towards using physiologic signal data to 
improve the quality of care being provided to patients 
(Saeed, Lieu, and Mark 2002; Stanley et al. 2000; Barnaby 
et al. 2002; Björkander et al. 2009; Buchman 1996; Gar-
rard, Kontoyannis, and Piepoli 1993; Sorani et al. 2007; 
Staats, Austin, and Aboy 2008; Sun, Reisner, and  Mark 
2006; Agarwal et al. 1998; Baselli et al. 1987; Moca et al. 
2009; de Godoy et al. 2009; Karamanoglu 1997; Lake et al. 
2002).  The literature is filled with a multitude of varying 
approaches: some are looking to create models(Staats, 
Austin, and Aboy 2008; Aleks et al. 2008) while others are 
attempting a more feature-based approach (Garrard, 
Kontoyannis, and Piepoli 1993).   
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 Our current clinical problem of interest is the more accu-
rate detection of cardiac arrhythmias using a multivariate, 
multi-feature approach.  Most arrhythmia detection algo-
rithms focus solely on the ECG waveforms, ignoring all 
other physiologic or clinical signal data.   However, there 
are several examples in the literature that take a multivari-
ate approach using a combination of signals (e.g. ECG 
with arterial pressure) to reduce the number of false alarms 
(Clifford et al. 2006; Aboukhalil et al. 2008).   
 To further investigate the use of a multivariate, multi-
feature approach to cardiac arrhythmia detection, we have 
chosen to use a subset of the MIMICII dataset (Saeed, 
Lieu, and Mark 2002) that is released as part of the Physi-
oBank project (Stanley et al. 2000).  This subset consists of 
both waveform data (recorded sampling frequency of 125 
Hz) as well as numeric time-series data (sampled at 1 mi-
nute intervals) from nearly 500 patient-records, totaling 
approximately 45,000 hours of waveform data.  Other clin-
ical data, such as the laboratory, pharmacy, and nursing 
databases, are also available and time-correlated with the 
signal data.  All of the data have been de-identified.   
 Our general approach consists of applying different clas-
ses of feature extraction algorithms to the signal data and 
then feeding these through machine learning algorithms to 
develop better algorithms for detecting cardiac arrhythmi-
as.  The specifics of our approach, however, are beyond the 
scope of this paper. 
 When considering the application of feature extraction 
algorithms over all of the waveform data, the issue of 
computational efficiency becomes a major concern.  For 
example, the Sliding Window Central Tendency Measure 
takes approximately 20 minutes to run on a particular pa-
tient record (Nguyen, Hudson, and Cohen 2010; Cohen, 
Hudson, and Deedwania 1998).  Multiplying this over 500 
patient records results in almost 7 days of computation 
time.  When implemented as a MapReduce job within the 
Hadoop environment, the Sliding Window Central Ten-
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dency Measure had a run time of 3 minutes, saving almost 
5 days of computation time if extrapolated over the entire 
dataset. 
 
 We propose the creation of a standard platform to sim-
plify the computational approach to working with clinical 
signal data by combining the storage, processing, analysis, 
and visualization of large datasets into a single platform 
called a Signal Archiving and Computation System™ or 
SACS™.  This paper describes one prototypical implemen-
tation of a SACS™. 

MapReduce 
Map and Reduce are not new concepts – they are common 
to many functional programming languages such as Lisp or 
Scheme.  Google recently popularized the use of Map and 
Reduce as a simpler solution for parallelizing computation 
(Dean and Ghemawat 2004) for a certain subset of prob-
lems compared to other approaches such as MPI (The MPI 
Forum 1993) or PVM (Sunderam 1990).   
 One major benefit of the MapReduce approach is the 
ability to focus solely on the computation, and not the 
shuffling of data between processors.  The programmer 
only needs to worry about the computation itself, and can 
assume that the data will be available as required.  This 
allows those who have some programming experience to 
create and run jobs without extensive training in parallel 
computing. 
 The second major benefit of MapReduce is in data-
locality.  With the MapReduce paradigm, most of the com-
putation is done on the slave node that contains a copy of 
the input data.  This results in a minimal amount of data 
being sent over the network, increasing overall efficiency. 
 Generally, each “job” that needs to be run is split into 
two separate tasks – a map task and a reduce task.  The 
map task is a user-defined function and handles the initial 
“mapping” of the input data, taking a <key1, value1> pair 
as input and  outputting an intermediate <key2, value2> 
pair.  Oftentimes, the map task maps multiple different 
values to the same key.   
 The reduce task is also user-defined and takes the inter-
mediate <key2, value2> pairs and merges all of the values 
that correspond to the same key.  One example of a reduce 
task is to take the running sum or mean of values with the 
same key.   

Hadoop 
Hadoop is an open-source implementation of the MapRe-
duce parallel programming paradigm and is backed by both 
the open-source community as well as major companies 
such as Yahoo and Facebook. 
 Hadoop provides both a distributed file system (called 
HDFS) as well as the MapReduce parallel computation 

framework.  Data are stored in the HDFS and made availa-
ble to the various slave nodes for computation.   
 Hadoop is an Apache Foundation project and is written 
in Java though hooks are in place to facilitate the deploy-
ment of code written in other languages such as C or Py-
thon.  Hadoop is a master-slave architecture where a single 
master node coordinates many slave machines which carry 
out the actual computation.   
 To enable data-local processing, each slave machine 
only computes on data of which it has a copy.  This results 
in very little shuffling of data over the network, decreasing 
the network IO bandwidth needed.  
 Additional nodes can be added to the cluster to increase 
storage capacity or computational power as necessary. Ha-
doop has been used in clusters ranging from a handful of 
nodes to over 4000 nodes, demonstrating it’s ability to 
scale as needed. 

HBase and MongoDB 
HBase  is a distributed column-store that runs on top of the 
Hadoop system.  As a result, it depends on (and takes ad-
vantage of) the distributed file system as well as the 
MapReduce framework.  HBase provides a storage system 
where the full power of the MapReduce paradigm is avail-
able while also providing convenient, random-access to the 
data.  There are other possible alternatives within the Ha-
doop project that may serve a similar purpose such as Pig 
and Hive though we have chosen to focus on HBase. 
 As a “NoSQL” database, HBase’s approach to tables, 
rows, and columns is different than in traditional relational 
databases.  Within HBase, each row is identified by a sort-
able row key.  Each row can contain an arbitrary number of 
columns resulting in the sparse storage of tables.  The col-
umns are identified by a combination of “column family” 
and “label.” The column family is important during sche-
ma design because data are stored in a per-column family 
basis.  When a value is written to the database, it is stored 
with its row key, column family and label identifiers.  This 
results in substantial storage overhead if the identifiers are 
large in size.   
 MongoDB is a document-store database and also has an 
integrated MapReduce computational framework.  It is also 
a “NoSQL” database and is designed to be deployed in a 
clustered environment.  

System Description 
The integrated platform is built with four primary compo-
nents (Figure 1): 1) Data storage using HBase, 2) metadata 
storage with MongoDB, 3) MapReduce using Hadoop, and 
4) data visualization using Chronoscope with the Google 
Web Toolkit. 
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Figure 1 - System Overview 

 
The signal data are stored in HBase while the signal 
metadata and other clinical data are stored in MongoDB.  
Data in both HBase and MongoDB are accessible from the 
Hadoop/MapReduce environment for processing as well as 
from the data visualization layer. 
 We currently have a prototype SACS™ deployed in a 
local UCSF datacenter which consists of 1 master node, 6 
slave nodes, and several supporting servers.  While some 
initial work was performed in the Amazon EC2 cloud envi-
ronment, the majority of our work has taken place on this 
dedicated cluster. 

Data Storage with HBase and MongoDB 
The data are being stored within HBase as time-series data.  
We have elected to store the time-series data within HBase 
such that each row key is the timestamp of a signal’s value 
at a particular point in time.  This timestamp is recorded as 
an 8-byte value of the number of milliseconds from the 
epoch (January 1, 1970 00:00:00.000).  
 Within each row, each column contains the value of a 
particular signal for a particular patient corresponding to 
the row key timestamp.  For example, each of the follow-
ing would be stored in a separate column: arterial blood 
pressure values for patient A, arterial blood pressure values 
for patient B, and ECG Lead I values for patient A.   
 The columns can also contain the values resulting from 
different  feature extraction algorithms.  For example, one 
particular feature extraction algorithm extracts the beat-to-
beat systolic pressures from an arterial blood pressure 
waveform.  In this case, the column contains the systolic 
pressure value at a particular timestamp for a particular 
patient. 
 Inherent in the architecture of HBase, each value is 
stored along with its row key and column identifier.  As a 

result, there is a noticeable increase in storage overhead.  
To mitigate this, we have chosen to store the identifiers in 
their binary form.  Because the row key identifiers are just 
numeric values representing the number of milliseconds 
from the epoch, they are stored as standard 8-byte binary 
data.  The column identifiers, on the other hand, are a 
combination of a patient identifier as well as a signal iden-
tifier.  Given the anticipated size of the data that we are 
working with, we have limited the number of patients to a 
2-byte value and the signal identifier to a 4-byte value.  
These values, however, are easily changed should the un-
derlying dataset require it. 
 Because the patient and signal identifiers are not intui-
tive when stored as numeric values, we have setup a data-
base to store the metadata.  We are currently using an in-
stance of MongoDB though any standard relational data-
base would work.  This database contains all of the patient 
demographic information, patient clinical data (e.g. data 
from other clinical databases) as well as the mappings to 
the column identifiers used in HBase. 

MapReduce with Hadoop 
Because HBase runs within the Hadoop environment, we 
can directly leverage the MapReduce framework for data 
stored within HBase.  When writing a MapReduce job for 
processing the signal data, the user only needs to provide 
the code for the actual computation.  While Hadoop han-
dles the low level management of the data, we have also 
provided several Java classes to handle the selection of the 
appropriate row keys and column identifiers.  The user 
only needs to write the actual computational code and se-
lect the input columns, dramatically simplifying the pro-
cess. 
 Given the nature of the MapReduce approach and the 
Hadoop implementation, there is one potential issue that 
must be addressed when working with feature extraction 
algorithms that are not stateless.  Because each slave ma-
chine only processes data that it contains, there is no de-
fault mechanism to communicate the status or results of 
computation occurring on another slave.  So, for an algo-
rithm such as the rolling mean, each slave machine is com-
puting its own rolling mean of the subset of data it has a 
copy of, independent of any of the other slave machines.   
 One general solution is to force each map task to process 
an entire patient record.  This, however, negates the data-
locality benefit since a single slave machine will be re-
questing data stored on other slave machines.  
 For problems that only require some overlap of data 
(e.g. only the previous 5 data points are needed), there are 
hooks built-in to the Hadoop system that allow for custom 
“splitting” of the data.  The splits can be made such that 
there is adequate overlap between one map task and the 
next.  While this results in some additional shuffling of 
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data over the network, the majority of the computation is 
still data-local. 

Data Visualization 
In order to visualize both the raw signal data as well as the 
extracted features, we integrated a web-based visualization 
tool into the system.  This provides the ability to easily 
visualize the data without having to extract it into a sepa-
rate plotting tool.   
 The visualization layer is built using the Google Web 
Toolkit (GWT) along with Chronoscope (a charting tool) 
from Timepedia.   
 Users specify which signals they want to plot, both raw 
signals as well as derived signals from the feature extrac-
tion algorithms, along with the time period of interest.  The 
visualization tool has direct access to the MongoDB in-
stance in order to properly map the binary identifiers to 
their human-readable counterparts.  While rudimentary, 
our data visualization system also has the ability to overlay 
annotations on top of the signal data, allowing us to display 
pertinent events from the patient’s clinical history over the 
signal data.   

 Example 
 In previous work, we had used the Hadoop MapReduce 
system to more efficiently calculate the Sliding Window 
Central Tendency Measure (CTM).  While this dramatical-
ly increased our computational efficiency, our workflow 
was still suboptimal due to the separate processing and 
visualization environments.  As with most sliding window 
applications, some experimentation is needed in order to 
determine the optimal window size.  Each time we changed 
the window size, we wanted to plot the Sliding Window 
CTM against other window sizes, the original arterial pres-
sure signal or other physiologic signals.   
 We first ran the Sliding Window CTM calculation with-
in the Matlab environment to take advantage of both its 
processing and visualization capabilities.  However, the 
Sliding Window CTM was very slow when run via Matlab.  
To take advantage of the Hadoop MapReduce environ-
ment, we imported the data into Hadoop and processed 
them via MapReduce.  In order to visualize the data, we 
first needed to export it from Hadoop and then import it 
into Matlab for plotting.  Because we were experimenting 
with many different window sizes, both of these approach-
es were tedious and time-consuming. 
 Our prototype SACS™ addresses both of these issues by 
providing an environment that can efficiently process the 
data while making it immediately available for viewing.  
This allowed us to experiment with various parameters of 
the Sliding Window CTM in a fraction of the time other-
wise.  Funds permitting, we could add additional nodes to 

the cluster as necessary to further improve computation 
time. 

Conclusion 
The Signal Archiving and Computation System™ outlined 
in this paper has become an effective method for working 
with larger volumes of high-density signal data.  By paral-
lelizing the work via Hadoop and MapReduce, we are able 
to process the data in a fraction of the time it would take 
serially.  Hadoop and MapReduce provide a simpler, yet 
powerful, means of parallelizing the signal processing, 
including the ability to add more server nodes as necessary 
to increase storage space or computational resources.  This 
helps informatics researchers interact with the data more 
efficiently, allowing us to work on problems that were un-
feasible a few years ago.  The use of Hadoop also allows 
us to leverage developments such as Online MapReduce 
(Condie et al. 2009) allowing us to translate developed 
algorithms into real-time, online algorithms for clinical 
decision support. 
 By integrating visualization into the processing envi-
ronment, researchers can conveniently view the signal data 
(both the raw data as well as the extracted features) along-
side the patient’s clinical history, making the workflow 
much more efficient and facilitating the discovery process.   
 While there are many other tools and platforms that 
could also be used, Hadoop, HBase, GWT, and Chrono-
scope have blended well together, allowing us to create an 
initial implementation of a SACS™ to facilitate informat-
ics research in the area of physiologic signal data analysis. 
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