

HBase, MapReduce, and Integrated Data Visualization
for Processing Clinical Signal Data

Andrew V. Nguyen, Rob Wynden, Yao Sun
University of California, San Francisco, Clinical and Translational Informatics

andrew-aaai-hbase@ucsfcti.org

Abstract
Processing high-density clinical signal data (data from bio-
medical sensors deployed in the clinical environment) is re-
source intensive and time consuming. We propose a novel
approach to storing and processing clinical signal data based
on the Apache HBase distributed column-store and the
MapReduce programming paradigm with an integrated web-
based data visualization layer. An integrated solution ne-
gates the need to marshal data into and out of the storage
system while also easily parallelizing the computation, a
problem that is becoming more and more important due to
increasing numbers of sensors and resulting data. We esti-
mate upwards of 50TB of clinical signal data for a 200-bed
medical center within the next 5 years. Consequently, effi-
cient processing of clinical signal data is a vital step towards
multivariate analysis of the signal data in order to develop
better ways of describing a patient’s clinical status.

 Background

Clinical Significance
Computational physiology is relatively new and there are
increasing efforts towards using physiologic signal data to
improve the quality of care being provided to patients
(Saeed, Lieu, and Mark 2002; Stanley et al. 2000; Barnaby
et al. 2002; Björkander et al. 2009; Buchman 1996; Gar-
rard, Kontoyannis, and Piepoli 1993; Sorani et al. 2007;
Staats, Austin, and Aboy 2008; Sun, Reisner, and Mark
2006; Agarwal et al. 1998; Baselli et al. 1987; Moca et al.
2009; de Godoy et al. 2009; Karamanoglu 1997; Lake et al.
2002). The literature is filled with a multitude of varying
approaches: some are looking to create models(Staats,
Austin, and Aboy 2008; Aleks et al. 2008) while others are
attempting a more feature-based approach (Garrard,
Kontoyannis, and Piepoli 1993).

Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 Our current clinical problem of interest is the more accu-
rate detection of cardiac arrhythmias using a multivariate,
multi-feature approach. Most arrhythmia detection algo-
rithms focus solely on the ECG waveforms, ignoring all
other physiologic or clinical signal data. However, there
are several examples in the literature that take a multivari-
ate approach using a combination of signals (e.g. ECG
with arterial pressure) to reduce the number of false alarms
(Clifford et al. 2006; Aboukhalil et al. 2008).
 To further investigate the use of a multivariate, multi-
feature approach to cardiac arrhythmia detection, we have
chosen to use a subset of the MIMICII dataset (Saeed,
Lieu, and Mark 2002) that is released as part of the Physi-
oBank project (Stanley et al. 2000). This subset consists of
both waveform data (recorded sampling frequency of 125
Hz) as well as numeric time-series data (sampled at 1 mi-
nute intervals) from nearly 500 patient-records, totaling
approximately 45,000 hours of waveform data. Other clin-
ical data, such as the laboratory, pharmacy, and nursing
databases, are also available and time-correlated with the
signal data. All of the data have been de-identified.
 Our general approach consists of applying different clas-
ses of feature extraction algorithms to the signal data and
then feeding these through machine learning algorithms to
develop better algorithms for detecting cardiac arrhythmi-
as. The specifics of our approach, however, are beyond the
scope of this paper.
 When considering the application of feature extraction
algorithms over all of the waveform data, the issue of
computational efficiency becomes a major concern. For
example, the Sliding Window Central Tendency Measure
takes approximately 20 minutes to run on a particular pa-
tient record (Nguyen, Hudson, and Cohen 2010; Cohen,
Hudson, and Deedwania 1998). Multiplying this over 500
patient records results in almost 7 days of computation
time. When implemented as a MapReduce job within the
Hadoop environment, the Sliding Window Central Ten-

40

Computational Physiology — Papers from the AAAI 2011 Spring Symposium (SS-11-04)

dency Measure had a run time of 3 minutes, saving almost
5 days of computation time if extrapolated over the entire
dataset.

 We propose the creation of a standard platform to sim-
plify the computational approach to working with clinical
signal data by combining the storage, processing, analysis,
and visualization of large datasets into a single platform
called a Signal Archiving and Computation System™ or
SACS™. This paper describes one prototypical implemen-
tation of a SACS™.

MapReduce
Map and Reduce are not new concepts – they are common
to many functional programming languages such as Lisp or
Scheme. Google recently popularized the use of Map and
Reduce as a simpler solution for parallelizing computation
(Dean and Ghemawat 2004) for a certain subset of prob-
lems compared to other approaches such as MPI (The MPI
Forum 1993) or PVM (Sunderam 1990).
 One major benefit of the MapReduce approach is the
ability to focus solely on the computation, and not the
shuffling of data between processors. The programmer
only needs to worry about the computation itself, and can
assume that the data will be available as required. This
allows those who have some programming experience to
create and run jobs without extensive training in parallel
computing.
 The second major benefit of MapReduce is in data-
locality. With the MapReduce paradigm, most of the com-
putation is done on the slave node that contains a copy of
the input data. This results in a minimal amount of data
being sent over the network, increasing overall efficiency.
 Generally, each “job” that needs to be run is split into
two separate tasks – a map task and a reduce task. The
map task is a user-defined function and handles the initial
“mapping” of the input data, taking a <key1, value1> pair
as input and outputting an intermediate <key2, value2>
pair. Oftentimes, the map task maps multiple different
values to the same key.
 The reduce task is also user-defined and takes the inter-
mediate <key2, value2> pairs and merges all of the values
that correspond to the same key. One example of a reduce
task is to take the running sum or mean of values with the
same key.

Hadoop
Hadoop is an open-source implementation of the MapRe-
duce parallel programming paradigm and is backed by both
the open-source community as well as major companies
such as Yahoo and Facebook.
 Hadoop provides both a distributed file system (called
HDFS) as well as the MapReduce parallel computation

framework. Data are stored in the HDFS and made availa-
ble to the various slave nodes for computation.
 Hadoop is an Apache Foundation project and is written
in Java though hooks are in place to facilitate the deploy-
ment of code written in other languages such as C or Py-
thon. Hadoop is a master-slave architecture where a single
master node coordinates many slave machines which carry
out the actual computation.
 To enable data-local processing, each slave machine
only computes on data of which it has a copy. This results
in very little shuffling of data over the network, decreasing
the network IO bandwidth needed.
 Additional nodes can be added to the cluster to increase
storage capacity or computational power as necessary. Ha-
doop has been used in clusters ranging from a handful of
nodes to over 4000 nodes, demonstrating it’s ability to
scale as needed.

HBase and MongoDB
HBase is a distributed column-store that runs on top of the
Hadoop system. As a result, it depends on (and takes ad-
vantage of) the distributed file system as well as the
MapReduce framework. HBase provides a storage system
where the full power of the MapReduce paradigm is avail-
able while also providing convenient, random-access to the
data. There are other possible alternatives within the Ha-
doop project that may serve a similar purpose such as Pig
and Hive though we have chosen to focus on HBase.
 As a “NoSQL” database, HBase’s approach to tables,
rows, and columns is different than in traditional relational
databases. Within HBase, each row is identified by a sort-
able row key. Each row can contain an arbitrary number of
columns resulting in the sparse storage of tables. The col-
umns are identified by a combination of “column family”
and “label.” The column family is important during sche-
ma design because data are stored in a per-column family
basis. When a value is written to the database, it is stored
with its row key, column family and label identifiers. This
results in substantial storage overhead if the identifiers are
large in size.
 MongoDB is a document-store database and also has an
integrated MapReduce computational framework. It is also
a “NoSQL” database and is designed to be deployed in a
clustered environment.

System Description
The integrated platform is built with four primary compo-
nents (Figure 1): 1) Data storage using HBase, 2) metadata
storage with MongoDB, 3) MapReduce using Hadoop, and
4) data visualization using Chronoscope with the Google
Web Toolkit.

41

Figure 1 - System Overview

The signal data are stored in HBase while the signal
metadata and other clinical data are stored in MongoDB.
Data in both HBase and MongoDB are accessible from the
Hadoop/MapReduce environment for processing as well as
from the data visualization layer.
 We currently have a prototype SACS™ deployed in a
local UCSF datacenter which consists of 1 master node, 6
slave nodes, and several supporting servers. While some
initial work was performed in the Amazon EC2 cloud envi-
ronment, the majority of our work has taken place on this
dedicated cluster.

Data Storage with HBase and MongoDB
The data are being stored within HBase as time-series data.
We have elected to store the time-series data within HBase
such that each row key is the timestamp of a signal’s value
at a particular point in time. This timestamp is recorded as
an 8-byte value of the number of milliseconds from the
epoch (January 1, 1970 00:00:00.000).
 Within each row, each column contains the value of a
particular signal for a particular patient corresponding to
the row key timestamp. For example, each of the follow-
ing would be stored in a separate column: arterial blood
pressure values for patient A, arterial blood pressure values
for patient B, and ECG Lead I values for patient A.
 The columns can also contain the values resulting from
different feature extraction algorithms. For example, one
particular feature extraction algorithm extracts the beat-to-
beat systolic pressures from an arterial blood pressure
waveform. In this case, the column contains the systolic
pressure value at a particular timestamp for a particular
patient.
 Inherent in the architecture of HBase, each value is
stored along with its row key and column identifier. As a

result, there is a noticeable increase in storage overhead.
To mitigate this, we have chosen to store the identifiers in
their binary form. Because the row key identifiers are just
numeric values representing the number of milliseconds
from the epoch, they are stored as standard 8-byte binary
data. The column identifiers, on the other hand, are a
combination of a patient identifier as well as a signal iden-
tifier. Given the anticipated size of the data that we are
working with, we have limited the number of patients to a
2-byte value and the signal identifier to a 4-byte value.
These values, however, are easily changed should the un-
derlying dataset require it.
 Because the patient and signal identifiers are not intui-
tive when stored as numeric values, we have setup a data-
base to store the metadata. We are currently using an in-
stance of MongoDB though any standard relational data-
base would work. This database contains all of the patient
demographic information, patient clinical data (e.g. data
from other clinical databases) as well as the mappings to
the column identifiers used in HBase.

MapReduce with Hadoop
Because HBase runs within the Hadoop environment, we
can directly leverage the MapReduce framework for data
stored within HBase. When writing a MapReduce job for
processing the signal data, the user only needs to provide
the code for the actual computation. While Hadoop han-
dles the low level management of the data, we have also
provided several Java classes to handle the selection of the
appropriate row keys and column identifiers. The user
only needs to write the actual computational code and se-
lect the input columns, dramatically simplifying the pro-
cess.
 Given the nature of the MapReduce approach and the
Hadoop implementation, there is one potential issue that
must be addressed when working with feature extraction
algorithms that are not stateless. Because each slave ma-
chine only processes data that it contains, there is no de-
fault mechanism to communicate the status or results of
computation occurring on another slave. So, for an algo-
rithm such as the rolling mean, each slave machine is com-
puting its own rolling mean of the subset of data it has a
copy of, independent of any of the other slave machines.
 One general solution is to force each map task to process
an entire patient record. This, however, negates the data-
locality benefit since a single slave machine will be re-
questing data stored on other slave machines.
 For problems that only require some overlap of data
(e.g. only the previous 5 data points are needed), there are
hooks built-in to the Hadoop system that allow for custom
“splitting” of the data. The splits can be made such that
there is adequate overlap between one map task and the
next. While this results in some additional shuffling of

42

data over the network, the majority of the computation is
still data-local.

Data Visualization
In order to visualize both the raw signal data as well as the
extracted features, we integrated a web-based visualization
tool into the system. This provides the ability to easily
visualize the data without having to extract it into a sepa-
rate plotting tool.
 The visualization layer is built using the Google Web
Toolkit (GWT) along with Chronoscope (a charting tool)
from Timepedia.
 Users specify which signals they want to plot, both raw
signals as well as derived signals from the feature extrac-
tion algorithms, along with the time period of interest. The
visualization tool has direct access to the MongoDB in-
stance in order to properly map the binary identifiers to
their human-readable counterparts. While rudimentary,
our data visualization system also has the ability to overlay
annotations on top of the signal data, allowing us to display
pertinent events from the patient’s clinical history over the
signal data.

 Example
 In previous work, we had used the Hadoop MapReduce
system to more efficiently calculate the Sliding Window
Central Tendency Measure (CTM). While this dramatical-
ly increased our computational efficiency, our workflow
was still suboptimal due to the separate processing and
visualization environments. As with most sliding window
applications, some experimentation is needed in order to
determine the optimal window size. Each time we changed
the window size, we wanted to plot the Sliding Window
CTM against other window sizes, the original arterial pres-
sure signal or other physiologic signals.
 We first ran the Sliding Window CTM calculation with-
in the Matlab environment to take advantage of both its
processing and visualization capabilities. However, the
Sliding Window CTM was very slow when run via Matlab.
To take advantage of the Hadoop MapReduce environ-
ment, we imported the data into Hadoop and processed
them via MapReduce. In order to visualize the data, we
first needed to export it from Hadoop and then import it
into Matlab for plotting. Because we were experimenting
with many different window sizes, both of these approach-
es were tedious and time-consuming.
 Our prototype SACS™ addresses both of these issues by
providing an environment that can efficiently process the
data while making it immediately available for viewing.
This allowed us to experiment with various parameters of
the Sliding Window CTM in a fraction of the time other-
wise. Funds permitting, we could add additional nodes to

the cluster as necessary to further improve computation
time.

Conclusion
The Signal Archiving and Computation System™ outlined
in this paper has become an effective method for working
with larger volumes of high-density signal data. By paral-
lelizing the work via Hadoop and MapReduce, we are able
to process the data in a fraction of the time it would take
serially. Hadoop and MapReduce provide a simpler, yet
powerful, means of parallelizing the signal processing,
including the ability to add more server nodes as necessary
to increase storage space or computational resources. This
helps informatics researchers interact with the data more
efficiently, allowing us to work on problems that were un-
feasible a few years ago. The use of Hadoop also allows
us to leverage developments such as Online MapReduce
(Condie et al. 2009) allowing us to translate developed
algorithms into real-time, online algorithms for clinical
decision support.
 By integrating visualization into the processing envi-
ronment, researchers can conveniently view the signal data
(both the raw data as well as the extracted features) along-
side the patient’s clinical history, making the workflow
much more efficient and facilitating the discovery process.
 While there are many other tools and platforms that
could also be used, Hadoop, HBase, GWT, and Chrono-
scope have blended well together, allowing us to create an
initial implementation of a SACS™ to facilitate informat-
ics research in the area of physiologic signal data analysis.

References
Aboukhalil, Anton, Larry Nielsen, Mohammed Saeed, Roger G
Mark, and Gari D Clifford. 2008. Reducing false alarm rates for
critical arrhythmias using the arterial blood pressure waveform.
Journal of Biomedical Informatics 41, no. 3 (June): 442-451.
Agarwal, Rajeev, Jean Gotman, Danny Flanagan, and Bernard
Rosenblatt. 1998. Automatic EEG analysis during long-term
monitoring in the ICU. Electroencephalography and Clinical
Neurophysiology 107, no. 1 (July): 44-58.
Aleks, N., S. Russell, M. G Madden, D. Morabito, K.
Staudenmayer, M. Cohen, and G. Manley. 2008. Probabilistic
detection of short events, with application to critical care monitor-
ing. In Proceedings of NIPS 2008: 22nd Annual Conference on
Neural Information Processing Systems. Vancouver, Canada.
Barnaby, Douglas, Kevin Ferrick, Daniel T. Kaplan, Sachin Shah,
Polly Bijur, and E. John Gallagher. 2002. Heart Rate Variability
in Emergency Department Patients with Sepsis. Academic Emer-
gency Medicine 9, no. 7: 661-670.
Baselli, G., S. Cerutti, S. Civardi, F. Lombardi, A. Malliani, M.
Merri, M. Pagani, and G. Rizzo. 1987. Heart rate variability sig-
nal processing: A quantitative approach as an aid to diagnosis in
cardiovascular pathologies. International Journal of Bio-Medical
Computing 20, no. 1 (January): 51-70.

43

Björkander, Inge, Lennart Forslund, Mats Ericson, Nina
Rehnqvist, Paul Hjemdahl, and Thomas Kahan. 2009. Long-term
stability of heart rate variability in chronic stable angina pectoris,
and the impact of an acute myocardial infarction. Clinical Physi-
ology and Functional Imaging 29, no. 3 (May): 201-208.
Buchman, T. G. 1996. Physiologic stability and physiologic state.
The Journal of trauma 41, no. 4: 599.
Clifford, G.D., A. Aboukhalil, J.X. Sun, W. Zong, B.A. Janz,
G.B. Moody, and R.G. Mark. 2006. Using the blood pressure
waveform to reduce critical false ECG alarms. In Computers in
Cardiology, 2006, 829-832.
Cohen, ME, DL Hudson, and PC Deedwania. 1998. The use of
continuous chaotic modeling in differentiation of categories of
heart disease. In 7th Information processing and management of
uncertainty in knowledge-based systems Conference, 548-554.
EDK, Paris, FRANCE.
Condie, Tyson, Neil Conway, Peter Alvaro, Joseph M Heller-
stein, Khaled Elmeleegy, and Russell Sears. 2009. MapReduce
Online. EECS Department, University of California, Berkeley,
October.
Dean, Jeffrey, and Sanjay Ghemawat. 2004. MapReduce: Simpli-
fied Data Processing on Large Clusters. In OSDI'04: Sixth Sym-
posium on Operating System Design and Implementation. San
Francisco, CA, December.
Garrard, Christopher S., Dimitrios A. Kontoyannis, and Massimo
Piepoli. 1993. Spectral analysis of heart rate variability in the
sepsis syndrome. Clinical Autonomic Research 3, no. 1 (February
1): 5-13.
de Godoy, Moacir Fernandes, Isabela Thomaz Takakura, Paulo
Rogério Correa, Mauricio de Nassau Machado, Rafael Carlos
Miranda, and Antonio Carlos Brandi. 2009. Preoperative nonline-
ar behavior in heart rate variability predicts morbidity and mortal-
ity after coronary artery bypass graft surgery. Medical Science
Monitor: International Medical Journal of Experimental and
Clinical Research 15, no. 3 (March): CR117-122.
Karamanoglu, Mustafa. 1997. A System for Analysis of Arterial
Blood Pressure Waveforms in Humans. Computers and Biomedi-
cal Research 30, no. 3 (June): 244-255.
Lake, Douglas E., Joshua S. Richman, M. Pamela Griffin, and J.
Randall Moorman. 2002. Sample entropy analysis of neonatal
heart rate variability. Am J Physiol Regul Integr Comp Physiol
283, no. 3 (September 1): R789-797.
Moca, Vasile V., Bertram Scheller, Raul C. Muresan, Michael
Daunderer, and Gordon Pipa. 2009. EEG under anesthesia--
Feature extraction with TESPAR. Computer Methods and Pro-
grams in Biomedicine 95, no. 3 (September): 191-202.
Nguyen, A. V., Hudson, D. L., and Cohen, M. E.. 2010. Hadoop
and MapReduce for the storage and processing of physiologic
data. In SEDE 2010: 19th International Conference on Software
Engineering and Data Engineering. San Francisco.
Saeed, M., C. and Raber Lieu, and R. G Mark. 2002. MIMIC II: a
massive temporal ICU patient database to support research in
intelligent patient monitoring. Computers in Cardiology 29 (Sep-
tember): 641-644.
Sorani, Marco, J. Hemphill, Diane Morabito, Guy Rosenthal, and
Geoffrey Manley. 2007. New Approaches to Physiological In-
formatics in Neurocritical Care. Neurocritical Care 7, no. 1: 45-
52.
Staats, C, D Austin, and M Aboy. 2008. A statistical model and
simulator for cardiovascular pressure signals. Proceedings of the

Institution of Mechanical Engineers. Part H, Journal of Engi-
neering in Medicine 222, no. 6 (August): 991-998.
Stanley, H. E, A. L Goldberger, L. A. N Amaral, L. Glass, J. M
Hausdorff, P. Ch Ivanov, R. G Mark, J. E Mietus, G. B Moody,
and C. -K Peng. 2000. PhysioBank, PhysioToolkit, and Physio-
Net: Components of a New Research Resource for Complex
Physiologic Signals. Circulation 101, no. 23 (June 13): e215–
e220.
Sun, J.X., A.T. Reisner, and R.G. Mark. 2006. A signal abnor-
mality index for arterial blood pressure waveforms. In Computers
in Cardiology, 2006, 13-16.
Sunderam, V. S. 1990. PVM: A framework for parallel distribut-
ed computing. Concurrency: Practice and Experience 2, no. 4
(12): 315-339.
The MPI Forum. 1993. MPI: A Message Passing Interface.

44

