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Abstract

Documents that people write to communicate with other
people are rarely as precise as a formal logic. Yet people
can read those documents and relate them to formal
notations for science, mathematics, and computer program-
ming. They can derive whatever information they need,
reason about it, and apply it at an appropriate level of
precision. Unlike theorem provers, people rely on analogies
for their reasoning. Even mathematicians use analogies to
discover their theorems and formal proofs to verify and
codify their discoveries. This article shows how a high-
speed analogy engine is used to analyze natural language
texts and relate the results to both structured and unstruc-
tured representations. The degree of precision in the results
depends more on the precision in the knowledge sources
used to analyze the documents than on the precision of the
language in the documents themselves.

1. Neat and Scruffy Methods

Commonsense reasoning is based on the way people think
and talk. Human reasoning is closely related to perception
and mental models, and language relates words to those
models by analogies and metaphors. Formal logic and
ontology, however, are abstractions from language that
replace perceptual patterns with symbolic expressions.
Computers can manipulate symbols much faster and more
accurately than humans, but they’re not as good at
analogical reasoning. The most challenging task for
relating language to commonsense reasoning is to develop
methods of analogy for relating patterns of words to
patterns of reasoning.

For natural language processing, Roger Schank repre-
sents scruffy methods for matching language patterns to
domain-dependent  background knowledge. Richard
Montague (1970b) represents the neat extreme of treating
language as a formal system: “There is in my opinion no
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important theoretical difference between natural languages
and the artificial languages of logicians; indeed, I consider
it possible to comprehend the syntax and semantics of both
kinds of languages within a single natural and mathemati-
cally precise theory.” At that level, Schank and Montague
are irreconcilable. Montague is the kind of logician that
Schank denounced as misguided or at best irrelevant. Their
only point of agreement is their opposition to Chomsky
and “the developments emanating from the Massachusetts
Institute of Technology” (Montague 1970a). Yet in their
reaction against Chomsky, both Montague and Schank
evolved positions that are remarkably similar, although
their notations hide the resemblance. What Chomsky called
a noun, Schank called a picture producer, and Montague
called a function from entities to truth values. But Schank
never produced any pictures, and Montague never applied
his functions to any entity.

Neat and scruffy methods can be compared in common
terms: semantics, not syntax, is key to understanding
language. The traditional grammatical categories are
surface manifestations of underlying semantic categories.
Each word has a characteristic semantic pattern — a
lambda expression for Montague or a graph for Schank —
that determines how it combines with other words.
Grammar helps to guide the semantics in constructing a
representation for each phrase and sentence of discourse.
The variety of complex sentences is not the result of a
complex grammar, but of the interactions between a simple
grammar and the variety of semantic patterns. Finally, the
denotation of a sentence is determined by relating its
semantic representation to a model of the domain. Schank
never talked about truth values or denotations, but his
programs computed them.

The most significant difference between Schank and
Montague is in their use of background knowledge.
Montague adhered to Frege’s principle of compositionality,
which claims that the meaning of a sentence is derived
from the meaning of the words it contains and the grammar
rules for combining words. Montague’s lexicon contains



all the knowledge used in language analysis: each word is
defined by one or more logical expressions, and each
grammar rule has an associated semantic rule for
combining those expressions. Schank (1982) included
some semantics in the lexicon, but he organized most of
the background knowledge in domain-dependent scripts,
memory organization packets (MOPs), and theme organi-
zation packets (TOPs). With Schank’s methods, back-
ground knowledge is more important for semantic interpre-
tation than the information in the lexicon.

Background knowledge can be processed at any level of
precision from neat to scruffy, but the most challenging
problem is to find the relevant knowledge when it is
needed. To make background knowledge easily accessible
at parse time, word-expert parsers (WEP) store all the
information in a huge lexicon indexed by the word forms
(Small 1980). But the amount of knowledge is open ended,
and WEP lexicons must encode and store information
about every specialized word sense. Formal ontologies and
knowledge bases are usually organized by domain, and
they may require a parser to do a considerable amount of
analysis before it can find the relevant information.
Statistical parsers could be trained to associate patterns of
words to some semantic notation, but they would require
human experts to annotate a training corpus for every
domain and genre. A statistical parser trained on a corpus
of well-edited documents cannot handle ungrammatical or
fragmentary text about the same domain.

The VivoMind technology uses novel methods to
address these issues: conceptual graphs for a semantic
representation that spans a range of precision from formal
logic to the scruffiest heuristics; a high-speed analogy
engine for finding relevant graphs in log(N) time, where N
is the number of graphs in the knowledge base; methods of
language analysis and reasoning that can use knowledge in
structured or unstructured forms; and semi-automated tools
that enable subject-matter experts to extend the knowledge
base without having to learn special notations or methods
for knowledge acquisition. Section 2 introduces the
VivoMind Analogy Engine (VAE), its use in analogical
reasoning, and its support for other methods of reasoning
by finding relevant information upon request. Section 3
discusses the use of VAE and the VivoMind Language
Processor (VLP) in three applications, which have different
tolerances on precision in the knowledge representation
and reasoning. The concluding Section 4 discusses some
implications of this approach for linguistic theory and
practical applications.

2. Analogy Engine

Analogies have been an important area of research since
the early days of Al but they are often studied as an aspect
of some other topic, such as machine learning, case-based
reasoning, metaphor, or just pattern matching. The goal of
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pattern matching is the recognition and mapping of related
parts of two structures. Analogy finding adds the goal of
searching for analogous structures in a knowledge base of
arbitrary size. Both neat and scruffy methods of reasoning
and language analysis use repeated steps of pattern
matching and analogy finding. The main difference
between them is in the constraints on permissible matches.
The three methods of formal reasoning can be considered
special cases of analogy:

* Deduction. A typical rule used in deduction is modus
ponens: given an assertion p and an axiom of the form
p implies ¢, deduce the conclusion ¢. In most
applications, the assertion p is not identical to the p in
the axiom, and structure mapping is necessary to unify
the two ps before the rule can be applied. The most
time-consuming task is not the application of a single
rule, but the repeated use of analogies for finding
patterns that may lead to successful rule applications.

Induction. When every instance of p is followed by
an instance of ¢, induction is performed by assuming
that p implies ¢. Since the ps and gs are rarely identical
in every occurrence, a form of analogy -called
generalization is used to derive the most general
implication that subsumes all the instances.

Abduction. The operation of guessing or forming an
initial hypothesis is what Peirce called abduction.
Given an assertion g and an axiom of the form p
implies ¢, the guess that p is a likely cause or
explanation for ¢ is an act of abduction. The operation
of guessing p uses the least constrained version of
analogy, in which some parts of the matching graphs
may be more generalized while other parts are more
specialized.

With appropriate constraints on the permissible pattern
matching, a general-purpose analogy engine can perform
any combination of informal analogies or formal steps of
deduction, induction, and abduction. For VivoMind
software, conceptual graphs (CGs) are the primary
knowledge representation, and the VivoMind Analogy
Engine (VAE) serves as a high-speed associative memory
for CGs (Sowa & Majumdar 2003). At the neat extreme,
the logical structure of CGs is based on the existential
graphs by Peirce (1906, 1909), they have the model-
theoretic semantics of Common Logic (ISO/IEC 24707),
and VAE can find matching graphs that satisfy the strict
constraints of unification. At the scruffy extreme, CGs can
represent Schank’s conceptual dependencies, scripts,
MOPs, and TOPs. VAE can support case-based reasoning
(Schank 1982) or any heuristics used with semantic
networks. The wide range of reasoning methods is a good
reason for using CGs. A more important reason is the
graph structure, which allows the use of mathematical
theories, encodings, and algorithms that are rarely
exploited in Al



The Structure-Mapping Engine (SME) pioneered a wide
range of methods for using analogies (Falkenhainer et al.
1989; Lovett et al. 2010). But SME takes N-cubed time to
find analogies in a knowledge base with N options. For
better performance, conventional search engines can
reduce the options, but they are based on an unordered bag
of words or other labels. Methods that ignore the graph
structure cannot find graphs with similar structure but
different labels, and they find too many graphs with the
same labels in different structures.

Organic chemists developed some of the fastest
algorithms for representing large labeled graphs and
efficiently finding graphs with similar structure and labels.
Chemical graphs have fewer types of labels and links than
conceptual graphs, but they have many similarities. Among
them are frequently occurring subgraphs, such as a
benzene ring or a methyl group, which can be defined and
encoded as single types. Algorithms designed for chemical
graphs (Levinson & Ellis 1992) were used in the first high-
speed method for encoding, storing, and retrieving CGs in
a generalization hierarchy. More recent algorithms encode
and store millions of chemical graphs in a database and
find similar graphs in logarithmic time (Rhodes et al.
2007). By using a measure of graph similarity and locality-
sensitive hashing, their software can retrieve a set of
similar graphs with each search.

Chemical graphs have a regular structure that enables
systematic algorithms to encode the graphs and operate on
them. By comparison, predicate calculus has a much more
complex syntax. The mapping by Godel (1931), for
example, requires a large number of irregular functions to
operate on the encoding. Peirce’s existential graphs (EGs)
have the simplest syntax for logic ever invented, and they
are capable of expressing the full semantics of Common
Logic (Sowa 2009). Conceptual graphs are a typed version
of EGs, the typing helps reduce the number of nodes in the
graphs, and the canonical formation rules define a CG
grammar that is tied to Peirce’s rules of inference. In
effect, a CG with no negations has the same structure as a
chemical graph. Negations extend CGs to nested structures
in which some nodes contain other CGs.

The original version of VAE used algorithms related to
those for chemical graphs. More recent variations have led
to a family of algorithms that encode a graph in time that is
polynomial in the size of a graph and store or retrieve an
encoding in log(N) time, where N is the total number of
graphs. With a semantic distance measure based on both
the structure of the graphs and an ontology of their labels,
locality-sensitive hashing can retrieve a set of similar
graphs in log(N) time. With this speed, VAE can find
analogies in a knowledge base of any size without
requiring a search engine as a preliminary filter. The next
section describes how it is used in reasoning and language
analysis..
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3. VivoMind Language Processor

The VivoMind Language Processor (VLP) is a semantics-
based language interpreter that translates natural language
text to conceptual graphs (Majumdar et al. 2008, 2009).
For syntax, VLP uses a link grammar with labels that
correspond to thematic roles, such as Agent, Patient,
Theme, Experiencer, Recipient, Instrument, Result, and
Attribute. All semantic patterns are represented as CGs.
Some of them, called canonical graphs, are associated with
words in the lexicon, and their relations have the same
labels as the links in the grammar. Other CGs are retrieved
from background knowledge by VAE, and they may use
any concept and relation types appropriate to the subject
matter. Although VLP is based on link grammar, its
control structure is strongly influenced by a distributed
concurrent dependency parser called ParseTalk (Hahn et al.
1994, 2000). Like ParseTalk, VLP uses a message-passing
protocol that allows multiple agents to perform arbitrary
semantic and pragmatic processing during the syntactic
analysis.

The interpretation generated by VLP is a well-formed
CG, but some of the concepts and relations may be
underspecified. Noun-noun combinations, for example,
provide no syntactic clues to the semantics: a steamer
clam is a type of clam that is cooked by steam, but a
steamer duck is a type of duck that flaps its wings like a
paddle-wheel steamer. If the combination is not stored in
the lexicon, the concepts generated from the nouns are
connected by the unspecified relation (Link). To
specialize that vague link to a more detailed relation or
subgraph, VAE retrieves background knowledge, which
may be CGs derived from any source: a knowledge base, a
database, or previously analyzed text in the same document
or other related documents.

To illustrate the use of VAE in language analysis and the
level of precision in the reasoning, following are three
applications processed by a language analyzer coupled
with VAE. The first two used an older analyzer called
Intellitex, and the third used VLP:

1. Evaluating student answers. A textbook publisher
wanted software to grade student solutions to word
problems in mathematics. But the solutions were written in
free-form English sentences. They were too short for
statistical measures to be reliable, and they were too
ungrammatical and unsystematic to be translated to logic
and be verified by a theorem prover.

2. Legacy re-engineering. A large corporation had
software in daily use that was up to 40 years old. It
included about 1.5 million lines of COBOL programs,
which were documented by 100 megabytes of English text
in reports, manuals, email notes, and comments written in
the programs. The task was to analyze and compare
different versions of the software and different versions of
the documentation. The goal was to detect and report
discrepancies  between the programs and the



documentation, to compile a glossary of all the
terminology used in the documents with cross references to
the software, and to create data structure diagrams and
process diagrams of the programs, files, and data.

3. Oil and gas exploration. The task was to analyze 79
documents about oil and gas fields, which included site
reports about fields around the world and chapters from a
textbook on geology that could be used for background
information. The goal was to analyze new site reports,
compare them to the previously analyzed reports,
determine which ones were the most closely related, and
produce a detailed comparison of similarities and
differences between the new site and any of the previously
analyzed sites.

For the task of evaluating student answers, the CG in
Figure 1 is a canonical graph associated with the verb
multiply. The boxes represent concepts, the ovals represent
relations, and the diamond represents a function. The boxes
and ovals can be matched to a variety of sentence patterns
about somebody multiplying a number by a number to
produce a product. For any sentence they match, the
diamond is carried along to show that the product is a
function of the two numbers. Similar canonical graphs
would represent ways of talking about other mathematical
operators. The result of interpreting a mathematical
description would be a join of several such CGs on their
common concepts. The attached diamond nodes would
form a dataflow graph that represents an arithmetic
expression.

Fig 1. A conceptual graph for interpreting sentences
about multiplication

The display form of CGs illustrated in Figure 1 is useful
for readability. The Conceptual Graph Interchange Format
(CGIF), which is one of the three normative dialects in the
Common Logic standard, is a serialization of the display
form that represents concept nodes in square brackets and
relation and function nodes in parentheses. The display
form and CGIF are logically, but not structurally equiva-
lent to the Common Logic Interchange Format (CLIF).
Following is the CLIF version of Figure 1:

(exists (x1 Animate) (x2 Multiply) (x3 Product)

(x4 Number) (x5 Number))
(and (Agent x2 x1) (Result x2 x3) (Theme x2 x4)
(Instrument x2 x5) (= x3 (Multiply x4 x5)) ))
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For each of the word problems, the publisher had
already collected about 50 student solutions from previous
exams, and each one had an evaluation written by some
teacher who said that the solution was correct, incorrect, or
partially correct. For each partially correct solution, the
teacher added a comment that said what was missing. The
VivoMind approach to the publisher’s task was to use
Intellitex, VAE, and the canonical graphs for arithmetic to
translate the student solutions to conceptual graphs. Then
the task of evaluating solutions by other students could be
handled by case-based reasoning: The new solution was
translated to a conceptual graph, which VAE compared to
the 50 previous cases, and the semantic distance measure
determined which was the best match. If that match was
within an acceptable tolerance, the teacher’s evaluation for
the matching solution was selected. If VAE couldn’t find
any acceptable match, the new solution could be sent to
some teacher for evaluation; that solution-evaluation pair
would then be added to the set of cases in order to improve
the coverage. For all the examples tested, this method
selected evaluations that were considered appropriate.

For the legacy re-engineering task, translating English to
COBOL is impossible. But COBOL is a formal language,
off-the-shelf grammars are available for parsing it, and the
COBOL parse trees can easily be translated to conceptual
graphs. Those CGs can then be used as the knowledge base
for interpreting the English documentation. Any sentences
that don’t mention anything about the COBOL programs
are ignored as irrelevant. Those sentences that do mention
something in the programs are matched to the CGs derived
from those programs. The pattern matching is similar to the
process of matching Figure 1 to a sentence about
multiplication. Information from one source can fill gaps in
graphs derived from the other source, but conflicts and
constraint violations are noted. The project was completed
successfully, and all the information the client had
requested was generated and written on a CD-ROM.

For oil and gas exploration, the task of comparing a
report about a new site to the reports about previous sites is
more complex than just measuring some semantic distance
between the reports. Instead of a single number, the
geologists wanted a side-by-side comparison of similar and
contrasting features. Furthermore, the words used to
describe similar features might not be identical, and the
words for describing contrasting features are almost
certainly different. Instead of relating two site reports
directly, VAE would typically find chains of concepts and
relations that extend from one site report to one or more
chapters from a textbook on geology and then to graphs in
another site report that are expressed with different
concepts. For each site related to the query, VLP finds
multiple documents that contained CGs derived from the
query, CGs from the site report, and CGs from the
textbook or other reports that contain background
information. In a sense, VLP “learns” new information by
reading a book. But for each query, it focuses only on



those parts of the book that are useful for relating the query
to the answer. This method is very different from current
IR, IE, and DB systems:

* IR systems typically use a “bag of words” method to
measure the similarity of a query to a document that
might contain an answer to that query. But they don’t
extract the information and summarize it in a table or
paragraph. It’s possible to apply IR methods to
individual paragraphs, but that technique would miss
documents in which the significant words are scattered
in different paragraphs. And no IR systems connect
partial information from multiple documents.

* [E systems extract particular pieces of information,
and some can link multiple pieces from different
documents. Typical IE systems use predefined
templates that specify expected syntactic and semantic
patterns, but they have stagnated at about 60%
accuracy. Hobbs and Riloff (2010) noted “it is not
clear what we can do to overcome [that barrier], short
of solving the general natural language problem in a
way that exploits the implicit relations among the
elements of a text.” VLP doesn’t need predefined
templates. CGs derived from the query enable it to find
implicit relations in a textbook and exploit them to
generate precise answers.

* DB systems can relate and combine information from
multiple sources, but they use query languages like
SQL and SPARQL. Some support English-like front
ends, but all the information they access must be
predigested and translated to whatever format the
database system requires.

Although conceptual graphs are defined as a formal logic,
precise logic cannot be derived from a vague sentence. The
CG that represents a sentence is actually derived by
combining CGs from previously acquired knowledge. The
precision of the result is determined by the precision of the
original CGs. This method violates Frege’s principle of
compositionality, which says that the meaning of a
sentence is derived from the meaning of the words it
contains and the grammar rules for combining words.
Montague was a strict adherent: each word is defined by
one or more logical expressions, and each grammar rule
has an associated semantic rule for combining those
expressions. Montague allowed some words to have
multiple meanings, but the grammar rules check semantic
constraints to determine the correct option in each case. To
support context-dependent references, Kamp’s DRT uses
information outside the sentence to determine
interconnections. Both neat and scruffy systems make
tradeoffs between the amount of meaning stored in the
lexicon and the amount derived from context or general
background knowledge. The high-speed analogy engine
enables VLP to find and use much more background
knowledge than most NLP systems.
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In summary, VLP uses a combination of lightweight,
middleweight, and heavyweight semantics. For any text,
the broad outline of meaning comes from lightweight
resources such as WordNet combined with middleweight
ontologies with few axioms and definitions. The detail
comes from background knowledge represented in concep-
tual graphs. At the heavyweight extreme, those CGs may
be derived from formal logics, programming languages, or
highly structured databases. The Common Logic standard
(ISO/IEC 2007) specifies a model-theoretic semantics for
CGs. But CGs have extensions beyond the CL standard
(Sowa 2009), and they can also be used with “scruffy”
heuristic methods.

4. Implications for Theory and Practice

Different people can derive a different amount of meaning
or even a different degree of precision of meaning from the
same sentence. Their interpretation of the sentence depends
heavily on their general education and their knowledge of
the subject matter. The same principle is true of computer
systems.

Most systems that translate language to logic generate
the logic by combining smaller logical expressions to form
larger ones. For systems that obey Frege’s principle of
compositionality, those smaller expressions represent word
meanings, which are usually stored in the lexicon. If the
lexicon is static, such systems cannot learn. For systems
that depend heavily on background knowledge, some of
the meaning may be stored in the lexicon, but more of it
may come from domain-dependent resources. For the oil
and gas example, VAE would frequently find important
contributions in chapters from the geology textbook. For
the legacy re-engineering example, the CGs derived from
COBOL were a major source of the meaning used to derive
the interpretation.

For the legacy re-engineering project, the level of
precision of the language analysis and the complexity of
the reasoning were quite high. That precision was the result
of the large number of CGs derived by translation from a
formal language. Even though the English documents
varied widely in style and accuracy, the interpretations
formed by joining CGs derived from COBOL were always
precise.

For the task of evaluating student answers, the subject
matter was precise, and the canonical graphs, such as
Figure 1, were precise. The student answers, however,
varied widely. The A students, as expected, made correct
statements, which would produce correct dataflow
diagrams when they were interpreted by graphs such as
Figure 1. But many students, including some A students,
might include some irrelevant verbiage. Variations of the
semantic distance measure can place greater weight on
graphs and subgraphs whose ontology is critical to the
application.



For linguistics, these results are more compatible with
the theories of language games by Wittgenstein (1953) or
microsenses by Cruse (2000) than with any theory that
assumes a fixed ontology with fixed word senses (Sowa
2010). People have a high-speed associative memory,
which allows them to take advantage of huge resources of
background knowledge for generating and interpreting
language. Computer systems with commonsense will also
need a high-speed associative memory in order to
understand what humans say and write.
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