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Abstract

As computational agents are increasingly used beyond re-
search labs, their success will depend on their ability to learn
new skills and adapt to their dynamic, complex environments.
If human users — without programming skills — can transfer
their task knowledge to the agents, learning rates can increase
dramatically, reducing costly trials. The TAMER framework
guides the design of agents whose behavior can be shaped
through signals of approval and disapproval, a natural form
of human feedback. Whereas early work on TAMER assumed
that the agent’s only feedback was from the human teacher,
this paper considers the scenario of an agent within a Markov
decision process (MDP), receiving and simultaneously learn-
ing from both MDP reward and human reinforcement signals.
Preserving MDP reward as the determinant of optimal behav-
ior, we test two methods of combining human reinforcement
and MDP reward and analyze their respective performances.
Both methods create a predictive model, Ĥ , of human rein-
forcement and use that model in different ways to augment a
reinforcement learning (RL) algorithm. We additionally in-
troduce a technique for appropriately determining the magni-
tude of the model’s influence on the RL algorithm throughout
time and the state space.

Introduction

Computational agents may soon be prevalent in society, and
many of their end users will want them to learn to perform
new tasks. Since some of the desired tasks will have po-
tentially costly failures (e.g. dishwashing by a robot), we
must create methods to speed learning, minimizing costly
learning trials. For many of these tasks, the human user will
already have significant task knowledge. Consequently, we
believe we must enable non-technical users to transfer their
task knowledge to the agent, reducing the cost of learning
without hurting the agent’s final, asymptotic behavior.

The TAMER framework guides the design of agents that
learn by shaping — using signals of approval and disap-
proval to teach an agent a desired behavior (Knox and Stone
2009). Past work on TAMER assumes that the human pro-
vides the only evaluation signal and the agent uses that sig-
nal to learn the behavior desired by the human trainer. But
for many tasks, an MDP reward signal is also available. In
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this paper, we ask how an agent can learn from both hu-
man reinforcement and MDP reward simultaneously, keep-
ing MDP reward as the determinant of optimal behavior. We
introduce two candidate TAMER+RL algorithms, testing the
effect of human training on each at different points along
the learning curve. These two algorithms comprise the first
learning agents that create a predictive model of human re-
inforcement, Ĥ , while simultaneously using its current Ĥ
model to guide reinforcement learning. As a part of both
algorithms, we introduce a method for appropriately deter-
mining the magnitude of the model’s influence on the RL
algorithm throughout time and the state space. We find that
one algorithm, action biasing, consistently improves upon
the RL algorithm’s solo performance. Further, we note that
certain potentially catastrophic flaws in Ĥ can be overcome
by the TAMER+RL algorithms.

Reinforcement Learning

Here we introduce reinforcement learning (RL) with a focus
on the nature of MDP reward.

We assume that the task environment is a Markov decision
process specified by the tuple (S, A, T , γ, D, R). S and A
are respectively the sets of possible states and actions. T is
a transition function, T : S × A × S → R, which gives the
probability, given a state and an action, of transitioning to
another state on the next time step. γ, the discount factor,
exponentially decreases the value of a future reward. D is
the distribution of start states. R is a reward function, R :
S×A×S → R, where the reward is a function of st, a, and
st+1.

Reinforcement learning algorithms (see Sutton and Barto
(1998)), seek to learn policies (π : S → A) for an MDP
that maximize return from each state-action pair, where
return =

∑t
t=0 E[γtR(st, at)]. In this paper, we fo-

cus on using value-function-based RL methods, namely
SARSA(λ)(Sutton and Barto 1998), to augment the TAMER-
based learning that can be done directly from a human’s re-
inforcement signal.

The MDP Reward Signal. The reward signal within an
MDP is often characterized as sparse and delayed. A typi-
cal reward signal is sparse because discriminating reward is
rarely received (e.g., an episodic domain in which all non-
terminal transitions receive -1 reward). It is delayed because
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actions may not affect the immediate reward signal, instead
merely building towards later feedback. From this impover-
ished informational signal, value-function-based reinforce-
ment learning agents learn estimates of return to combat the
signal’s sparse and delayed character.

However, MDP reward can be described as flawless by
definition; along with the transition function, it determines
optimal behavior — the set of optimal polices that, for each
state, choose the action with the highest possible return.

The TAMER Framework for Interactive

Shaping

This section introduces the TAMER framework and moti-
vates it by contrasting human reinforcement with MDP re-
ward. TAMER circumvents the sparse and delayed nature of
the MDP reward signal by replacing it with a human reward
signal. Though flawed, human feedback can be exploited to
learn good, if not optimal, behavior more efficiently (Knox
and Stone 2009).

The TAMER Framework is an approach to the Shaping
Problem, which is: given a human trainer observing an
agent’s behavior and delivering evaluative reinforcement
signals, how should the agent be designed to leverage the
human reinforcement signals to learn good behavior? A for-
mal definition can be found in Knox and Stone (2009). For
research, the Shaping Problem is restricted to domains with
a predefined performance metric to allow experimental eval-
uation. However, shaping will also be helpful when no met-
ric is defined, as would likely be the case with an end-user
training a service robot.

The Human Reinforcement Signal

To motivate TAMER’s approach to shaping, we first con-
sider what information is contained in the human reinforce-
ment signal and how it differs from an MDP reward sig-
nal. When a human trainer is observing an agent’s behav-
ior, he has a model of the long-term effect of that behavior.
Consequently, a human reinforcement signal is rich, con-
taining information about whether the targeted behavior is
good or bad in the long term. Further, human reinforcement
is delayed only by how long it takes the trainer to evalu-
ate the targeted behavior and communicate the evaluation.
Therefore, unlike MDP reward, human reinforcement is not
sparse1 — each reinforcement fully discriminates between
approved and disapproved behavior — and it is only triv-
ially delayed. This insight is the foundation of TAMER.

We note, though, that human reinforcement is, in general,
fundamentally flawed. Humans make mistakes, often have
low standards, get bored, and have many other imperfec-
tions, so their evaluations will likewise be imperfect.

The TAMER Approach

Following the insight above, TAMER dismisses the credit as-
signment problem inherent in reinforcement learning. It in-
stead assumes human reinforcement to be fully informative
about the quality of an action given the current state. TAMER

1However, human reinforcement can be sparsely delivered.

uses established supervised learning techniques to model a
hypothetical human reinforcement function, H : S × A →
R, treating the feedback value as a label for a state-action
sample.2 The TAMER framework is agnostic to the specific
model and supervised learner used, leaving such decisions
to the agent’s designer, though we conjecture that certain
model characteristics are desirable (2009).

To choose actions within some state s, a TAMER agent
directly exploits the learned model Ĥ and its predictions of
expected reinforcement. A greedy TAMER agent chooses ac-
tions by a = argmaxa[Ĥ(s, a)].

Previous TAMER Results and Conclusions

We previously (2009) implemented TAMER agents for two
contrasting domains: Tetris and Mountain Car. They com-
pared the learning curves of the TAMER agents with various
autonomous agents (i.e., reinforcement learning agents). In
both domains, the shaped agents strongly outperformed au-
tonomous agents in early training sessions, quickly exhibit-
ing qualitatively good behavior. As the number of train-
ing episodes increases, however, many of the autonomous
agents surpass the performance of TAMER agents. This pa-
per aims to combine TAMER’s strong early learning with the
often superior long-term learning of autonomous agents.

Simultaneous RL + TAMER

In the sections “The MDP Reward Signal” and “The Human
Reinforcement Signal”, we concluded that MDP reward is
informationally poor yet flawless, whereas human reinforce-
ment is rich in information yet flawed. This observation fits
the aforementioned experimental results well. With a richer
feedback signal, TAMER agents were able to learn much
more quickly. But the signal was flawed and TAMER agents,
in some cases, plateaued at lower performance levels than
autonomous learning agents.

The TAMER framework does not use MDP reward. This
characteristic can be a strength. It allows users to fully deter-
mine the goal behavior without defining and programming a
reward function. However, it can also be a weakness. When
the goal behavior is previously agreed upon and a reward
function is available, a TAMER agent is ignoring valuable
information in the reward signal — information which com-
plements that found in the human reinforcement signal.

In this paper, we ask how an agent can effectively learn
simultaneously from two feedback modalities — human re-
inforcement signals and MDP reward — in one fully in-
tegrated system. More specifically, we seek to use a fre-
quently updated model of expected human reinforcement,
Ĥ , learned by a TAMER algorithm, to improve the learning
of a reinforcement learning algorithm.

In previous work (Knox and Stone 2010), we examined
a different learning scenario which begins with the human

2In domains with frequent time steps (an approximate rule for
“frequent” is more than one time step per second), the reinforce-
ment is weighted and then used as a label for multiple samples,
each with one state-action pair from a small temporal window of
recent time steps. We previously (2009) described this credit as-
signment method in detail.
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training an agent using only the TAMER framework. Then,
the trainer leaves, after which Ĥ is constant, and a rein-
forcement learning algorithm, SARSA(λ), takes over. For
this paper, we will call this scenario consecutive learning.
We previously tested and analyzed eight plausible meth-
ods for combining Ĥ with SARSA(λ) to improve learn-
ing. When pessimistically initializing Q, four of these eight
methods were found to outperform SARSA(λ) alone in both
cumulative reward and final performance level for Ĥs from
two trainers of differing training ability (expert and aver-
age). These four methods also outperformed both of the
corresponding TAMER-only agents, which greedily choose
argmaxa[Ĥ] on each of the two unchanging Ĥ functions,
in final performance level and outperformed the agent us-
ing the average Ĥ in cumulative reward. For this paper, the
constraints of learning simultaneously makes one of the four
techniques impractical. Two other techniques are quite sim-
ilar, so we do not investigate the one that performed more
poorly. In the following section, we describe the two re-
maining techniques adapted that are built upon in this paper
for simultaneous TAMER+RL.

Simultaneously learning from human reinforcement and
MDP reward presents certain challenges beyond those ad-
dressed in our previous work, in which the agent learned
from the two signals in separate, consecutive learning ses-
sions. The following subsections describe the general algo-
rithmic contributions of TAMER+RL in the context of some
of these challenges.

Combination techniques

Two of the methods that are successful for consecutive learn-
ing are adapted to perform simultaneous learning and inves-
tigated in this paper:

• R′(s, a) = R(s, a)+(weight∗ Ĥ(s, a)). Here, the MDP
reward is replaced with the sum of itself and the weighted
prediction of human reinforcement. Augmenting the
MDP reward signal in this fashion is called shaping re-
wards in the RL literature (Dorigo and Colombetti 1994;
Mataric 1994), so we will call it the shaping rewards
method.

• a = argmaxa[Q(s, a) + (weight ∗ Ĥ(s, a))]. The
weighted prediction of human reinforcement is added
to Q(s, a) only during action selection. This technique
biases action selection towards those actions that have
higher expected human reinforcement. We will call it the
action biasing method.

We discuss the weight used in each technique in the sec-
tion below entitled “Determining the immediate influence of
Ĥ”.

Reward shaping in terms of the Bellman equation The
goal of SARSA(λ) and many other reinforcement learning
algorithms is to learn the expected return, which for a state
action pair is Q(s0, a0) =

∑t
t=0 E[γtR(st, at)]. When

shaping rewards by Ĥ , this equation changes to Q(s0, a0) =∑t
t=0 E[γt(R(st, at)+Ĥ(st, at))], which is equivalent to

Q(s0, a0) =
∑t

t=0 E[γt(R(st, at)]+
∑t

t=0 E[γtĤ(st, at)]
(we will leave the weight out of the equations to increase
readability). Therefore, learning from shaping rewards can
be seen as learning a different Q function for each signal:
Q = QR +QĤ .

Action biasing in terms of the Bellman equation
For shaping rewards, the discount factors of the re-
turns for the two signals are equivalent. If the dis-
count factor of QĤ , γĤ , is zero, then QĤ(s0, a0) =
∑t

t=0 E[γt
Ĥ
Ĥ(st, at)] =Ĥ(s0, a0)]. Therefore, Q = QR +

Ĥ . If Ĥ is known to the agent (as it is for a TAMER agent),
then only QR needs to be learned and no part of its error
will come from the known Ĥ component. Thus, greedy ac-
tion selection for γĤ = 0 yields a = argmaxa[Q(s, a) +

Ĥ(s, a)], which is our action biasing method.
Since MDPs typically have discount factors at or near one,

shaping rewards and action biasing can be seen as two ex-
tremes along a spectrum of possible γĤ values.

Determining the immediate influence of Ĥ

One constraint we adopt is that the combination technique
must not change the set of optimal policies in the limit, long
after the human quits training. For consecutive learning,
annealing the magnitude of Ĥ’s influence was sufficient to
achieve this constraint. However, simultaneous learning al-
lows human trainers to insert themselves at any point of the
learning process. Consequently, the influence of Ĥ , which
manifests as the weight in both techniques, should increase
and decrease flexibly by some principled method that relies
on the history of human reinforcement.

The method we developed for determining the influence
of Ĥ is an adaptation of the eligibility traces often used in
reinforcement learning (Sutton and Barto 1998). We will
refer to it as the Ĥ-eligibility module. The general idea of
this Ĥ-eligibility module is that we maintain a set of eligi-
bility traces which, for any state, roughly measure the recent
frequency of human feedback in that state and similar states.
That measure, multiplied by a predefined constant, is used as
the weight term in the action biasing and shaping rewards
methods. The implementation follows.

Let −→e be the vector of eligibility traces used to weight
the influence of Ĥ . Let −→f be the feature vector (of fea-
tures that generalize across states) extracted from the current
state-action pair, and let −→fn be −→

f normalized such that each
element of −→fn exists within the range [0, 1].

Our Ĥ-eligibility module is designed to make weight

a function of −→e , −→
fn, and constant scaling factor cs with

range [0, cs]. The guiding constraint for our design is that
if −→e equals the vector −→

1 , then the normalized dot prod-
uct of −→e and any −→

fn, denoted n(−→e ·−→fn), should equal 1
(since it weights the influence of Ĥ). To achieve this, we
make n(−→e ·−→fn) = (−→e · (−→fn / ‖ −→

fn ‖1) = (−→e ·−→fn) /
(‖ −→

fn ‖1) = weight / cs. Thus, at any time step with
normalized features −→

fn, the influence of Ĥ is calculated as
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weight = cs(−→e ·−→f )/(‖ −→
fn ‖1).

The eligibility trace is updated with −→
fn when human re-

inforcement is received. Using replacing traces, the update
with reinforcement is ei := max(decayFactor ∗ ei, fn,i),
where ei and fn,i are the ith elements of −→e and −→

fn, respec-
tively. At time steps when no human reinforcement is re-
ceived, −→e := decayFactor ∗ −→e .

Experiments

In this section we present our tests of each combination tech-
nique. As a testbed for TAMER+RL, we use an MDP called
the Mountain Car domain, adapted from the version within
RL-Library(Tanner and White 2009). Mountain Car consists
of an agent-controlled car which starts between two hills and
must go back and forth to gain enough momentum to reach
the top of one of the hills. There are two continuous state
variables, position and velocity, and three possible actions:
+c or −c acceleration and no acceleration. At every tran-
sition to a non-terminal state, the agent receives −1 MDP
reward, and the discount factor is one.

For our RL algorithm, we use SARSA(λ) with gradient
descent over a linear model of Gaussian RBFs, which is
known to perform well in Mountain Car (though more ef-
fective algorithms do exist). For TAMER+RL, we pessimisti-
cally initialize the Q function to output approximately -120
for all state-action pairs, which we found to be beneficial
in our previous work on consecutive learning. We note that
our goal for this paper is not to study the interaction be-
tween TAMER and different RL algorithms but rather to es-
tablish that they can be integrated effectively into one learn-
ing agent and to study the two most promising known ways
for doing transfer from Ĥ to an RL algorithm. We have
no reason to expect qualitatively different results with other
value-function based RL algorithms, but we will investigate
possible differences in future work.

To model the human reinforcement function H via
TAMER during simultaneous learning, we chose k-nearest
neighbors, where k is

√
d for d samples, to model H(·, a) for

each action (that is, three separate models). We set Moun-
tain Car to run at seven time steps per second and used the
credit assignment technique described in past work (2009)
to account for delays in human reinforcement. The con-
stant scale factors, described previously in the section “De-
termining the immediate influence of Ĥ”, for action biasing
and reward shaping are 100.0 and 10.0, respectively. These
were the largest factors shown to be successful in consecu-
tive learning; greater size gives more influence to Ĥ , making
the TAMER+RL agent more responsive to the human trainer.
The decay factor from the same section was 0.9998, which
decreases the weight of Ĥ’s influence by a factor of approx-
imately 0.1 over 100 episodes.

In this paper, we seek to demonstrate simultaneous
TAMER+RL agents that can benefit from human reinforce-
ment from a trainer with domain expertise. More specifi-
cally, the agents should be able to benefit from training at
any point along the learning curve. In our experiments, the
agents learn for 500 episodes. Two trainers, each a coau-

thor of this paper with domain expertise, start training after
0, 20, and 60 episodes and stop 10 episodes later.3 That is,
SARSA(λ) learns without any TAMER-based changes until
the start time. We recorded 10 sessions for each start time,
combination technique, and trainer combination (trainer T1
or T2), yielding 120 10-episode sessions. Every agent in
each start time group experienced the same sequence of
starting states at each episode. For comparison, we also
ran optimistically and pessimistically initialized SARSA(λ)
agents for 50 runs of 500 episodes. To achieve a range of
agent performances, each of the 50 runs had different start
sequences.4

Results and Discussion

In this section, we summarize and discuss our experimen-
tal results. The results under both trainers were qualitatively
identical, so we talk about their combined results as one.
We consider both cumulative reward over all 500 episodes
and final performance, as seen over the last 100 episodes, to
each be measures of a technique’s success. Figure 1 shows
our results with respect to each of these two measures. In
both, action biasing performs significantly better than either
optimistically or pessimistically initialized SARSA(λ)at all
start times (contrary to the appearance of the cumulative bar
graph in Figure 1, the confidence interval of T2’s “AB, S60”
training does not overlap with that of optimistic SARSA(λ)).
Shaping rewards performs worse, though not always signif-
icantly so.5

Figure 2 shows learning curves for the experimental con-
ditions. The learning curves show that action biasing quickly
improves the performance of the TAMER+RL agent upon
the start of training. Shaping rewards also improves per-
formance, but then within 50 episodes after training ends,
the performance of shaping rewards plummets and does not
recover for approximately 100 episodes.

The success of action biasing and the failure of shaping
rewards have interesting implications. Specifically, the way
that shaping rewards fails — some time after training ends
— is telling. The QĤ that is learned during and shortly after
training improves or at least does not hurt the policy, but 50
episodes later, the effect of QĤ is catastrophic. What occurs
between those two periods is temporal difference bootstrap-
ping on Ĥs output. Thus, our data suggests that human re-

3These start times are representative of three qualitative points
along the curve: before learning, a mediocre policy, and a good but
still imperfect policy.

4Because of the difference in starting states between trained
agents and SARSA(λ)-only agents, the TAMER+RL agents end
up performing better before training (in the 20 and 60 start time
groups) than the mean of the similarly pessimistic SARSA(λ)
agents. For the 20 group and 60 group, this difference in total pre-
training reward impacts the mean reward over 500 episodes by -1.4
and -2.5, respectively. Adding these values to the respective means
of TAMER+RL groups changes the qualitative results in only one
respect: the confidence intervals of optimistic SARSA(λ) and the
60 group of action biasing begin to overlap a bit.

5One training session for shaping rewards was removed because
the trainer could not get the agent to the goal after 2500 time steps
and the session was stopped.
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Figure 1: The mean reward received per episode over 20 training
sessions of 500 episodes for both techniques — shaping rewards
(SR) and action biasing (AB) — starting training at three differ-
ent times. The top graph shows the mean over all 500 episodes,
and the bottom graph shows the mean over the last 100 episodes,
allowing us to assess final performance of each condition. The per-
formance of SARSA(λ) under optimistic and pessimistic initial-
ization is shown for comparison. Error bars show 95% confidence
intervals, assuming that mean reward over a run is normally dis-
tributed.

inforcement should not undergo the same level of bootstrap-
ping as MDP reward. That is, the discount factors used to
define QR and QĤ should differ. In a sense, the correspond-
ing performances of our two techniques further vindicate a
large assumption of TAMER — that an agent being shaped
should choose based on immediate expected reinforcement,
not its return. However, it is possible that a small discount
factor could aid TAMER-only learning.

For each training session, we also calculated the
mean TAMER-only performance given by choosing action
argmaxaĤ(s, a), as an exploiting TAMER agent would.
Some of the TAMER-only agents performed well most of
the time but looped infinitely from certain start states, never
reaching an absorbing state at the goal. Considering this,
the TAMER+RL agents clearly outperform the TAMER-only
agents in the mean. More interesting, though, is a compar-
ison of TAMER+RL techniques under the few training ses-
sions that produce Ĥs that yield infinitely looping TAMER-
only agents with those TAMER+RL techniques under the ses-
sions which produce TAMER-only agents which can reach
the goal. Table 1 shows that these two categories did not
differ noticeably — differences from the technique used or
the start time had much larger effects. Thus, through the
interaction of SARSA(λ) with flawed Ĥs, the TAMER+RL
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Figure 2: Learning curves (smoothed) of the mean reward per
episode over 20 training sessions by trainer T1 for both techniques
— shaping rewards (SR) and action biasing (AB) — starting train-
ing at three different times. Vertical dashed lines show the 20th and
60th episode marks.

algorithm was able to improve from the effective aspects of
Ĥ while not being noticeably hurt by the aspects that sug-
gest an infinitely bad policy.

Related work

In this section, we situate our work within previous research
on transferring knowledge to a reinforcement learning agent.
For a review of learning from human reinforcement without
MDP reward, see the main TAMER paper shortcitekcap09-
knox. For a full review of knowledge transfer to an RL
agent, including methods unrelated to this paper, see our pre-
vious work (2010).

Transferring from a human

In the only other example of real-valued human rein-
forcement being incorporated into reinforcement learning,
Thomaz & Breazeal (2006) interfaced a human trainer with
a table-based Q-learning agent in a virtual kitchen environ-
ment. Their agent seeks to maximize its discounted total re-
ward, which for any time step is the sum of human reinforce-
ment and environmental reward. Their approach is a form
of shaping rewards, differing in that Thomaz & Breazeal di-
rectly apply the human reinforcement value to the current re-
ward (instead of modeling reinforcement and using the out-
put of the model as supplemental reward).

Imitation learning, or programming by design, has also
been used to improve reinforcement learning (Price and

Table 1: Mean TAMER+RL reward (rounded) by corresponding
TAMER-only policy. Under a TAMER-only policy, goal-reaching
Ĥs eventually reach an absorbing state at the goal from every tested
start state, whereas infinitely looping Ĥs will never reach the goal
when starting at certain states.

TAMER-only Shaping Rewards Action Biasing

policy 0 20 60 0 20 60

Goal-reaching -138 -141 -131 -98 -102 -104

Inf. Looping -137 -162 -135 -99 -103 -103
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Boutilier 2003). Another agent provides demonstrations
from its policy while the agent of concern observes and
learns, a technique that is related to action biasing. An ad-
vantage, though, of action biasing over demonstration from
a policy is that action biasing with Ĥ can gently push the be-
havior of the RL agent towards the policy of a TAMER-only
agent, whereas pure demonstration is all or nothing — either
the demonstrator or the learning agent chooses the action.
Natural language advice has also been applied to reinforce-
ment learning (Kuhlmann et al. 2004).

Transferring from other sources

To the best of our knowledge, transfer learning for reinforce-
ment learning typically focuses on how to use information
learned in a source task to improve learning in a different
target task. Our type of transfer differs: the task stays con-
stant and we transfer from one type of task knowledge (an
Ĥ function) to a different type (a Q function). Additionally,
in simultaneous TAMER+RL, knowledge is transferred even
before it has been fully captured.

Other forms of transfer can occur within the same task.
Shaping rewards (Dorigo and Colombetti 1994; Mataric
1994) is changing the output of the reward function to learn
the same task, as we did in Method 1. The difference of the
shaped reward function and the original one can be seen as
the output of a shaping function (Ĥ in our case). With a
few assumptions, Ng et al. (1999) prove that such a function
f , if static, must be defined as f = φ(s′) − φ(s), where
φ : S → R, to guarantee that shaping the reward func-
tion will not change the set of optimal policies. Our shaping
rewards method anneals the output of its shaping function,
avoiding Ng et al.’s theoretical constraint.

Conclusion

In previous work (Knox and Stone 2010), we started with
eight plausible techniques for creating a TAMER+RL algo-
rithm that learns form both human reinforcement and MDP
reward. Four were successful in consecutive learning. Of
those four, two were inappropriate for simultaneous learn-
ing. This paper examines those two remaining and finds that
one of them, action biasing, clearly improves on the solo
performance of the reinforcement learning algorithm. We
hypothesize similar results for other domains and other in-
cremental, temporal difference learning algorithms, and we
will be interested to see the results as we expand the tech-
niques of this paper to other tasks and algorithms.

This paper presents two novel algorithms, the first to cre-
ate a predictive model of human reinforcement while simul-
taneously using that model to guide a reinforcement learn-
ing algorithm. Our experiments show that the combination
method within one of the algorithms, action biasing, sig-
nificantly improves performance of the tested reinforcement
learning algorithm, SARSA(λ), in the testbed domain.

One aim of this paper is to create practical tools with
which designers of reinforcement learning agents can cap-
ture human knowledge to increase the performance of their
agents. With that in mind, both algorithms follow three con-
straints: the techniques are independent of the representa-

tion of Q and Ĥ , the parameters of the RL algorithm do
not change from those found to be optimal for SARSA(λ)
during parameter tuning, and when the human trainer stops
giving feedback, the influence of Ĥ diminishes with time.

We will continue to push forward on creating learning
agents that can learn from human reinforcement, testing our
findings within other domains, and examining the combina-
tion of TAMER with other reinforcement learning algorithms.
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