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Abstract 
Effective communication is often required for agents to 
properly handle collaborative multi-agent tasks. This is 
particularly true when humans are working alongside 
synthetic agents and traditional wireless communication 
modes are impractical.  A framework for communication 
must allow for both explicit communication, where actions 
are directly execute to convey information, and implicit 
communication, where the agent projects information 
indirectly as a consequence of actions taken to achieve the 
tasks.  We propose a Theory of Mind-based approach to 
communication that allows an agent to reason about its own 
state, the states of the other agents, and the other agents’ 
beliefs about each other’s state. 

 Introduction   

Communication is often required between agents as they 
attempt to solve collaborative multi-agent tasks. This is 
particularly true in conditions in which an agent is working 
alongside a human—clearly, conventional electronic 
communication is not feasible in this scenario; rather, these 
agents, including humans, must take advantage of physical 
communication in the shared context to confer necessary 
information. As an agent observes the actions of the others, 
it must modify its own behavior accordingly.  
 We examine the use of communication between 
multiple, potentially heterogeneous, agents, including 
people, during performance of a coordinated task as a 
mechanism for transmitting data. Each agent must monitor 
both implicit communication (in which an agent infers the 
intentions of other agents given observable actions) and 
explicit communication (in which an agent issues or 
receives spoken commands, gestures, or other directed 
communication). Since the physical signaling modalities of 
robotic agents and humans may be significantly different, 
we investigate signaling models that exploit the shared  
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Background 

Collaborative scenarios are those in which two or more 
agents are working together to achieve one or more shared 
goals. The study of human-machine collaboration has 
largely been motivated by the goal of developing systems 
capable of estimating or predicting the intentions of a user 
and modifying or adapting behavior to improve task 
performance or user satisfaction. Collaboration in general, 
human-robot collaboration, and other related topics have 
all been previously investigated to varying degrees. 

Human Collaboration 
It has been demonstrated that people have a tendency to 
adapt both their linguistic representations and physical 
actions in response to those they are interacting with, i.e., 
they tend to formulate behavior and speech that will be 
salient and sensible to a collaborating partner (Whittaker 
2003). Collaboration in humans occurs via a process in 
which people align their linguistic representations of the 
environment allowing for more effective communicative 
behavior. This alignment is achieved via a process in 
which local alignment of environmental representations, 
i.e., specific speech and gesture, are implicitly adopted and 
propagated to global representations via a priming 
mechanism (Pickering04). There is however some debate 
over how deeply people model their interaction partners 
and how they integrate with language and gesture 
production (Hanna04). 

Human-Machine Collaboration 
Prior work on human-machine collaboration includes 
approaches from human-computer and human-robot 
interaction as well as cognitive science and linguistics. 
There is an extensive body of work on top-down 
deliberative approaches aimed at establishing and 
maintaining alignment to assure coherent discourse (Grosz 
1999). There has also been extensive work on applying 
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perspective-taking and theory of mind-inspired models to 
allow a robot to recognize intentional behavior through 
observation (Crick 2008, Kelley 2008, Ullman 2010). 
Work by Breazeal and Hoffman has demonstrated the 
ability for a robot to learn simple tasks through human 
tutelage and collaborate effectively via turn-taking or pre-
emptive action. 

Approach and Discussion 

In order to effectively coordinate a robot’s actions with 
those of its human counterpart, the robot must be able to 
accurately estimate the human’s planned actions from the 
context or from explicit communication. Analogously, the 
robot must be able to effectively convey its planned actions 
clearly to a human.  
 To accomplish this we propose a Theory of Mind-
inspired model in which the robot contains estimates of its 
own state, the state of third parties, and those third parties’ 
estimates of the robot’s state. These states contain 
information relevant to the task including a world model 
and a partial task allocation i.e. assignments of various 
agents to sub-tasks. Previous work has demonstrated the 
viability of similar frameworks to learn social skills such 
as deictic reference and joint attention from the bottom up 
(Scasselati 2002). Our work is aimed instead at integrating 
social communication with task control, learned or 
otherwise, to support coordination in collaborative 
environments. This specific context allows for the 
simplifying assumption of a shared goal among all 
participants and enables the robot to evaluate other’s 
actions using its own task controller to determine whether 
planned policies are aligned and detect assistive 
opportunities i.e. when things go wrong. One existing 
approach to perspective taking is employed in (Breazeal 
2009) where transformed sensor input is used to learn tasks 
by demonstration and participate in a turn-taking game.  
 Given this framework, the agent can consider the 
consequences of its actions, both in terms of manipulating 
the environment as well as conveying information to the 
collaborative partners. Modeling sub-goal dynamics allows 
the robot to convey information implicitly to the 
collaborative agent by using its spatial positioning to 
project the information. In addition, it can compare the 
estimates of itself with that of others to: detect and handle 
discrepancies, identify assistive situations, and recognize 
agents using a different plan than itself potentially allowing 
it to adapt to or instruct others. Finally, this framework 
allows the robot to explicitly communicate information by 
selecting actions such as gesturing and vocalization. 
 We consider a probabilistic approach to reasoning over 
this framework (Kaelbling 1998).  The agent maintains a 
probabilistic belief over its own state, over the states of the 
third parties, and over the third party estimates of the 
robot’s state.  This allows it to perform robust decision-
making given environment noise, uncertainty in the 
estimates of its own state, the state of others, and the 
potential outcomes of its actions.   

 This approach will be validated on a challenging 
cooperative task involving a humans and robots, possibly 
multiple agents of each, who must communicate 
effectively to achieve a collaborative goal in a very 
dynamic environment.  We will demonstrate the ability of 
the framework to capture both the implicit and explicit 
communication required to complete the task. Since the 
system will be targeted mainly at human-robot interaction 
and may rely on detailed sensory information about the 
human such as head direction estimates, it is unlikely to 
scale for scenarios with many people or where the number 
of humans is much greater than the number of robots. 
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