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Abstract 
Puck Clustering, a particularly widely studied problem 
domain for self-organized multi-robot systems, involves 
gathering spatially distributed objects, called pucks, into 
piles within a planar workspace. Structures in the 
environment (partially formed clusters) encode information 
about where clusters should be formed, and their positions 
are involved in the mechanics of subsequent cluster 
formation.  In this paper, we consider questions regarding 
the spatial distribution of robots and clusters, and their 
relation to the boundaries of the workspace. Prior theoretical 
analysis has assumed a uniform distribution of robots for 
gathering all objects into a single pile. Yet, in some 
instances, a disproportionate amount of time may be spent 
by robots on the boundary.  Also, others have documented 
that the boundary can cause cluster growth itself.  This 
paper considers the problem of clustering square boxes in 
the center of the workspace. The flat edges of these objects 
appear to exacerbate the affinity for cluster growth near 
boundaries.  However, by exploiting the shape of our 
objects, we show that novel "Twisting" and "Digging" 
operations overcome this effect and enhance production of 
central clusters.  We analyze the dynamics of boundary 
versus central puck clusters, and investigate how the spatial 
distribution of the robots changes along with the clustering 
process: showing stark differences between the standard 
mode of clustering and the mode we introduce here. 

Introduction   
The term stigmergy was originally coined by Grassé to 
explain his observations of the nest building behavior of 
wasps and how they introduce local environmental changes 
that then influence the subsequent construction behavior 
(Grassé, 1959). As a design principle, the concept places 
an emphasis on indirect communication between agents: 
each agent modifies and senses the shared environment 
locally rather than employing radio or audio 
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communication channels. Starting with Beckers, Holland 
& Deneubourg (1994) several studies of minimalist multi-
robot systems have been conducted in order to explore the 
utility of this idea for synthetic systems, and to assess the 
role it might play in natural systems. 
 The most common task domain for robotic study of 
these effects is self-organized object clustering. This 
involves several robots collecting spatially distributed 
objects and moving them into a few piles. This paper 
continues the tradition by conducting an experimental 
examination of a clustering task by simple mobile robots. 
We tackle the problem of clustering square objects, rather 
than the more common cylindrical ones. Additionally, our 
study specifically emphasizes the importance of forming 
clusters in the center of the workspace. We first consider 
the clustering behavior of a straightforward 
implementation of the standard algorithm clustering, but 
with the new object geometry. The algorithm consists of 
two behaviors, each of which exploits the non-cylindrical 
object geometry. We consider boundary effects that cause 
not only cluster growth itself, but an imbalanced amount of 
time spent by robots on the boundary. We propose two 
new operations, twisting and digging motions, in order to 
overcome the boundary effect and to improve production 
of central clusters.  This paper will go over the operations 
in detail and show how the development and position of 
clusters changes the structure of the configuration for both 
central clusters and boundary clusters; this feedback effect 
where robots can move, and the dynamics of the clusters 
themselves.  

Motivation & Related Work 
The robotics literature contains several influential ant-
inspired algorithms for object clustering and related tasks.  
Beckers et al. (1994) presented a series of object clustering 
experiments with multiple robots. Holland & 
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Melhuish (1999) later examined the use of stigmergy and 
self-organization in a homogeneous group of physical 
robots in spatial sorting, a generalization of the clustering 
task. Sorting includes an additional requirement that 
different object types be sensed and placed in positions that 
depend on the detected type. Kazadi, Abdul-Khaliq & 
Goodman (2002), along with providing a review of work 
until that date, introduce a theoretical analysis of clustering 
systems through a characteristic function that describes 
cluster growth properties. We examine empirically 
determined instances of this function below.  More 
recently, Parker and Zhang (2006) examined a site 
preparation task in which their approach has several 
elements of the original clustering algorithms: simple 
robots employ a threshold-based sensing system in order to 
push several items. The force threshold is exceeded once 
piles of a sufficient size have been created. That work, and 
research in the multi-robot construction domain using 
square building-blocks (e.g., Jones & Mataric' (2004)) 
suggest that if such minimalist systems are to be used, a 
broader class of objects should be clustered. 
 This work was motivated by a video produced by 
Vaughan's Autonomy Lab at Simon Fraser University, 
which showed that iRobot Create robots executing their 
default demonstration behavior would cluster the square 
boxes they were shipped in (Autonomy Lab, 2007). 
Clusters were successfully created but, even superficially, 
the clusters formed in the video looked different from 
those described in the literature.  The square shaped objects 
seemed to exacerbate boundary effects since many clusters 
were mostly located on the workspace perimeter.   

Materials & Methods 

Materials 
We employed a minimalist multi-robot system: simple 
control algorithms, few sensors and no explicit 
communication suffice to produce cooperative box pushing 
and cluster formation. We conducted experiments using the 
iRobot Create platform which are equipped with two 
wheels operated via a differential drive mechanism and a 
passive caster. This permits the robot to move forward, or 
backward, perform turns while moving, and also to turn in 
place. The robot has left and right bumpers that are used to 
detect the presence of objects in front of the robot. The 
bumpers operate independently and are only depressed 
when the force against them exceeds a threshold. The robot 
has a single IR sensor on its right side, which is used for 
sensing the distance to the wall on that side of the robot 
and enables it to perform simple wall following. Unlike the 
majority of the existing work, the robots do not have 
specially shaped scoop, or shovel, for manipulating the 

objects used for clustering. We consider square boxes 
whose size is 35cm×35cm, similar to a robot’s size (about 
30cm in diameter), as the object for clustering. The boxes 
have the following crucial property: two boxes together 
have sufficient mass to depress the bumper although an 
individual box is inadequate to activate the sensor. Like 
much subsequent work by the Melhuish and his 
collaborators, we consider an octagonal shaped arena. In 
our experiments it is 4.5m ×4.5m; a square arena would 
result in square boxes getting stuck in the 90° corner. 
Figure 1 shows the initial configuration of boxes and 
robots used in our experiments. 
 

 
Figure 1. Box separating progress by twisting mode 

Motion Strategies 
We first implemented a strategy based on examples in the 
literature, called the basic mode. After evaluating the 
performance of this approach (see the following section) 
we introduced a new approach we call the mixed mode, so 
named because it involves two complementary behaviors 
that the robots in the group execute concurrently. These 
two behaviors twisting and digging are described below. 
We stress that both are simple modes of operation, and 
since a single box is effectively invisible, both overcome 
partial sensor blindness through open-loop control 
strategies. These local rules depend on the geometry of the 
objects being clustered: manipulation and contact uses the 
shape and size of the items under consideration, 
configuration of the boxes depends on the packing, itself a 
function of the item geometry.  
Basic Mode 
Robots employ their bumpers in order to avoid any object 
that they encounter which they cannot push easily. The 
robot’s bumpers only detect box clusters, other robots and 
walls. In the basic mode, the robot drives straight, and if 
anything depresses it, it will make a random turn. The logic 
is below: 
 
Rule 1: 
if ( Left Bumper pressed  or  Right Bumper pressed ) then 
    Make a random turn and go forward 
 
Rule 2: 
    Go forward 
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Twisting Mode 
When a robot operates in the twisting mode, it attempts to 
detach boxes from the wall following a series of motions. 
The algorithm in the twisting mode is detailed below. 
 
Rule 1 : 
if ( Left Bumper pressed  or  Right Bumper pressed ) then        
     if ( Timer is on ) then 
        Rotate and push the object 
        Disable timer  
    else  
       Make a random turn and go forward 
 
Rule 2 : 
if ( Wall is detected and Timer is off ) then 
    Enable timer 
    Follow the wall 
 
Rule 3: 
   if ( Timer is on ) then 
        Follow the wall 
        Reduce timer 
        if ( Timer has timed out ) then 
            Rotate and push the object 
 
The idea is that a single robot’s twisting motion is able to 
strike a box at 45º (which it does for 3 seconds). The box is 
rotated through this motion. Other robots that subsequently 
contact the twisted box will, through repeated contacts, 
completely detach it from the wall. At best, two trials will 
affect this operation, which itself is sufficient to increase 
the likelihood of central clusters. Since the bumper will not 
be pressed if there is a single box at the boundary, the 
robot will simply keep pushing the box. In this case the 
box is pushed into a corner of the arena.  
 

 
Figure 2. Box separating progress by twisting mode 

 

 Since it can be counter-productive to continue wall 
following, the robot uses a timer to follows the wall for a 
maximum of 5 seconds. The robots’ action in the interior 
of the arena is the same as the basic mode. Figure 2 shows 

that that these modifications do indeed separate the boxes 
from the wall. 
Digging Mode 
Although the twisting mode alone was able to produce 
central clusters, the majority of the boxes remained close to 
the boundary. Thus, we developed a “digging mode” to 
improve separation of the boxes from the wall. The main 
purpose of this mode is to collect twisted boxes from the 
walls; it does this by having the robot steadily follow the 
wall. This method increases the probability that a robot 
will contact a box and separate the box from the wall. The 
robot finds a wall by moving in a curved path. The details 
are below. 
 
Rule 1 : 
if ( Left Bumper pressed  or  Right Bumper pressed ) then        
     if ( timer is on ) then 
        Rotate and push the object 
        Disable timer  
    else  
       Make a random turn and go forward 
   
Rule 2 : 
if ( Wall is detected  and  Timer is off ) then 
    Enable timer 
    Follow the wall 
 
Rule 3: 
 if ( Timer is on ) then 
        Follow the wall 
else 
        Move along curved arc  
 
 After the twisting mode introduces a gap between the 
boxes and wall, a digging mode robot increases this 
separation from the wall. No timer is employed during wall 
following, increasing the probability that the robot will 
make contact with a box on the wall. If there is an object in 
front of the robot in digging mode, the robot moves 
identically to twisting mode. 

Experiments & Analysis  
Execution & Resulting Cluster Dynamics 
We conducted three 90 minute long trials with the both 
basic and mixed modes. The trials were videotaped and 
hand annotated by considering frames every 5 seconds. 
Figure 3 shows the development and changes in the 
number of boxes in each cluster over time for each mode. 
Boundary clusters are presented with dash bars in the 
graphs, and ‘(B)’ is attached as their legend identifier. 
Solid bars indicate central clusters. In all cases, a cluster 
was defined as a group of more than three boxes, each 
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being adjacent to at least one other. Boundary clusters are 
distinguished by having at least one box touching a 
boundary wall.  
    Employing the basic mode, the robots failed to gather all 
objects into a central cluster each time. Nor was a single 
complete cluster (having all the boxes) formed on the 
boundary in any of the trials. Notice, however, that several 
central clusters were formed initially. Continuous 
collisions with robots resulted in them being broken down 
within 15 minutes. By the end of the allotted time, no 
central cluster had formed, while several boundary clusters 
had emerged.  

Unlike basic mode, all three runs of mixed mode ended 
with a single large cluster in the middle of the arena; no 
clusters remained on the boundary. Figure 3 (b) shows the 
progression by which the central cluster is created and 
finally becomes the only one. Note that like the trials of 
basic mode, boundary and central clusters were created 
along the way. However, boxes in the boundary clusters 
were separated by mixed mode robots, and delivered to the 
biggest central clusters. The times taken to reach the goal, 
building a central cluster with all 20 boxes, took 1:52:30, 
1:22:25, and 1:48:25 for each experiment. The average 
time was 1:41:13 and can be considered as an expected 
time for collecting all boxes into a single pile given the 
experimental environment. 

 
(a) Basic mode (Second run) 

 
(b) Mixed mode (Third run) 

Figure 3. Cluster dynamics in basic and mixed mode 

Robot Spatial Distribution 
Next, we consider the question of spatial distribution of the 
robots: specifically, the assumption of uniform (dilute-limit) 
distribution of robots. We divided the octagonal arena into 
center and boundary regions and measured the robots’ 
spatial distribution. The boundary line between regions 
was drawn 70cm from the boundary, which approximately 
the same as the width of sum of width of a robot and a box, 
and ratio of center to boundary areas is 52:48. As already 
notes, the boundary can cause cluster growth itself; this is 
what we term the ‘boundary-effect.’ Square objects appear 
to exacerbate this effect.  

Figure 4 shows the spatial density of robots for basic and 
mixed modes in the central region of the arena. The X-axis 
is  the number of boxes in the central region.  The Y-axis 
shows the density of robots in the central regions: this a 
normalized quantity calculated by taking the total number 
of robots within the central area and scaling it with respect 
to the area left unoccupied by boxes.  

 

 
(a) Basic mode                             (b) Mixed mode 

Figure 4. Spatial density of robots in the center of arena 
 
In Figure 4(a), the range of value of fitted curve with 

spatial distribution of robots is approximately between 2.1 
and 2.5. The result means 50% robots are positioned in the 
central region and the others are in the boundary region.  It 
shows that the assumption that robots are distributed 
uniformly in basic mode is true. In mixed mode, on the 
other hand, a disproportionate amount of time is spent by 
robots on the boundary, especially for robots performing 
the digging motion. Figure 4(b) shows the mixed mode 
which, on the other hand, shows a relationship between 
number of central boxes and proportionate of robots on the 
boundary. We can interpret this in two ways. The first way 
is robot-centric: we can say that the disproportionate 
amount of time being spent by robots on the boundary (and 
this is especially true for robots performing the digging 
motion) breaks up those boundary clusters more frequently 
and results in a single central cluster.  A second way is 
object-centric:  with the formation of tight clusters in the 
central region, robots encounter multiple boxes each time 
they strike the cluster, causing immediate obstacle 
avoidance them repels them back to the boundary. Within 
this object focused point of view, the dynamical process 
which gives a tight packing in the center rather than 
boundary, affects the mean time between collisions, 
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altering the robots behavior. Ultimately, the correct 
interpretation is something between these two extremes: 
both cluster shape and lifetime influence the position and 
trajectories of the robots, and robots influence the clusters. 
These data do show that the spatial density of robots can be 
an important factor that should be considered in clustering 
tasks, and that Kazadi et al.'s (2002) assumption of 
uniform distribution of robots for gathering all objects into 
a single pile can be violated in practice. Indeed, the 
strategy employed in order to enhance production of 
central clusters affects the spatial distribution of robots. 

Analysis of Object Cluster Dynamics 
Kazadi et al. (2002) present a theoretical analysis of 
clustering systems by analyzing conditions under which 
cluster formation occurs. They introduce the cluster 
formation function, 
 

 

 
, which describes the ratio of the rates of object attrition 
and accretion for a given cluster size.  
We studied cluster dynamics by determining the tendency 
of a cluster of a given size to grow or shrink and, by 
employing regression, have empirically determined the 
cluster formation functions. We combined observations of 
clusters with n boxes from across all the trials and we 
estimated the accrual and dissipation rates by recording 
each time cluster changes size by gaining or losing a box. 
We observed that to be most useful the analysis should 
consider central and boundary clusters separately; the 
original theoretical analysis ignores boundary conditions.  
 Kazadi et al.’s key result is that a sufficient condition for 
the growth of the largest cluster is that the ratio of puck 
removal and puck deposit is monotonically decreasing. To 
summarize here: for a given cluster size n, g(n) < 1 means 
that the cluster has an accretive tendency because the 
number of boxes deposited is larger than the number 
removed; g(n) > 1 means that the cluster has an attritional 
tendency since removals exceed deposits; and g(n) = 1 
denotes a steady-state.  Figure 5 shows the ratio of the rate 
of attrition to rate of accretion for a given cluster size 
across our trials. The solid line is the best fit of an 
exponential curve to the raw data. In the basic mode, the 
number of boxes removed in central clusters is the same as 
the number of boxes deposit in the central clusters because 
the all clusters are ultimately distributed on the boundary. 
On the other hand, the curve of boundary removal has 
higher offset and decreases more sharply than boundary 
deposits. This reflects the fact that clusters located on the 
boundary have a tendency to grow since the number of 
boxes removed is less than the number added. Figure 5 (a) 
is curve of function, g(n), based on cluster size. Since most 

clusters in basic mode are created on the boundary, only 
the boundary curve is monotonically decreasing and less 
than one.  
 In the contrast to basic mode, the mixed mode system 
showed a tendency to produce clusters in the center of the 
arena. The curve of g(n) in Figure 5 (b) expresses the 
clustering tendency: the larger clusters are, the greater their 
tendency to increase. Kazadi et al. (2002) study some 
hypothetical cluster formation functions. These data show 
that a distinction between clusters influenced by the 
boundary and those in free-space is useful in analyzing the 
system behavior. Moreover, their analysis of the predicted 
behavior between two clusters holds in the case of objects 
transferred between boundary and central cluster types 
(and vice-versa).  
 

 
     (a) Basic mode                               (b) Mixed mode 

Figure 5. Clustering dynamics regarding cluster size 
 
 In addition, the lifetimes of all boundary and central 
clusters were recorded in seconds throughout the 
experiments. Compared to basic mode, boundary clusters 
had much shorter lifetimes in mixed mode, and central 
clusters had much longer lifetimes in mixed mode 
(Table 1). There are multiple aspects which contribute to 
this: robots spent more time on the boundary due to the 
wall following behavior; they were not only taking out 
boxes from the boundary either in twisting or digging 
mode, also blocking out-going boxes. Also, the longer 
lifetime of central cluster in mixed mode means a 
dominant cluster remains in the center of the arena for a 
long time.  
 

Table 1. Lifetime of Clusters in Basic and Mixed modes 

 
Central Cluster Boundary Cluster 

Max Mean Max Mean 

Basic Mode 
(hour:min:sec) 

1st  0:15:00 0:07:50 1:22:25 0:35:51 

2nd 0:11:35 0:04:07 1:22:20 0:43:45 

3rd 0:12:40 0:04:48 1:28:35 0:38:26 

Mixed Mode 
(hour:min:sec) 

1st  1:28:50 0:20:44 0:21:50 0:12:26 
2nd 1:29:15 0:11:01 0:15:20 0:08:28 
3rd 1:23:15 0:11:28 0:20:10 0:14:53 
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Conclusion  
This paper studied the collective behavior of a multi-robot 
system in which “boundary-aware” robots employ simple 
local interaction rules in order to cluster square objects in 
the center of their workspace. The focus on square objects, 
which exacerbate the boundary effect, required that we 
assess and address the formation of boundary clusters. We 
introduce a novel controller we call “Mixed Mode” 
because it combines twisting and digging operations, both 
of which exploit the object geometry.  
 We demonstrated that the Mixed Mode controller can 
overcome the effects of boundary and induce reliable 
central cluster formation via physical robot experiments. 
The preceding analysis leads to the conclusion that our 
mixed mode is more efficient strategy in two ways: 1) The 
shorter lifetimes of boundary clusters reflect faster central 
cluster emergence. Since robots in mixed mode spend 
more time contacting boxes on the boundary, they prevent 
the production of large boundary clusters, and cause boxes 
to disperse into the center of the arena. 2) Empirically 
determined cluster formation functions also illustrate that 
mixed mode outperforms basic mode.  
 This paper shows the spatial density of robots can be an 
important factor that should be considered in clustering 
tasks, and that Kazadi et al.'s (2002) assumption of 
uniform distribution of robots for gathering all objects into 
a single pile can be violated in practice. Structures in an 
environment involve the mechanics of subsequent cluster 
formation and the distribution of robots. The position of 
robots in basic mode is less sensitive to a change of 
environments, but robots in mixed mode actually reflect 
environmental changes (more objects in the center, fewer 
robots in the center). This latter aspect may contribute to 
the successful movement of all the objects to the 
workspace center. 
 It has been pointed out that small variation in the 
environment, physical robots and controllers can have an 
impact on clustering performance, and that predicting this 
can be non-trivial. The preceding work can be viewed as a 
successful attempt to obtain a desired engineering outcome 
from the multi-robot system by exploiting the small 
domain-specific changes unique to our (square object and 
bounded space) scenario.  
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