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Abstract

Massive amounts of clinical data can now be collected
by stand-alone or wearable monitors over extended pe-
riods of time. One key challenge is to convert the vol-
umes of raw data into clinically relevant and actionable
information, ideally in real-time. This becomes imper-
ative especially in the domain of wearable monitors,
where power and memory constraints prevent contin-
uous communication of raw, uncompressed data to a
base station for a health care provider. We focus here on
algorithmic approaches to extract clinically meaningful
information from the electrocardiogram (ECG) in real-
time.

We use a curve-length transform to identify, and aggre-
gate from beat to beat, physiologically relevant timing
information, such as the onsets and offsets of P-waves,
QRS complexes, and T-waves, along with their respec-
tive magnitudes. Each heartbeat is thus parametrized in
terms of 12 variables. Assuming a nominal heart-rate of
70 beats per minute, and a sampling frequency of 250
Hz, each beat has approximately 215 samples. Reduc-
ing each beat to 12 samples thus gives an 18-fold com-
pression.

An exponentially-weighted sliding average of the iden-
tified morphological features over the preceding twenty
beats is also stored. Whenever any feature deviates sig-
nificantly from its stored weighted average, the algo-
rithm registers an alarm and also retains the raw ECG
data of the 5 beats immediately preceding and follow-
ing the anomalous occurrence, for a later review by a
clinician.

Introduction

A long-term ECG (or Holter) recording allows physicians
to analyze a patient’s cardiac rhythm over extended peri-
ods (typically 24 hours) and to quantify the frequency and
severity of cardiac conduction problems that may manifest
irregularly or only over short durations. Advances in hard-
ware development have led to progressive miniaturization of
such wearable ECG monitors (Fensli, Gunnarson, and Gun-
dersen 2005). Similarly, advances in power management al-
low these devices to collect data for longer periods of time
(Park et al. 2006). The reduction in size, however, limits
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the amount of memory available for data storage. Similarly,
power constraints prevent continuous wireless transmission
of the raw data, even over short distances. To provide clini-
cians with intermittent updates on patient health, and to mit-
igate the data storage limitations, it seems imperative that
data be reduced on chip by extracting clinically meaningful
information from the volumes of data collected.

Here, we present a real-time ECG processing algorithm
that “compresses” the raw data by identifying and retain-
ing clinically relevant landmarks of the ECG on a beat-by-
beat basis. The retained landmarks are the kinds of vari-
ables a clinician uses to interpret the ECG, such as the width
and height of the QRS complex or the elevation of the ST-
segment. Furthermore, the algorithm keeps a running aver-
age of each landmark and triggers an alarm whenever signif-
icant changes are detected. When such an event is triggered,
the algorithm automatically stores the raw ECG data from
five beats preceding to five beats following the anomaly, for
the benefit of review by a clinician. While our data com-
pression algorithm is inherently lossy, a cartoon-type ECG
beat can be reconstructed that conveyes most of the relevant
information on which clinical decisions are based.

Methods
Feature-onset and offset detection

ECG analysis typically starts with beat-onset detection, by
locating the QRS complexes. We follow the work by Zong
et al. and use the curve-length transform to detect the on-
set and offset of QRS complexes (Zong, Moody, and Jiang
2003). The method relies on the fact that in most standard
projections the ECG curve length corresponding to the QRS
complex is generally larger than that of other segments of
the ECG.

For a continuous differentiable function x(z), the curve
length L at time ¢ over the time interval w is given by

L(t)/ttwds/ttw

The discrete-time version of this equation can be written as
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Figure 1:
(top).

ECG signal (bottom) and its length transform

where Az, =z, — Tp_1.

For QRS detection, the window length w was chosen to
be 130 ms, which represents an upper limit for the duration
of the QRS complex. Figure 1 shows a segment of an ECG
signal along with the computed length transform. As is evi-
dent, the rising edge of the length transform corresponds to
the onset of the QRS complex.

Whenever the length transform crosses a pre-defined (but
adaptive) threshold, the time-point of threshold-crossing is
noted. The algorithm then searches backward for 100 ms to
determine the minimum value, LT,,;,, of the length trans-
form forward for 150 ms to determine the maximum value,
LT, q.. Subsequently, the algorithm tracks backward from

the point of threshold-crossing until the value of the length

transform drops to (L7}, + M). This point

is noted as the onset of the QRS complex. The point where

the length transform rises to (LT}, + M) is
noted as the end of the QRS complex (Zong, Moody, and
Jiang 2003).

The first fifteen beats of each records are used as a training
period to determine the threshold. To account for baseline
wandering, the algorithm uses adaptive thresholding. Ini-
tially, the threshold value is assigned as 2.5 times the aver-
age value of the length transform during the training period.
The threshold is then adjusted, based on the maximum value
of the length transform of each detected feature (see Zong
et. al. for details). Within each QRS complex, we identify
the location and magnitude of the R-wave.

The curve-length transform outlined above was modified
to aid in feature extraction. The P-wave duration is typically
less than 110 ms, and the PR-interval ranges from 110 ms
to 200 ms. The algorithm backtracks from ¢y, the location
of the R-wave, and computes the length transform over a
window w = 110 ms from ¢t = t, — 200 ms to ¢, — 90 ms.
The T-wave lasts for 100 ms to 250 ms, and the QT-interval
is typically around 400 ms. To identify the onset and end of
the T-wave, we compute the length transform over a window
w = 250 ms fromt = t, + 320 ms to t = ¢, + 450 ms.

Figure 2 shows an ECG segment along with the results of
our detection algorithm. The beginnings and the ends of the
P-waves, the QRS complexes and the T-waves are respec-
tively marked with an ‘x’, a ‘4’ sign, and a circle, respec-
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Figure 2: ECG signal with the onsets and ends marked for
the P-waves (x), the QRS complexes (+), and the T-waves

(0).

tively.

Data reduction

After detection of the P-waves, QRS complexes, and T-
waves, the algorithm calculates the following variables:

P-wave duration
Height of P-wave

PQ height
PR-interval

QRS width

QR height

RS height
QT-interval
ST-segment elevation
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These quantities along with the raw signal for each beat,
are stored for five beats after which the raw signal is over-
written.

Assuming a nominal heart-rate of 70 beats per minute and
a sampling rate of 250 Hz, each beat comprises roughly 216
samples. Reducing each beat to 12 features thus results in
an 18-fold compression, though note that the ECG signal so
parameterized cannot be reconstructed.

Irregularity detection

An important component of the algorithm is deciding when
to raise an alarm. A running exponential average of each
feature is maintained using

Agln] =k -z[n]+ (1 —k) - Azn—1]



Figure 3: Cartoon of the 12 parameters captured.
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Figure 4: Detection of an abnormal feature as determined by
our algorithm. The arrow indicates the abnormality.

where A, is the weighted average of the corresponding
physiological landmark z. In our application, we set the pa-
rameter k to 0.8. The average stored in this manner ensures
that recent values are weighted more than past values. The
deviation, D, [n], of each feature from its average is com-
puted according to

|z[n] — Ag[n]|
Az [n]

Whenever the deviation crosses the threshold of 0.75, an
alarm is raised. In that case, the compression of the ECG
signal is stopped and the five beats preceding and following
the flagged beat are stored in their raw form. Such an occur-
rence is illustrated in Figure 4. As such, the compression of
the electrocardiogram lags by five beats.

D.[n] =

Test data

We used the PhysioNet QT-Database to test our algorithm
(Goldberger et al. 2000 June 13; Laguna et al. 1997). This
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Figure 5: Cumulative distribution of matching annotations
as a function of An.

database was created by compiling 105 records from differ-
ent, existing PhysioNet ECG databases. Within each record,
30 to 100 representative beats were annotated by cardiolo-
gists, who identified the beginning and end of the P-waves,
the beginning and end of QRS-complexes, and the end of the
T-waves. All records were recorded at a sampling frequency
of 250Hz.

The 15 records in the QT-Database which were derived
from the MIT-BIH Arrhythmia Database were used to test
the irregularity-detection feature of our algorithm. There
were a total of 77 manually annotated occurrences of ar-
rhythmia.

Results

The algorithm described above was prototyped in MATLAB
and then tested on a Texas Instruments MSP430 micropro-
cessor. For each record, data was stored on the EEPROM of
the microprocessor and then fed to the algorithm sample-by-
sample, to simulate a real-time processing environment.

Feature detection

Figure 5 shows the cumulative distribution of matching an-
notations as a function of An, the difference in sample num-
bers between the manual annotations and those derived by
our algorithm.

Irregularity detection

Of the 77 manually annotated arrhythmias, the algorithm
detected 76. Alarms were also raised for 3 instances that
were not marked as incidences of arrhythmias. The method
thus displayed a sensitivity of 98.70% and a specificity of
96.10%.



Discussion

The current trend in wearable ECG monitoring technol-
ogy point to declining form factors and extended monitor-
ing durations. The reduction in size of such devices is of-
ten achieved by sacrificing on-board memory. Additionally,
increasing power constraints typically prevent the wireless
streaming of ECG data sample-by-sample. Algorithmic ap-
proaches are therefore required to turn the acquired physio-
logical data into actionable physiological information. The
algorithm presented above complements the current trends
in wearable ECG hardware design in that it extracts and
tracks clinically important and interpretable landmarks of
the ECG waveform, thus only requiring the storage of 12
landmarks as a function of time. By providing an approxi-
mate 18-fold compression, it is ensured that memory is not a
limiting factor as far as the recording duration is concerned.
Furthermore, the wireless communication of such a small
set of variables is eminently feasible. However, it might not
be necessary to transmit the values of these landmarks every
beat but only when significant deviations from past values
are detected.

Additionally, the detection of irregularities, raising of
alarms, and appropriately halting compression ensures that
when close inspection of the raw data is possible when it
might be clinically indicated. The sensitivity and specificity
of the irregularity-detection algorithm are very promising,
though these statistics were obtained only for a relatively
small number of arrhythmic events.

Future Work

The work outlined here is an initial step towards achiev-
ing on-chip ECG data reduction while retaining and track-
ing physiologically important variables over time. While
our initial results are very promising, further validation is
necessary, especially on data derived from Holter moni-
tors. We also aim to incorporate information from a 3-
axis accelerometer, possibly feeding into the determination
of thresholds, in order to avoid raising unnecessary alarms
during periods of significant activity when signal-to-noise
might be low.
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