
Being There, Being the RRT: Space-Filling and
Searching in Place with Minimalist Robots

Asish Ghoshal and Dylan A. Shell
Department of Computer Science & Engineering

Texas A&M University
College Station, Texas, USA

Email: {aghoshal,dshell}@cse.tamu.edu

Abstract

Inspired by the Rapidly Exploring Random Tree data-
structure and algorithm for path planning in high-
dimensional, continuous spaces, we consider an approach for
spanning a space with a group of simple robots. We employ
a minimalist approach in which contact sensors form the pri-
mary means of communication; the agent’s physically em-
body the elements of the tree through their position and other
agents can either follow the tree to useful locations or expand
the tree by becoming part of it. Although robots are con-
strained in some of the operations they may perform in space,
we argue that the original space filling aspects of the origi-
nal data-structure remain in our implementation. We demon-
strate that one may perform a planning query from a point to
the tree origin directly via message passing where passing in-
volves direct physical motion or simple IR messages. Based
on the work done by Werger and Matarić, our implementa-
tion proves that it is possible to form and maintain a RRT
using simple position unaware robots. The work is important
because it demonstrates that decentralized path planning can
be performed by simple agents using purely reactive behav-
iors and at the same time poses significant challenges to keep
the shape of the tree intact using position unaware robots.

Introduction

This paper considers the problem of having a group of sim-
ple robots equipped with limited, short-range communica-
tion, span a physical space. They do this by building an
incremental tree in a process analogous to a well-known
data-structure, the Rapidly Exploring Random Tree. In fact,
“analogous” may too weak a word. The robots actually
implement the algorithm, but they do in an unconventional
way: they exploit their embodiment so that information usu-
ally stored in conventional variables is encoded in the poses
of the robots. The work demonstrates what we believe to
be a broader idea, namely that several existing spatial algo-
rithms with well-understood properties can be directly im-
plemented on robot hardware so that the resulting proper-
ties describe the robots’ configurations. The primitives em-
ployed by the algorithm point to behaviors that robots need
to be able to execute. If an asynchronous implementation of
a synchronous data-structure can be made consistent, then

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the algorithmic analysis can to be carried over to the state of
the robots themselves.

Motivation

The motivation for the current work comes from experi-
ments by Werger and Matarić (1996) on encoding informa-
tion in the environment. In that work the authors demon-
strate how a group of simple robots can be used to encode
information into the environment that can be used by other
robots effectively to achieve a certain goal: they show how
a chain of simple robots can be used to guide other robots,
responsible for collecting pucks, to and from the designated
home region. Furthermore, they argue that the number of
taps received on one side of the chain is proportional the rel-
ative puck density on that side of the chain; thus, the chain
can be gradually moved to the side having greater density of
robots.

The second motivation for the work comes from Rapidly-
Exploring Random Trees (RRTs) which have been suc-
cessfully used in various motion planning problems in
robotics (LaValle and Kuffner, Jr. 2000). The strength of
an RRT lies in its ability to rapidly span a given space (con-
figuration space) and its bias towards unexplored regions. It
has been observed that larger Voronoi regions appear on the
frontier, thereby biasing the exploration to the unexplored
portion of the space.

Contribution

We present an approach of spanning a space using simple
robots that physically embody the RRT data-structure. Thus
by being in place the robots encode information into the
environment which can then be used by other robots to lo-
cate the home region and at the same time the tree formed
by robots provide sufficient coverage to be categorized as
a RRT. Our approach is different from that of Werger and
Matarić’s in that we extend earlier work by encoding infor-
mation into the environment so as to perform simple path
planning locally. Further, using robots to physically form a
RRT had never been studied before.

The rest of the paper discusses the approach and the im-
plementation of the aforementioned algorithm, followed by
a brief discussion and conclusion.

10

Multirobot Systems and Physical Data Structures — Papers from the AAAI 2011 Spring Symposium (SS-11-07)



Related Work

Donald was an early advocate of minimalist approaches to
robotics. He developed the information invariants frame-
work for comparing different sensory-computational sys-
tems. In Donald (1995), his most extensive discussion of
the framework, he shows that the physical placement of re-
sources in such systems can be particularly important. His
formalism enables the effect of co-location of different re-
sources to be quantified by computing the additional infor-
mation that would need to be transmitted in other configu-
rations. That work was cited as inspiration for Werger and
Matarić (1996), and is clearly related to this work in which
the physical positions of robots encode state.

Pheromone Robotics: (Payton et al. 2001)
Self-reconfigurable and modular robotics: (Støy, Brandt,
and Christensen 2010)
Path planning and morphogenesis: (Nouyan, Campo, and
Dorigo 2008) (O’Grady, Christensen, and Dorigo 2009).

Approach

The RRT data-structure

The original algorithm for constructing the RRT for a gen-
eral configuration space is given below where qinit is the ini-
tial configuration, qrand is a random configuration and G is
the graph representing the RRT. A random configuration,
qrand, is chosen in each iteration which determines the new
vertex that will be added to the graph. Subsequently the ver-
tex in the tree, qnear, which is nearest to qrand is computed.
In step 5 of the algorithm a new configuration, qnew, is com-
puted by selecting an action that moves qnear an incremental
distance, Δq, in the direction of qrand. In the final step of
each iteration, the vertex qnew and the corresponding edge
(qnew, qnear) is added to the tree.

Algorithm 1 BUILDRRT
Require: qinit, K, Δq

1: G.init(qinit);
2: for k = 1 to K do
3: qrand ← RANDCONF();
4: qnear ← NEARESTVERTEX(qrand, G);
5: qnew ← NEWCONF(qnear, Δq);
6: G.add vertex(qnew);
7: G.add edge(qnear, qnew);
8: end for
9: return G

In our implementation the RRT, G is physically repre-
sented by robots. So, robots represent both vertices and
edges of the tree where vertex and edge robots are identified
based on the operations that they can perform. Two key op-
erations that are central to our implementation are the AD-
DVERTEX operation and the EXTENDEDGE operation. In
the ADDVERTEX operation, a robot is added to the tree as
a new vertex. While in the EXTENDEDGE operation, robots
are added as edge nodes in order to extend the edge each
time until the length of the edge becomes Δq, where Δq is

the incremental distance by which the tree gets extended in
each iteration. It is ensured that the aforesaid operations do
not cancel the effect of each other. The key difference be-
tween the above algorithm and ours is that we grow the tree
asynchronously. By asynchronous we mean that the steps
of the algorithm are not atomic but span multiple iterations
and may happen in parallel e.g., while a new vertex is be-
ing added on to the tree at one point (ADDVERTEX opera-
tion), another robot might be extending an incomplete edge
(EXTENDEDGE operation) so long as they do not interfere
with each other. The subsequent paragraphs describes our
approach in detail.

The configuration space: The configuration space is a
two dimensional plane and the position of the robot in the
plane represents a particular configuration. The two degrees
of freedom of the robot are sufficient to completely repre-
sent any configuration within the configuration space. The
initial configuration, qinit, is chosen by placing a dead robot
in the environment. Other robots perform a random walk
representing different points within the configuration space
at different points of time.

Choosing a random configuration: The random config-
uration, qrand, is chosen by randomly choosing a robot that
represents a point in the configuration space to join the tree
as a vertex. As a robot is chosen randomly it starts spiraling
out until either it hits another robot or it covers a threshold
distance in which case resumes its random walk. In the latter
case even though the miss might prove to be costly in terms
of time but we can argue that it does not have any effect on
the data-structure per se.

Finding the nearest neighbor: The vertex in the tree
nearest to qrand is identified by making the randomly cho-
sen robot spiral out until it bumps into a vertex robot which
is already part of the tree. But, the spiraling robot may bump
into another wandering robot in which case the random point
qrand is discarded in the sense that no new vertex is added to
the tree and the robot resumes it random walk. Whereas if
the spiraling robot bumps into an edge robot then the point
qrand is still discarded but the robot begins to trace the tree
in an attempt to complete an incomplete edge. Thus, while
a spiraling robot may perform ADDVERTEX and EXTEND-
EDGE operations, a wandering robot can only perform the
EXTENDEDGE operation. Figure 1 shows that if the ran-
domly chosen robot lies in the Voronoi region of a robot in
the tree then it is nearest to that robot and by spiraling out
it would definitely bump into it first unless it hits another
moving robot or the radial distance covered by it exceeds
the threshold distance.

Computing a new configuration: If a spiraling robot
bumps into the tree at the end of a fully completed edge
then it is identified as a Vertex robot and is added into the
tree in place. By doing so it also initiates an edge which is
completed by other wandering robots. So by adding the new
robot at the point in which it bumped into the tree we make
sure that the edge is extended in the direction of the ran-
domly chosen point qrand. The new robot now has a depth of
one more than its parent which is the robot previously at the

11



Figure 1: Diagram showing Voronoi regions created by
robots in the tree.

end of the edge. The notion of depth here might contradict
that of graph theory literature in which only vertices have
depths associated with them. But here depths have been as-
signed to all robots for identifying when an edge is complete
and if an incoming robot should be a vertex robot or an edge
robot. So, the actual depth of a vertex robot is depth modulo
Δq, where Δq is the length of the edge.

ADDVERTEX operation: The ADDVERTEX operation is
initiated only when a spiraling robot bumps into a fully
formed edge in which case it is added in place to the tree
thereby increasing the edge by unit length in the direction
of the randomly chosen point from where the robot started
spiraling. If a spiraling robot bumps into a edge robot then it
starts tracing the tree and if it finds a half formed edge then
the EXTENDEDGE operation is initiated. This operation is
shown visually in Figure 2(a).

EXTENDEDGE operation: The EXTENDEDGE operation
is initiated only when a wandering or spiraling robot bumps
into a half formed edge. In this operation the robot is added
to the tree as an edge robot by aligning the robot with the
existing edge to form a straight line. an intrepretation of
our implmentation is that while the EXTENDEDGE oper-
ations are being performed, they make up part of a sin-
gle “add edge” operation of the original algorithm See Fig-
ure 2(b) for an illustration.

Implementation

The following terminologies are important in understanding
the implementation:

1. Region of influence: Region of influence of a robot is the
area directly around the robot where its IR messages can
be detected by other robots which is called as its field of
communication and also the fields of communication of
its direct neighbors. See Figure 3.

2. Location estimate: Location estimate of a robot X as per-
ceived by a robot Y and relative to Y is the time elapsed
between the time the IR break beam of a robot in the
tree breaks upon detecting its parent robot in the tree P
and the time when the break-beam breaks upon detect-
ing robot X . So the location estimate of a robot X is
an estimate of the robot’s position around the robot Y as
measured from Y ’s parent P .

The current implementation uses robots that rely only
on contact sensors and InfraRed sensors for communicating
with each other. A one byte packet sent using an IR LED is
used for communication. The three types of packets that are
used are request, response and status packets. The packets
also make use of a parity bit for minimal error detection. The
different request messages are JOINCHAIN, MOVELEFT,
MOVERIGHT, MOVEUP, MOVEDOWN, READYTOJOIN,
BUMPNOTIFICATION. The status packet identifies the status
of a robot viz. part of tree, wandering and spiraling. If the
robot is part of the tree then the packet additionally encodes
the depth of the robot in the tree. The response packets are
either ACK or NACK.

A robot upon bumping into an object sends a bump no-
tification messages while robots part of the tree continu-
ously monitor for IR messages. Whenever a robot in the tree
gets bumped it broadcasts status messages after receiving an
IR bump notification message. The wandering or spiraling
robot upon receiving the status message signals its intention
to join the tree by broadcasting “join chain” request pack-
ets, which also encode the state of the robot i.e., spiraling
or wandering, only after determining that it bumped into a
robot in the tree. Now, the robot which is part of the tree
determines based on its depth in the tree, if the new robot is
supposed to be an edge robot or a vertex robot. The incom-
ing robot is classified as an edge robot if it bumped into a
half complete edge while it is classified as a vertex robot if it
bumped into a fully complete edge. An edge is deemed com-
plete when its length in terms of number of robots equals
Δq. If the new robot is supposed to be a vertex robot but its
state was wandering then it NACKs the “Join Chain” request
while if its state was spiraling then it ACKs the “join chain”
request.

Each robot has the location estimate of its parent, referred
hence forth as Ω, which has been determined empirically
and corresponds to the time taken for the robot to complete
one full rotation. After ACKing the “join chain” requests the
robot in the chain starts rotating to find out the location esti-
mate of the incoming robot. The robot in the chain identifies
the location, and hence the location estimate Θ, of the in-
coming robot by ignoring all other robots that are present in
its neighbor list.

ADDVERTEX operation: If the robot in the chain deter-
mines that the incoming robot is a vertex robot then it sends
the “ready to join” request to the incoming robot and upon
getting the acknowledgement for the request it adds the in-
coming robot to its neighbor list. The incoming robot in turn
on receiving the “ready to join” request which also has the
depth of the robot that sent it, increments the depth by one

Figure 3: Diagram illustrat-
ing the field of communica-
tion of each robot shown in
gray. The region of influence
of Robot A is the combina-
tion of field of communica-
tion of all three robots.

12



(a) Robot being added as a vertex robot. (b) Robot being added as a edge robot.

Figure 2: Diagram illustrating a robot joining the tree either as a vertex (left) or edge (right). Red circles indicate vertex robots
while black indicate edge robots.

Figure 4: Snapshot of a robot (#9) trying to find the nearest
neighbor.

and becomes part of the tree. A snapshot from our imple-
mentation is shown in Figure 5.

Figure 5: Snapshot of a ADDVERTEX operation. (Figure 4
shows this robot previously having spiralled to locate its
nearest neighbor.)

EXTENDEDGE operation: If the robot in the chain deter-
mines that the incoming robot is an edge robot then it com-
pares the location estimate of the incoming robot Θ with
Ω. If Θ is approximately equal to Ω then it implies the in-
coming robot is perfectly aligned and hence the robot in the
chain sends the “ready to join” request. While, if Θ < Ω

2
then it means the incoming robot is on the left of the de-
sired position and hence broadcasts the “move to left” com-
mand. Similarly, if Θ > Ω

2 the incoming robot broadcasts
the “move to right” command. The incoming robot in turn
upon receiving the command moves appropriately and ac-
knowledges the command. After a series of such interaction
when the incoming robot has aligned perfectly, the robot
in the chain sends “ready to join” request to the incoming

robot. The incoming robot in turn on receiving the “ready to
join” request which also has the depth of the robot that sent
it, increments the depth by one and becomes part of the tree.
See Figure 6 for an example.

Figure 6: Snapshot of EXTENDEDGE operation.

Tracing the tree: If the robot in the chain determines that
the incoming robot is an edge robot then it compares the
location estimate of the incoming robot Θ with Ω. If the in-
coming robot determines that the next position in the edge
has already been occupied then based on the value of Θ it
sends the “Move down” (Θ < Ω

2 ) or “Move up” (Θ > Ω
2 )

command to the incoming robot. The incoming robot in
turns moves up or down the tree and tries to join the tree
back further down the edge or if the edge is complete then it
moves away to another branch. Figure 7 provides an exam-
ple of this operation being performed.

Figure 7: Diagram showing a robot tracing the tree.

Even though two or more robots try to join the tree at
different but valid points so that they avoid any physical in-

13



teraction, the robots are barred from joining the tree if their
region of influence overlaps. This strategy prevents robots
from getting the wrong message owing to “cross talk”.

Experiments

The Robots Our experimental setup comprised of eight
iRobot Create robots including a dead robot to serve as the
starting point of the tree. The standard Create robots were
augmented with an IR LED transmitter capable of transmit-
ting one byte of information. A reflector was used to dis-
perse the IR radiation with the aim of creating an IR field
around the robot. See Figure 8.

The setup The experimental arena was an 3.66m× 5.05m
rectangular area with the starting point located near the cen-
ter of the top edge of the arena.

The Experiments The first set of experiments aimed at
forming a tree with all seven robots starting in wandering
state, while the next set of experiments demonstrated four
robots joining a partially formed tree of three robots (one
vertex robot and two edge robots). Experiments were re-
peated by varying the parameter Δq from 1 to 3.

While a third set of experiments were also run where taps
using bumpers was used as the mode of communication in-
stead of IR messages. A communication method was de-
vised where different taps viz. short tap, long tap, very long
tap, turbo tap, double tap etc conveyed different information.

Results Using IR messages as the communication mode
we were successfully able to form trees of seven robots with
Δq set to 3. (Figure 9 is an example from such a trial.) And
this combination proved to be the most efficient in terms of
the time taken for all robots to join the tree. In most exper-
iments the maximum degree of a vertex in the tree was one
while we are confident that we would be able to form trees
with maximum degree of a vertex exceeding two by further
optimizing the algorithm as stated in the discussion section
below. An example of the time spent in the tree is shown at
the resolution of individual robots in Figure 10.

With Δq set to 2 and the number of robots at 7 the time
taken for all robots to join the chain was higher owing to the
fact that more spiraling robots, to be exact 3, were required
to join the chain successfully, which is difficult given that
every time a spiraling robot bumps into a wandering robot
the process of finding the nearest neighbor is aborted and
the robot resumes its random walk. With Δq set to 1 and
the number of robots at 7 the performance even degraded
further.

With physical taps as the communication mechanism we
were reliably able to form chains with two robots while

Figure 8: An iRobot Create
augmented with an IR LED.

Figure 9: A typical trial that used 7 robots with Δq set to 3.

Figure 10: Diagram showing the times at which the robots
joined the tree with Δq set to 3.

forming chains of length greater than two posed significant
challenges because of the fact that physical bumps slowly
pushed robots out of the chain which proved to be very fatal
owing to our reliance on dead reckoning to localize neigh-
boring robots and the robot itself. So, a tree of seven robots
was almost impossible using taps. But, surprisingly using
Δq as 1 the performance improved because all robots joined
as vertex robots and so a lot of taps were reduced owing to
the fact that none of the robots needed to be aligned.

Discussion

We observed that the frequency with which a robot attempts
to spiral out and join the tree as a vertex robot is an im-
portant determinant of the overall performance of the sys-
tem. In our current implementation pseudo random num-
bers, seeded at the unique robot id for each robot, in the
range 1 and 10 determined the minutes a robot spent wander-
ing before attempting to spiral out and join the tree. A longer
range implies that a fewer robots would try to join the tree at
the same time tending to decrease interaction among robots
thereby improving performance but also means that a robot
would spend significant time wandering before it reattempts
to join the tree back by spiraling out thereby impeding per-
formance.

But using IR as the mode of communication, albeit robots
only exchanged a byte at most, improved the robustness of
the system dramatically. The implementation ensured that
no two robots cancelled the effect of each other i.e., a wan-
dering and a spiraling robot did not initiate the ADDVERTEX

14



and JOINCHAIN operation respectively at the same time in
the same region of influence.

Further, we observed that our strategy of aborting the pro-
cess of finding the nearest neighbor whenever a spiraling
robot bumps into a wandering robot proved to be costly and
decreased the performance of the system. So, by having a
mechanism in which a spiraling robot continues to spiral
out in an attempt to find the nearest neighbor in the tree in
spite of bumping into another wandering robot and by mak-
ing sure the original random point generated, qrand, is still
maintained we can significantly improve performance.

Our implementation is also significantly optimized in the
sense that the tree can be extended along various fronts
in parallel as long as region of influences do not overlap.
We further optimize the algorithm by allowing a wandering
robot to trace the tree in order to complete a half formed
edge.

Conclusion and Future Work

From the various experiments that we performed we con-
clude that minimalistic robots can physically embody a RRT
data-structure by using a few simple rules. The trace behav-
ior that we have successfully implemented and demonstrated
can be extended to introduce motion planning wherein a dif-
ferent group of robots using the behavior can scuttle be-
tween various parts of the tree and then determining opti-
mum routes thereby mimicking a colony of ants. We also
plan to extensively run our algorithm in simulation in order

to arrive at a mathematical model and gain further insights.

References

Donald, B. R. 1995. On information invariants in robotics.
Artificial Intelligence 72(1–2):217–304.
LaValle, S. M., and Kuffner, Jr., J. 2000. Rapidly-exploring
random trees: Progress and prospects. In Robotics: The Al-
gorithmic Perspective. 4th Int’l Workshop on the Algorith-
mic Foundations of Robotics (WAFR).
Nouyan, S.; Campo, A.; and Dorigo, M. 2008. Path forma-
tion in a robot swarm. Swarm Intelligence 2(1):1–23.
O’Grady, R.; Christensen, A. L.; and Dorigo, M. 2009.
SWARMORPH: Multirobot Morphogenesis Using Direc-
tional Self-Assembly. IEEE Transactions on Robotics
25(3):738–743.
Payton, D.; Daily, M.; Estowski, R.; Howard, M.; and
Lee, C. 2001. Pheromone Robotics. Autonomous Robots
11(3):319–324.
Støy, K.; Brandt, D.; and Christensen, D. J. 2010. Self-
Reconfigurable Robots: An Introduction. Cambridge, MA,
U.S.A.: MIT Press.
Werger, B. B., and Matarić, M. J. 1996. Robotic “Food”
Chains: Externalization of State and Program for Minimal-
Agent Foraging. In Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior: From Ani-
mals to Animats (SAB), 625–634.

15


