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Abstract 
Cognitive load theory investigates instructional 
consequences of processing limitations of human cognitive 
system. Excessive cognitive load inevitably influences our 
affective states by causing frustration that may discourage
further learning activities, while low-load tasks may also be 
disengaging and boring. This paper reviews basic 
assumptions of cognitive load theory and their 
consequences for optimizing the design of information 
presentations, as well as general implications for affective 
computing. 

Introduction   
It is rather obvious from common learning experiences that 
cognitive load would influence our affective states. 
Excessively complex and cognitively taxing tasks could 
frustrate learners and discourage further learning (“too 
much headache”), while very simple and non-challenging 
cognitive activities may also disengage learners (“too 
boring”). In many situations, the observed affective states 
result from specific cognitive conditions and could be used 
as indicators of such conditions while modifying learning 
environments. It has been also demonstrated that emotional 
states (e.g., negative mood or anxiety) directly influence 
cognitive task performance and the operation of working 
memory, while less evidence exists about the effect of the 
emotional content of the processed information (e.g., 
Kensinger & Corkin, 2003). 

Specific factors influencing cognitive load 
characteristics of learning and instruction have been 
investigated for several decades within a framework of 
cognitive load theory (for a recent comprehensive 
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overview, see Sweller, Ayres, & Kalyuga, 2011). 
Unfortunately, their consequences for learner affective 
states have not yet been considered within this research 
area. Directly linking affective states with cognitive load 
factors and investigating cognitive load aspects of affective 
computing could broaden the focus of research in both 
cognitive load theory and affective computing.

As a step in this direction, this paper reviews basic 
assumptions of cognitive load theory and major 
consequences of these assumptions for the design of 
information presentations, as well as their general 
implications for affective computing. A recently proposed 
evolutionary perspective  on human cognitive architecture 
is essential in this analysis, as it allows a broader 
association of affective computing with an interface
between two types of information processing systems -
natural (specifically, human) and artificial intelligent 
information processing  systems.

The Architecture of Natural Information 
Processing Systems 

In its basic underpinning assumptions, cognitive load 
theory relies on the analogy between the information 
processing aspects of evolution by natural selection and 
human cognition (Sweller & Sweller, 2006). It considers 
both biological evolution and human cognition as 
examples of a broader class of natural information 
processing systems. It is assumed that operation of such 
systems is based on the following fundamental principles 
(Sweller, 2003; for an overview, see Sweller et al., 2011):
1. The information store principle: all natural 

information processing systems include stores of 
information that govern their activities. In human 
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cognitive architecture, long-term memory provides this 
function.

2. The borrowing and reorganizing principle: most of 
information in the store is borrowed and reconstructed 
from other information stores. In case of human 
cognition, we build most of long-term memory
information structures by imitating people, listening to 
them and reading materials produced by other people.

3. The randomness as genesis principle: all principally 
novel information is acquired by a random generate-and-
test process. In the absence of relevant information from 
other sources, we acquire it during problem solving by 
using general methods such as means-ends analysis. 

4. The narrow limits of change principle: there is a 
mechanism that prevents large and rapid random 
changes to the information store that could impair its 
functionality. Human cognitive architecture includes a 
working memory as our major information processor 
that is severely limited in capacity and duration when 
dealing with novel information, thus reducing the risk of 
damaging long-term memory. We can consciously 
process no more than a few items at a time for no longer 
than a few seconds. If these limits are exceeded, 
information processing could be inhibited.

5. The environmental organizing and linking principle:
when information from the store is guiding specific 
environmentally appropriate activities of the system, the 
above limits are removed. In human cognition, the 
severe capacity or duration limits are lifted when 
organized information from long-term memory is 
processed in working memory when guiding specific 
activities (due to the “chunking” or “encapsulation” 
effect when many connected elements of information are 
treated as a single unit in working memory) 
With the cross-disciplinary approach used in this 

framework, information should be considered as an 
attribute of objects of different nature (e.g., genetic codes 
in biological evolution or written signs in human 
communication). In general, this attribute of different 
objects relates to structural patterns in their organization 
(e.g., Stonier, 1997). Accordingly, information processing 
is associated with transmitting and adopting such structural 
patterns. In case of complex natural information processing 
systems such as evolution of living organisms, these 
processes are aimed at enhancing their chances of survival. 
Such complex systems achieve this aim by flexibly 
adapting to their environments, and all of the above five 
principles apply to their functioning. The feedback 
principle could be added as a separate one or included in 
the elaborated last principle in order to explain an essential 
mechanism of such flexible adaptation. 

However, even relatively less complex natural objects 
(e.g., non-organic matter down to elementary particles) 
could also be regarded as systems characterized by stable 
structural patterns. Even subatomic particles maintain their 
identity, physical integrity and specific behavioral patterns, 

and engage in information processing. As natural 
information processing systems, they adhere to, at least, 
some of the above principles. In accordance with the 
information store principle, they preserve (“store”) specific 
organizational patterns (e.g., specific patterns of atomic 
shells). According to the randomness as genesis principle, 
these patterns may have initially emerged during early 
stages of cosmic evolution as results of random 
interactions between particles. Under specific conditions, 
according to the laws of physics, they formed relatively 
more stable patterns (achieving a greater time durability 
provided obvious testing criteria for the random generate-
and-test procedure). According to the environmental 
organizing and linking principle, these information patterns 
determine interactions of the systems with their 
environments (e.g., atomic shells determine the nature of 
atomic interactions in forming more complex molecular 
structures). However such systems are unable to modify 
their information structures (learn) and self-reproduce. 

As natural information processing systems become more 
complex, the narrow limits of change principle emerges to 
assure that this complexity is not destroyed by excessively 
large random changes. Complex natural systems evolve 
incrementally with small changes at a time. Also, 
according to the borrowing and reorganizing principle, for 
successful survival, complex systems develop the 
mechanisms of borrowing information from other systems. 
The complex systems that rely on the whole set of above 
principles could be treated as intelligent natural 
information processing systems that are flexible and 
adaptive to unpredictable environmental changes. 

Thus, the described general principles of natural 
information processing systems (Sweller, 2003), including 
the notion of naturalness, could possibly be traced and 
extended below the level of biological evolution that 
provided the essential analogy to the human cognitive 
architecture  (both are intelligent natural information 
processing systems). This extended framework represents a 
set of assumptions about the origin of essential features 
and capabilities of our mind that may possibly be 
structured in exactly the same way as information 
processing systems in the rest of the nature.

Human Cognitive Architecture 
According to the above framework, human cognitive 
architecture includes two essential components that define 
how we process information and learn. One of these 
components is long-term memory representing our 
knowledge base (information store) with effectively 
unlimited capacity and duration. Most of organized 
knowledge is stored in the form of schemas - generic 
knowledge structures that are used to mentally categorize 
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and represent concepts and procedures, and govern our 
behavior. With sufficient practice, schemas can be 
automated and used without conscious control.  

Another essential component of our cognitive system 
represents a mechanism that limits the scope of immediate 
simultaneous changes to the knowledge base. This 
mechanism is associated with the concept of working 
memory as a conscious processor of information within the 
focus of attention. Working memory is severely limited in 
capacity and duration when dealing with novel information 
(Cowan, 2001). Most of contemporary models of working 
memory include separate limited processing channels for 
visual and auditory information (e.g., Baddeley, 1986). 
Processing limitations of working memory are responsible 
for learner cognitive overload and profoundly influence the 
effectiveness of instruction.  

When considering human information processing 
system, cognitive load theory also makes an additional 
assumption based on evolutionary educational psychology 
(Geary, 2007). It distinguishes between two major types of 
information – biologically primary and secondary. It is 
believed that we are biologically predisposed or 
“hardwired” to acquire primary information in a rapid, 
effortless, and mostly automatic way without much of 
conscious processing and associated cognitive load. For 
example, information related to speaking and listening 
native language, engaging in common social interactions, 
or applying general problem solving strategies belongs to 
biologically primary information. It has been essential for 
survival of humans throughout the history of evolution. 

On the other hand, biologically secondary information 
has emerged over a relatively short historical period as a 
result of cultural and technological developments (e.g., 
information related to writing and reading skills, science 
and technology). Acquisition of such information is always 
effortful and requires conscious controlled processing in 
working memory. Cognitive load theory applies mostly to 
the processes of acquisition of biologically secondary 
information that always generates working memory load.  

In most cases, when dealing with novel biologically 
secondary information, no learning occurs without a 
cognitive load associated with effortful conscious 
processing of essential interacting elements of information 
in working memory. This essential (necessary, productive, 
and useful) load that is required for achieving specific 
learning goals is called intrinsic cognitive load. Intrinsic 
cognitive load is caused by specific cognitive activities 
resulting in new or modified knowledge structures in long-
term memory. Such activities involve concurrent 
processing of interacting elements of information in 
working memory and integrating them with available 
knowledge structures in accordance with specific learning 
goals. Intrinsic load depends on internal complexity of the 
learning task and is always relative to the level of learner 

expertise, since what is complex for novices may be simple 
for experts. In order to achieve meaningful learning 
outcomes, it is necessary to accommodate this load without 
exceeding available working memory resources.  

In contrast to intrinsic load, extraneous cognitive load is 
a non-essential, unnecessary, and wasteful type of load 
caused by cognitive activities and processes that are 
irrelevant to learning goals. This type of load is usually 
caused by poor instructional design, for example, 
suboptimal presentation formats or inappropriate selection 
and sequencing of learning activities with inadequate 
levels of instructional support. It should be noted that the 
difference between extraneous and intrinsic cognitive load 
could be relative to levels of learner expertise: some parts 
of cognitive load that are essential (intrinsic) for novice 
learners could become extraneous (irrelevant) for relatively 
more experienced learners, and vice versa. 

Working memory resources that are actually devoted to 
dealing with intrinsic cognitive load and lead to 
meaningful learning are defined as germane resources 
(usually, though not quite correctly, called germane 
cognitive load) in contrast to extraneous working memory 
resources that are devoted to dealing with extraneous 
cognitive load (Sweller, 2010). This separate from 
cognitive load dimension of actually allocated working 
memory resources stresses the role of germane resources in 
learner engagement in processing relevant aspects of a task 
and, therefore, the importance of instructional methods that 
motivate and engage students in learning-relevant 
cognitive activities. More engaged and motivated learners 
invest more of their working memory resources into 
dealing with intrinsic load thus leading to better learning 
(Schnotz, 2010). The actual working memory resources 
invested in learning activities would depend on levels of 
motivation, attitudes, and affective states of the learner. 

Together, the combined intrinsic and extraneous 
cognitive load determines the total cognitive load imposed 
on the learner by the learning task. This load determines 
working memory resources required for processing all the 
involved elements of information and achieving learning 
goals by a fully engaged learner. However, it does not 
necessarily determine actually allocated working memory 
resources by a specific learner in a specific learning 
situation. The amount of actually devoted working memory 
resources depends on how well and fully the learner is 
engaged in the learning environment.  

Sources of Extraneous Cognitive Load  
According to cognitive load theory, effective and efficient 
instruction insures that learner working memory load 
during learning is kept within its capacity limits. This 
means that sufficient capacity of working memory is 
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available for processing interacting elements of 
information that define the information pattern to be 
learned and thus are essential for achieving specific 
learning goals (intrinsic cognitive load) 
 However, most of the instructional techniques developed 
by cognitive load theory are aimed at eliminating or 
reducing learner cognitive activities that are not essential 
for learning and generate extraneous cognitive load. 
Extraneous cognitive load is typically caused by 
inappropriate instructional formats or procedures that 
introduce unnecessary interacting elements of information, 
for example, performing search-and-match operations that 
are not relevant to learning, or processing redundant 
information. Extraneous load is imposed by cognitive 
activities that a learner is involved in because of the way 
the learning tasks are organized and presented, rather than 
because the load is essential for achieving instructional 
goals. There are following general types of sources of 
extraneous cognitive load: 

1. Split-attention situations occur when interacting textual 
and graphical elements are separated over distance 
(presented at different locations) or time (presented at 
different times, non-concurrently). Mental integration of 
these sources of information might require intense search 
processes and recall of some elements until other 
elements are attended and processed. Such processes 
might significantly increase cognitive load.

2. Redundancy situations occur when two or more sources 
of information can be understood independently without 
the need for mental integration for example, when text 
simply re-describes a diagram that can be fully 
understood without the text. Under these conditions, 
processing the text and mentally integrating it with the 
diagram may result in an extraneous cognitive load. The 
most common form of redundancy is presenting the 
same information in different modalities, for example, 
presenting the text in both spoken and written form.  

3. Transiency situations occur when information 
disappears before the learner has time to adequately 
process it. In such situations, learners would need to hold 
this transient information in their working memory in 
order to integrate it with the forthcoming pieces. For 
example, lengthy fragments of continuous spoken text or 
animations could create such situations.

4. Advanced learners situations occur when levels of 
learner knowledge in a specific area increase to the level 
when the provision of detailed information may become 
redundant and distract learners from fluently executing 
already learned procedures and taking the full advantage 
of their available knowledge. For instance, providing 
fully worked out examples of problem solving steps to 
advanced learners can generate extraneous cognitive 
load. Since an element or a chunk of information 
processed in working memory of a particular learner is 
determined by the schemas the learner holds in long-
term memory, with the development of expertise, the 

size of the learner’s chunks increases: many interacting 
elements for a novice become encapsulated into a single 
element for an expert. Therefore, the experienced 
working memory load always depends on levels of 
learner expertise in a specific task domain. 

5. Inadequate prior knowledge situations occur when 
learners do not have adequate knowledge to process new 
information without cognitive overload. In the absence 
of relevant knowledge, learners would need to resort to 
general problem solving strategies such as means-ends 
analysis to handle novel situations. Such search-based 
goal-oriented methods always generate excessive levels 
of extraneous cognitive load that leaves no working 
memory resources for learning meaningful solution 
schemas. For example, unguided exploratory learning 
environments could impose excessive levels of 
extraneous cognitive load on novice learners. 

Managing Cognitive Load to Prevent Negative 
Affective States 

An essential aim of affective computing is creating 
effective interface between artificial and natural (human)
intelligent information processing systems by capturing 
and interpreting specific affective states of the latter by the 
former. Negative emotional states could be caused by 
situations of cognitive overload leading to learner 
frustration and dissatisfaction with learning activities and 
own performance. Based on the above potential sources of 
cognitive overload, it is possible to determine specific 
factors that may contribute to negative affective states.  
 Learner working memory could be overloaded if the 
combined intrinsic (useful) and extraneous (wasteful) 
cognitive load exceeds its capacity. In this situation, the 
first step in dealing with cognitive overload is eliminating 
or reducing the influence of sources of extraneous 
(wasteful or unnecessary) cognitive load. The following 
methods are recommended by cognitive load theory to be 
used in situations of high extraneous cognitive load: 

split-attention situations: physically integrating sources 
of information that are separated in space or time (e.g., 
embedding verbal information into diagrams or other 
textual fragments; synchronizing  related sources of 
information in time), using different modalities (auditory 
and visual) for presenting verbal and pictorial information; 

redundancy situations: eliminating redundant sources of 
information rather than presenting them (e.g., using spoken 
only  text to explain visualizations rather than both spoken 
and written text simultaneously); 
 transiency situations: segmenting lengthy segments of 
continuous spoken text or animations into smaller portions, 
or pre-training learners in relevant prior knowledge; 
 advanced learners situations: using minimal or reduced 
levels of non-redundant instructional guidance (e.g., 
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problem solving tasks, exploratory learning environments,
completion tasks);

inadequate prior knowledge situations: using well-
guided instructions that substitute for missing knowledge 
structures (e.g., worked examples or explanatory 
feedback). 
 If reducing extraneous load still does not eliminate the 
overload, then additional methods for reducing intrinsic 
cognitive load should be applied. Among the 
recommended methods are segmenting the original task 
into simpler subtasks, pre-training learners in relevant 
components of knowledge, artificially reducing the number 
of interacting elements of information during the initial 
phase of learning followed by the fully interactive element 
instruction. 

Enhancing Positive Affective States 
Cognitive means for generating positive affective states are 
related to optimizing the relation between the learning 
tasks, learner prior knowledge, and provided instructional 
guidance. If the provided support is sufficient for learners 
to make sense of the task on their own, they would more 
likely experience positive affective states. Also, when 
motivated by consciously chosen goals, learners 
experience a sense of control. Learning goals represent an 
important part of learner knowledge base that performs a 
guiding role in cognitive processing. Balancing external 
guidance with learner internal knowledge and goal 
structures is important for creating positive affective states 
and higher levels of motivation. 

Knowledge base available in learner long-term memory 
may effectively reduce limitations of working memory by 
encapsulating many elements of information into higher-
level units that are treated as elements in working memory 
(Ericsson & Kintsch, 1995). Another way of reducing 
cognitive load is practicing available skills until they can 
operate under automatic rather than controlled processing 
(Shiffrin & Schneider, 1977) and allow learners to devote 
working memory resources to handling more complex 
situations without cognitive overload. 
 Thus, more knowledgeable learners can use their 
available knowledge structures for managing cognitive 
load. However, if task-relevant knowledge structures are 
not available in long-term memory, learners have to 
simultaneously process many new elements of information 
in working memory resulting in a cognitive overload. 
Appropriate external guidance may be required to assist 
these learners in acquiring new knowledge in a cognitively 
efficient and non-stressful manner. In the absence of a 
relevant knowledge base or external guidance, the learners 
may need to resort to weak problem-solving methods based 

on random search processes that often result in excessive 
levels of cognitive load with minimal learning. 

If, on the other hand, detailed instructional guidance is 
provided to more experienced learners who have an 
adequate knowledge base in long-term memory for dealing 
with the learning task, these learners would need to relate 
and reconcile the corresponding components of their 
knowledge and external information. Such co-referencing 
processes may cause additional cognitive load that would 
inevitably reduce working memory resources available for 
learning (e.g., making appropriate generalizations or 
further strengthening and automating schemas). Thus, as 
levels of learner expertise increase, relative effectiveness 
of learning tasks with different levels of instructional 
guidance may reverse (an expertise reversal effect; 
Kalyuga, 2007). Presenting more knowledgeable learners 
with detailed external instructional guidance may inhibit 
their learning relative to the outcomes that could be 
achieved with minimal guidance.  

Thus, cognitive load consequences of using different 
learning formats and procedures depend on levels of 
learner expertise and may result in different affective 
states.  If challenges of the task significantly exceed the 
available learner knowledge base, the task could cause 
cognitive overload and emotional unease. On the other 
hand, when these challenges are too low relative to the 
available knowledge and skills, the task could be easy and 
boring, with corresponding affective consequences for the 
learner. A well fitted learning task that provides challenges 
just above the level of learner available knowledge base 
could provide the best motivating power and emotional 
state. Both unguided effortful search for solutions by 
novice learners and allocating unnecessary attention to 
information that could otherwise be processed 
automatically and effortlessly by more experienced 
learners would reduce cognitive resources available for 
meaningful learning. Such unnecessary diversion of 
attention may emotionally upset and de-motivate learners.  

A major instructional implication of the expertise 
reversal effect and its affective consequences is the need to 
adapt dynamically instructional formats and levels of 
instructional guidance to current levels of learner expertise.  
Learner knowledge needs to be dynamically monitored as 
it gradually changes during learning, and instructional 
procedures adjusted accordingly. For example, direct 
instruction methods could be gradually replaced with less-
guided exploratory or problem-based environments as 
levels of learner expertise increase. Intelligent tutoring 
sysms (ITS) select learning tasks based on a continuously 
updating production-rule model of the student (Koedinger 
& Corbett, 2006) or tracking the cognitive states of the 
learner by analyzing the content of the dialogue history 
(Graesser, VanLehn, Rose, Jordan, & Harter, 2001). An 
important part of such adaptive learning environments is 
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the set of assessment tools that are able to diagnose levels 
of learner expertise rapidly and in real time.  

In addition to assessing acquisition of specific 
production rules in ITS, a possible method for rapid 
assessment of expertise could be based on observing how 
learners approach briefly presented tasks. For example, in 
the first-step method, learners are asked to rapidly indicate 
their first step towards the solution of a task presented for a 
limited time. Experts use their learned solution schemas to 
rapidly indicate more advanced steps of the solution as 
their first steps. On the other hand, less experienced 
learners may only generate a very first immediate move 
according to the detailed procedure they have learned. 
Novices could at best be able to indicate only their first 
attempt in using trial-and-error or means-ends analysis 
approaches (Kalyuga, 2003). In an alternative rapid 
verification method, students are briefly presented with 
potential solution steps at various stages of advancement 
and asked to rapidly verify their correctness. These 
diagnostic methods could be effectively used in adaptive 
computer-based learning environments (Kalyuga, 2006).  

Conclusion 
There is a close relationship between affective and 
cognitive states associated with the operation of working 
memory. Cognitive load caused by suboptimal formatting 
and sequencing of information presentations or levels of 
provided instructional guidance that are not tailored to 
learner prior knowledge could cause negative affective 
states. Tailoring learning tasks and activities to specific 
levels of knowledge of individual learners could enhance 
their positive affective states and increase learning 
motivation. However, cognitive load theory has not yet 
considered affective and motivational factors in learning 
beyond some preliminary ideas (Paas, Tuovinen, van 
Merrienboer, & Darabi, 2005). The procedures for 
measuring cognitive load used in this field are mostly 
based on subjective rating scales with rare exceptions such 
as the dual-task method (based on monitoring learner 
performance on a simple secondary task) and some 
laboratory-based psychophysiological techniques that are 
not suitable for realistic settings (see Paas, Tuovinen, 
Tabbers, & van Gerven, 2003; Sweller et al., 2011, for an 
overview of measurement methods). Some online 
measures of cognitive load could potentially be used for 
diagnosing negative affective states. 
 The inclusion of affective and motivational factors in 
cognitive load research remains an essential direction for 
future studies in this area. Establishing connections 
between affective variables and cognitive load factors, and 
using methods of affective computing for identifying 
specific situations of cognitive overload could enhance 
effectiveness and efficiency of learning environments.
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