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Abstract 
It is widely acknowledged that one-on-one human tutoring 
is one of the most effective ways to provide learning, 
however, the source of its effectiveness is still unclear. 
Tutor-centered, student-centered, and interaction hypotheses 
have been proposed as possible explanations of the 
effectiveness of human tutoring. Most research has 
addressed this question by analyzing tutorial sessions at the 
dialogue move or speech act level. The present paper adopts 
a different approach by focusing on word usage patterns in
50 naturalistic tutorial sessions between human students and 
expert tutors. Specifically, each unique word in the session 
was designated as a student initiative word, a tutor initiative 
word, or a shared-initiative word. Comparisons of the 
frequencies as well as the weights of the words assigned to 
each of these categories indicated that the student and tutor 
share initiative even though the tutor’s are considerably 
more verbose. The implications of the results for the 
development of an ITS that aspires to model expert tutors 
are discussed. 

 Introduction   
There is no one-size-fits-all approach to learning and 
instruction. It only takes a few probing questions with 
Socratic dialogues to effectively teach gifted students, 
while substantial direct instruction and detailed 
explanations are needed for less knowledgeable learners 
(D'Mello, Hays et al., 2010). Intrinsically motivated 
learners derive pleasure from the task itself (e.g., 
enjoyment from problem solving), while learners with 
extrinsic motivation rely on external rewards (e.g., 
receiving a good grade) (Elliot & McGregor, 2001). 
Adventuresome learners want to be challenged with 
difficult tasks, take risks of failure, and manage negative 
emotions when they occur, while cautious learners tackle 
easier tasks, take fewer risks, and minimize failure and its 
resulting negative emotions (Clifford, 1988). 
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 Unfortunately, most classrooms do not afford 
pedagogical interventions that are tailored at the individual 
student level, so it comes as no surprise that many students 
fail and fall behind. These students may turn to one-on-one 
human tutoring when they are having difficulty in courses. 
Investing time and effort in one-on-one tutoring does have 
a big payoff, as evident from the substantial empirical 
evidence showing that human tutoring is extremely 
effective when compared to typical classroom 
environments (Bloom, 1984; Cohen, Kulik, & Kulik, 1982; 
Corbett, 2001).  
 The effectiveness of one-on-one tutoring in human and 
computer tutors raises the question of what makes tutoring 
so powerful? This is a pertinent question because 
understanding the tactics and dialogue moves of human 
tutors has direct application for Intelligent Tutoring 
Systems (ITSs), especially those that aspire to model 
human tutors (D'Mello, Hays et al., 2010; VanLehn, 2006). 
Although ITSs are quite effective in promoting learning 
gains, and even outperform some human tutors (Corbett, 
2001; Dodds & Fletcher, 2004; VanLehn et al., 2007),
there is still room for improvement. This presents the 
challenge of better understanding human tutoring with an 
eye for implementing important insights into next 
generation ITSs, which is the goal of the present paper. 

What Makes Human Tutoring Effective? 
Chi and colleagues formulate three different hypotheses, 
namely the tutor-centered, student-centered, and 
interaction hypotheses, as possible explanations of the 
effectiveness of human tutoring (Chi, Roy, & Hausmann, 
2008). The tutor-centered hypothesis contends that it is the 
pedagogical and motivational strategies of the tutor that 
underlie the effectiveness of one-on-one tutoring. 
Alternatively, the student-centered hypothesis predicts that 
tutoring is effective because it gives students more 
opportunities to actively construct knowledge, rather than 
anything the tutor does in particular. Lastly, the interaction 
hypothesis is essentially the blending of the tutor and 
student-centered hypotheses, with a focus on the 
coordinated effort of both tutor and student. 
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 The tutor-centered hypothesis has been of primary focus 
over the past several decades of research, yielding some 
important insights about the pedagogical strategies 
employed by tutors. For example, research has shown how 
tutors adapt to students needs by (a) modeling and 
monitoring student knowledge (Chi, Siler, Jeong, 
Yamauchi, & Hausmann, 2001), (b) employing tutoring 
tactics and strategies that contribute to learning gains 
(Lajoie, Faremo, & Wiseman, 2001), (c) planning at local 
and global levels of discourse (Littman, Pinto, & Soloway, 
1990), and (d) providing emotional support for students in 
social, affective, and motivational ways (del Soldato & du 
Boulay, 1995; Lepper, Woolverton, Mumme, & Gurtner, 
1993).  
 The student-centered hypothesis contends that students 
are active participants in the construction of their own 
knowledge, rather than being mere information receptacles. 
This hypothesis has found substantial support in the 
tutoring literature. For example, considerable evidence 
suggests that constructive student moves such as self 
explanations (Chi, Deleeuw, Chiu, & Lavancher, 1994) 
and question asking (Graesser & Olde, 2003) are beneficial 
to learning. 
 In contrast, the interaction hypothesis predicts that the 
effectiveness of tutoring draws from both tutor and student 
behavior and their coordination with each other. The 
interaction hypothesis has substantial overlap with the 
collaborative learning literature where it has been shown 
that group learning outperforms individual learning (Wiley 
& Bailey, 2006).  Simply put, both stress the importance of 
the interaction between participants. 

Research Goals 
Investigations into the nature of one-on-one tutoring will 
inevitably encounter issues pertaining to “grain size” or the 
level of analysis required to answer certain theoretical 
questions. The analysis of tutorial dialogue usually takes 
place at a very fine-grained level, or the speech act or 
dialogue move level (e.g., hints, prompts, positive 
feedback) (D'Mello, Lehman, & Person, 2010; Graesser, 
Person, & Magliano, 1995). More recently, there has been 
an emphasis on analyzing larger chunks of dialogue moves 
(called dialogue modes) that span a few minutes and 
provide the overarching context or teaching phase (e.g., a 
lecture, a problem scaffolding phase) during which 
learning occurs (Boyer et al., 2009; Cade, Copeland, 
Person, & D'Mello, 2008). Yet another possibility is to 
bridge the gap between the move and mode level by 
analyzing clusters of dialogue moves within a dialogue 
mode (D'Mello, Olney, & Person, in press). 
 The present paper adopts a different approach. 50 
naturalistic tutorial sessions between human students and 
expert tutors were analyzed by focusing on word usage 
patterns over the course of the session. Specifically, each 
unique word was designated as a student initiative word, a 
tutor initiative word, or a shared-initiative word. This 
classification allows us to investigate who takes initiative 
in the tutoring session, thereby affording a comparison of 

the tutor-centered, student-centered, and interaction 
hypotheses. For example, shared-initiative is low if both 
conversational partners use a significant amount of unique 
words in a window of turns (i.e., there is negligible overlap 
in the words uttered by both student and tutor). The 
advantage of the current approach is that it might support 
the automated identification of initiative taking without the 
need to perform tedious annotations for speech acts, 
dialogue moves, and modes. 
 The present focus is on expert human tutoring sessions 
because it is widely acknowledge that expert tutors are 
very effective at promoting learning gains and motivating 
students (Bloom, 1984; Lepper & Woolverton, 2002). Any 
insights obtained from this analysis of expert human 
tutoring can be used to guide the development of ITSs that 
model expert tutors. 

Expert Tutoring Corpus 

Data Collection 
The corpus consisted of 50 tutoring sessions between 39 
students and 10 expert tutors on the subjects of algebra, 
geometry, physics, chemistry, and biology. The students 
were all having difficulty in a science or math course and 
were either recommended for tutoring by school personnel 
or voluntarily sought professional tutoring help. 
 The expert tutors were recommended by academic 
support personnel from public and private schools in a 
large urban school district. All of the tutors had long-
standing relationships with the academic support offices 
that recommended them to parents and students. The 
criteria for being an expert tutor were: (a) have a minimum 
of five years of one-to-one tutoring experience, (b) have a 
secondary teaching license, (c) have a degree in the subject 
that they tutor, (d) have an outstanding reputation as a 
private tutor, and (e) have an effective track record (i.e., 
students who work with these tutors show marked 
improvement in the subject areas for which they receive 
tutoring). 
 Fifty one-hour tutoring sessions were videotaped and 
transcribed. There were 31 sessions on math topics 
(algebra and geometry) and 19 sessions on science topics 
(physics, chemistry, and biology). A total of 16,728 
student-tutor dialogue turns (or simply turns) were 
extracted in the 50 hours of tutoring. The number of turns 
per session ranged from 113 to 752 with each session 
containing an average of 334 turns (SD = 136). The 
number of unique words per session ranged from 378 to 
1015 with an average of 754 words (SD = 163).  

Data Annotation and Scoring 
The corpus was preprocessed in order to eliminate meta 
tags and punctuation. Next, unique words in each session 
were identified and assigned to one of five categories: (1) 
student unique, (2) tutor unique, (3) student lead, (4) tutor 
lead, and (5) student-tutor align. The first two categories 
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represent specific vocabulary words uttered by either the 
student (i.e., student unique) or the tutor (i.e., tutor unique), 
but never by both conversation participants. Words in 
groups 3-5 (i.e., student lead, tutor lead, and student-tutor 
align) were uttered by both participants, thereby 
representing a shared vocabulary between student and 
tutors. The critical discriminating feature for these words 
was the source and timing of the first utterance (i.e., who 
first introduced the word to the session). Specifically, a 
word uttered by both student and tutor in the same or 
adjacent student-tutor dialogue turns was assigned to the 
student-tutor align category, irrespective of who uttered the 
word first. Words in the student lead category were used 
by the student before the tutor, while it was the tutor who 
first used the common word in the tutor lead category. 
Categories 1 and 3 represent student-initiative words, 2 and 
4 are tutor-initiative words, while words in category 5 are 
shared- or mixed-initiative words. 
 All analyses were conducted at the session level. Two 
dependent measures (i.e., proportional scores and weighted 
scores) were computed for each category, yielding 10 
measures in all. The first five measures consisted of the 
proportional assignment of words to each of the five 
categories (the five proportional scores for each session 
add up to 1). While these proportional measures represent 
the distribution of words in each category, the second set 
of measures was sensitive to the quality of words in each 
category. Specifically, each word in the corpus was 
weighted on a scale from 0.0 to 1.0, relative to its inverse 
frequency in the English language using the CELEX 
corpus (Baayen, Piepenbrock, & Gulikers, 1995). As a 
consequence, higher frequency words such as closed-class 
function words (e.g., and, but) have comparatively lower
weights than lower frequency words (e.g., mitosis, 
Newtonian) that have higher weights. These lower 
frequency words are generally domain-related content 
words while the high frequency words are function and 
domain-independent content words (e.g., should, 
calculator). For example, “the,” which is the most common 
word in the English language, has a weight of .05, while 
extremely rare terms like “mitosis,” and “muzzle-velocity” 
have weights of 1.0.   

Weighted scores were computed by averaging the 
weights of the words in each category. In this fashion, both 
the frequency (proportional scores) and importance 
(weighted scores) of each category can be compared. 

Results and Discussion 

Patterns of Word Usage across Entire Session 
Table 1 provides descriptive statistics on proportional 
scores and weighted scores for each category. It also lists a
correlation between proportional scores and weighted 
scores. With the exception of the student-tutor align 
category, proportional and weighted scores were not 
significantly correlated, so these measures captured unique 
aspects of how words are being used in the tutoring 

sessions. Importantly, the medium-sized (Cohen, 1992) 
positive correlation between proportional and weighted 
scores for the student-tutor align category suggest that as 
the degree of alignment increases, so do the weights of the 
aligned words.  
 Two 5 × 2 (category × topic) mixed ANCOVA were 
conducted to assess if there were statistical differences in 
proportional and weighted scores of the five categories.
Category was a within-subjects factor with 5 levels for 
proportional scores associated with the five word 
categories. Topic was between-subjects factor with two 
levels for math (N = 31) and science (N = 19). Topic was 
included in the model to assess whether the subject of the 
tutorial session had an impact on how words were being 
used. The number of turns and words in each session were 
added as covariates in order to control for any spurious 
effects that might be attributed to these variables. 

Proportional Scores. The results indicated that there was 
a significant main effect for category, F(4, 184) = 10.1, 
Mse = .006, p < .001, partial eta-square = .179. The main 
effect for the topic factor was not tested because it was 
constrained since proportional scores within each topic 
sum up to 1. The category × topic interaction was not 
significant (p = .609), so the tutorial topic had no 
noticeable impact on the proportional scores.
 Bonferroni posthoc tests on the category main effect, 
revealed the following pattern in the data at the p < .05 
level: tutor unique > tutor lead > student unique > student 
lead > student-tutor align. Hence, if one simply counts the 
words in each category, it appears that it is the tutor who 
takes the initiative by using unique words and leading the 
students. In fact, more than half of the words (54.5%) 
uttered in the tutorial session were part of the tutor’s 
unique vocabulary. An additional 18.4% of the words were 
first introduced by the tutor and subsequently used by the 
student. Taken together, the tutor takes initiative for 72.9% 
of the words, the student takes initiative for 22.3% of the 
words, and, surprisingly, a mere 4.5% of the words were 
shared-initiative words. 

Table 1. Patterns of word usage by students and tutors 

Proportions Weights
Measure M SD M SD r

S Unique .123 .075 .141 .021 .240
T Unique .549 .132 .134 .009 -.082

S Lead .100 .049 .103 .015 .178
T Lead .184 .037 .102 .008 -.022

ST Align .045 .016 .133 .030 .372**

Note. S = student, T = tutor, ST = student-tutor, ** p < .05 

Weighted Scores. The ANCOVA on weighted scores 
indicated that there was a significant main effect for 
category, F(4, 184) = 4.24, Mse = .0003, p = .003, partial 
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eta-square = .084. Bonferroni posthoc tests revealed the 
following pattern at the p < .05 level: (tutor unique = 
student-tutor align) > (student lead = tutor lead). So, the 
weighted scores associated with the tutor unique words and 
the student-tutor align words were on par and significantly 
greater than both the student and tutor lead words, which 
were equivalent to each other. The student unique words fit 
this general pattern, except that the mean score associated 
with these words was significantly greater than the mean 
score for the tutor unique words. These results signal an 
important difference from the patterns obtained with the 
proportional scores because it is no longer the tutor who 
takes most of the initiative. 
 In addition to the significant main effect for category, 
the category × topic interaction was also statistically 
significant, F(4, 184) = 4.42, Mse = .0003, p = .002, partial 
eta-square = .088. Posthoc tests indicated that weighted 
scores for student unique words were higher for science (M
= .152, SD = .028) compared to math (M = .135, SD =
.012); the difference was consistent with a large effect (d =
.79). Conversely, tutor unique weighted scores were 
greater for math (M = .136, SD = .009) than science (M =
.132, SD = .009), d = .44. There were no topic differences 
for lead and alignment words. 

Verbosity vs. Quality 
The results so far paint a mixed picture of initiative-taking 
in expert tutoring. The proportional scores indicate that it is 
the tutor who does most of the talking; however, the 
weighted scores suggest that both the student and tutor 
share the initiative in the session. In order to reconcile 
between these diverging sets of results, a follow-up 
analysis that compared proportional and weighted scores 
for each category was performed. Since the two scores are 
measures of intrinsically different constructs (verbosity vs. 
quality), all scores were standardized prior to the analyses. 
 The analyses proceeded with a 5 × 2 × 2 (category ×
measure × topic) mixed ANCOVA. Measure was a within-
subjects factor with two levels for proportional and 
weighted scores. As before, the number of turns and words 
in each session were included as covariates. Of greatest 
interest is the category × measure interaction, which was 
significant, F(4, 176) = 5.36, Mse = .332, p = .003, partial 
eta-square = .109. 
 Three important conclusions can be gleaned from 
Bonferroni posthoc tests on the category × measure 
interaction presented in Figure 1. First, the difference 
between proportional and weighted scores for both student 
and tutor unique words was significant. Effect sizes were 
1.76 and 2.43 sigma for student and tutor unique words, 
respectively. These large effects indicate that although 
students use fewer unique words when compared to tutors, 
student unique words have higher weights than tutor 
unique words. 
 Second, proportional scores were significantly greater 
than weighted scores for both student (d = .58) and tutor (d
= 2.99) lead words. The medium effect size for student 
lead words and the large effect size for tutor lead words 

support the general pattern that the verbosity-quality 
difference is more pronounced for the tutors then for the 
students. 
 The third important finding pertains to the student-tutor 
align category. There was a large difference between 
proportional scores and weights associated with these 
words (d = 1.38). Hence, although students and tutors  
rarely use the same words in the same turn or across 
adjacent turns, the words that they align on are presumably 
rare domain-related content words. 

Predicting Weighted Student-Tutor Alignment 
The possibility of predicting weighted student-tutor 
alignment scores from the weighted unique and lead scores 
was considered. It was not possible to predict proportional 
alignment scores due to severe multicollinearity problems 
among proportional unique and lead scores. The analysis 
consisted of regressing student-tutor weighted scores on 
student and tutor unique and lead weighted scores. 
Separate models were constructed with either student or 
tutor scores as independent variables, therefore affording 
us with the ability to assess whether it is the student or 
tutor words that best predict alignment weights.  
 There was the concern that variability in topics, number 
of turns, and number of words would unduly influence the 
models. This concern was addressed by conducting two-
step multiple regression models. Step 1 predictors 
consisted of a dummy coded variable for topic (math = 1; 
science = 0), the number of turns, and the number of words 
in each session. The Step 2 predictors were the weighted 
scores of the unique and lead categories for the student or 
tutor. The Step 2 models predict residual variance above 
and beyond the Step 1 models. Hence, a significant Step 2 
model would be indicative of predicting alignment scores 
after controlling for topic, number of turns, and number of 
words.  
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 Outliers (values greater than 2SD from the mean) were 
identified and removed prior to constructing the models. A 
tolerance analysis indicated that there were no critical 
multicollinearity problems since all predictors had 
tolerance values greater than 0.5; tolerances above 0.4 are 
recommended (Allison, 1999). 
 The analysis yielded a significant Step 2 model when 
weighted scores for unique and lead student words (but not 
the tutor words) were the predictors. The overall student 
model was significant, F(5, 38) = 3.54, p = .01 and had an 
adjusted R2 of .228; this is consistent with a medium to 
large effect (Cohen, 1992). The Step 2 model explained an 
additional 9.2% of the variance over the Step 1 model. 
Hence, it is the words that students use that are most 
predictive of student-tutor alignment. 
 The parameters of the multiple regression model are 
presented in Table 2. It appears that the weighted scores 
associated with unique words used by the student 
significantly predict student-tutor alignment weights. 

Table 2. Parameters of multiple regression model 

Parameter B β t p

Intercept .028 .627 .534

Topic -.015 -.325 -2.07 .045
No. Turns .000 .059 .407 .686
No. Words .000 -.087 -.568 .574

S Unique Weighted Score .596 .342 2.31 .027
S Lead Weighted Score .303 .159 1.10 .279

General Discussion 
The word-level analysis of a large corpus of expert tutoring 
sessions yielded some important conclusions about tutor-
student initiative-taking. Tutors were substantially more 
verbose as approximately three-fourths of the distinct 
words in the corpus were tutor-initiative words. The 
strength of this effect might make it tempting to accept the 
tutor-initiative hypothesis, which posits that it is primarily 
the tutor’s actions that underlie the effectiveness of one-on-
one tutoring. 
 The weighted scores, however, preclude us from 
accepting this hypothesis too cavalierly. The analysis that 
focused on word weights, instead of mere frequencies, 
indicated that the student and tutor share initiative even 
though the tutors are considerably more verbose. Simply 
put, tutors are more verbose while students are more 
selective. 
 An analysis of student speech acts does shed some light 
on the low student verbosity. When a 16 category coding 
scheme was also applied to classify student dialogue 
moves (D'Mello et al., in press), the results indicated that 
students primarily spoke in response to a tutor question or 
to provide back-channel feedback. In fact, 63% of student 

moves in the corpus consist of conversational 
acknowledgements or responses to tutor questions. Hence, 
one explanation for the increased tutor verbosity is that 
they need to be doing most of the talking in order to keep 
the conversation flowing. This sketch is intuitively 
plausible because according to Graesser et al. (1995) it is 
the natural language dialogue patterns, as opposed to 
sophisticated pedagogy, that best explains the effectiveness 
of novice human tutoring. Might the same hold true for 
expert human tutoring? 
 At first blush, this claim is incompatible with the current 
view that expert tutors rely on sophisticated pedagogical 
and motivational strategies that are currently not on the 
radar of novice tutors and ITSs (Graesser et al., 1995; 
Lepper, Drake, & O'Donnell-Johnson, 1997; Lepper & 
Woolverton, 2002). However, it might be a combination of 
both sophisticated pedagogy and carefully nuanced 
dialogue management that underlie the effectiveness of 
expert tutoring. 
 The research team is currently in the process of 
developing a tutoring system (Guru) for high school 
biology based on the tactics, actions, and dialogue of 
expert human tutors. The pedagogical and motivational 
strategies of Guru are informed by a detailed 
computational model of expert human tutoring. In addition 
to refining and reconceptualizing the current understanding 
of expert human tutoring, this analysis of the dynamics of 
initiative taking will directly guide the behavior of Guru. 
Whether this expert tutor based ITS yields substantial 
benefits over current ITSs awaits further technological 
development and empirical testing. 
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