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Abstract

Historically, causal markers, syntactic structures and con-
nectives have been the sole identifying features for auto-
matically extracting causal relations in natural language dis-
course. However various connectives such as “and”, prepo-
sitions such as “as” and other syntactic structures are highly
ambiguous in nature, and it is clear that one cannot solely
rely on lexico-syntactic markers for detection of causal phe-
nomenon in discourse. This paper introduces the theory
of granularity and describes different approaches to identify
granularity in natural language. As causality is often granu-
lar in nature (Mazlack 2004), we use granularity relations to
discover and infer the presence of causal relations in text. We
compare this with causal relations identified using just causal
markers. We achieve a precision of 0.91 and a recall of 0.79
using granularity for causal relation detection, as compared
to a precision of 0.79 and a recall of 0.44 using pure causal
markers for causality detection.

1 Introduction

Causality is an important phenomena describing the work-
ing of the world. We are forever in the quest to find the
cause or purpose of an event. We look for causal relations to
explain simple day to day activities to scientific phenomena
about the universe or genetics. For instance we question:
why the republicans lost in the elections?, why a solar
eclipse occurs?, why are the streets jammed with traffic at
this time of the day? There have been numerous research
initiatives to extract causal structures from discourse.
(Girju and Moldovan 2002) have worked on identifying
lexico-syntactic features for semi-automatically extracting
causal structures from discourse. (Blanco, Castell, and
Moldovan 2008) describe techniques to mark the causal
relations between a verb phrase and a subordinate clause.
(Pechsiri and Kawtrakul 2007) have worked on extracting
causal relations using Elementary Discourse Units (EDU’s).

All of these works have considered causality as a se-
quential set of events at the ‘same’ level. However, causality
is often described using a granular structure, where the
coarse grained event happens because of a fine grained
event. For instance, in a building collapses because the roof
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caved in, the roof is in integral part of the building, and is
a sub-event of the entire building collapsing. This paper
focuses on granularity, and how such granularity structures
can be used to identify causal relations in text.

We use the phenomenon of granularity on a regular
basis in our everyday life. For planning and scheduling
of important tasks, we often divide or split our tasks into
smaller pieces, till each task is easily manageable. For
instance, the day-to-day activity of shopping for groceries
involves some finer grained events such as driving to the
grocery store, carrying a list, picking out required items
and paying the cashier. Each of these events in turn
involve some finer level events. For instance, driving to
the grocery store involves sub-events like opening the car
door, starting the engine, planning the route and driving
to the destination. The set of fine grained events make up
a coarse grained event. When the fine grained events are
handled successfully, the coarse grained event is handled
successfully. In this sense, granularity decomposition is
script or plan decomposition.

In this paper we first introduce our theory of granular-
ity in natural language text (Section 2) along with the
variations or options of our theory. We then describe two
different approaches that we used to identify presence
of granularity structures from text (Section 3). We then
describe our experiments for causality identification using
causal connectives and using granularity relation indicators
(Section 4). Next, we present the analysis of our results,
and other issues faced (Section 5). We finally conclude with
the conclusions (Section 6).

2 Granularity Theory in Natural Language

Discourse

We propose a framework or theory for modeling granularity
in natural language, in order to represent explicitly the
intuitive patterns humans use to shift through various levels
of granularity. We focus our theory on event granularities
only, not other types of granularity such as temporal and
spatial.

Figure 1 illustrates our theory of granularity. A gran-
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Figure 1: Granularity in Natural Language Descriptions

ularity structure exists only if at least two levels of
information are present in text, such that the events in the
coarse granularity can be decomposed into the events in
the fine granularity and the events in the fine granularity
combine together to form at least one segment of the event
in the coarse granularity. In Figure 1, Gc represents the
phrase or sentence with coarse granularity information and
Gf represents a phrase or sentence with fine granularity
information. Three types of relations can exist between
the objects in coarse and fine granularity: part-whole rela-
tionship between entities, part-whole relationship between
events, and causal relationship between the fine and coarse
granularity. These relations signal a shift in granularity.
Instantiating text phrases into this model will produce
granularities of text.

This theory of granularity in natural language (Figure
1) can be modified such that only two relations or one
relation of the required three relations need be used to
instantiate the model, and the other unknown relation(s) can
be inferred. These modifications are represented in Figure
1 in the form of dotted lines, where the dotted line is the
relation that is interpreted when the other relations (repre-
sented as solid lines) are provided. These modifications to
the theory of granularity are useful when partial information
from a text is mapped to the theory of granularity.

Traditionally causal relations have been extracted us-
ing only lexico-syntactic causal markers. Figure 2 shows
the sequential structure of causality which is assumed when
extracting causal relations. However, causality is often
granular in nature, where an event is caused by a set of
sub-events, exhibiting a granular structure where the coarse
grained events happen because of the fine grained events. In
this paper, we emphasize that granular causality is an inter-
esting and unexplored type of causality in natural language.
We compare causal structures identified automatically using
causal markers, to granular causality identified automati-
cally using part-whole relations. Causality is not always
granular, but granularity always contains causal relations.

Figure 2: Sequential Causal relations extracted using lexico-
syntactic causal markers

We use this concept with the granularity identification
relations to identify causal relations from discourse.

3 Approaches for Automatic Granularity

Extraction

Section 2 describes the theory of granularity. This section
describes the different approaches that can be used to apply
this theory to natural language for automatically identify-
ing sentences that have a shift in granularity. We describe
two approaches for granularity identification: Shallow sur-
face level approach for mapping part-whole and causal rela-
tions from a knowledge base to natural language discourse;
Deep semantic approach using an abductive framework for
mapping part-whole and causal relations to natural language
discourse, with possibilities of incorporating commonsense
axioms into the system. Both the approaches follow Algo-
rithm 1.

3.1 Shallow Surface level Techniques

Surface level techniques use simple and shallow syntactic
structures such as parse trees to identify entities and events1.
These events and entities are lexically mapped to part-whole
relation lists from background knowledge base to create a
granularity structure from the text. For instance, consider
the following sentence:
Elvis Grbac ran 73 yards to complete an 81-yard touchdown play
to give the San Francisco 49ers a lead 61 seconds into the game.

Table 1 shows the part-of and causal relations used as

1Nouns are usually entities and verbs usually represent events,
with the exception of event nouns

58



Algorithm 1 Algorithm for Automatic Discovery of Causal
Granularity Structures

1: Obtain part of relations for events (Pev1,Wev1 −
Pevn,Wevn) and entities (Pen1,Wen1 −
Penn,Wenn)

2: for all Article An do
3: Obtain sentences ( S1...Sm ) in Article An

4: for all Sentence Si in An do
5: for all (Pevk,Wevk), k = 1 to x do
6: if Pevk ∈ Si and Wevk ∈ Si then
7: for all (Penq ,Wenq), q = 1 to y do
8: if Penq ∈ Si and Wenq ∈ Si then
9: Inference: Si contains causal relations

between the sentence fragments S1
i and

S2
i

10: end if
11: end for
12: end if
13: end for
14: end for
15: end for
16: Evaluate the Causal Granularity Relations using Anno-

tations

Figure 3: Example of Granularity Structure extraction using
shallow techniques

background knowledge. Figure 3 shows the granularity
structure extracted from this sentence, by lexically mapping
relations from Table 1 and parse structure of the sentence.

3.2 Deep Semantic Reasoning

Deep semantic reasoning allows for other forms of reason-
ing (such as commonsense reasoning) for more detailed
analysis and broader coverage to map part-whole relations
from the knowledge base for extracting the granularity
structure. We use a natural language pipeline that accepts
raw texts as input, and converts it into a logical form
(Hobbs 1985). We use an abductive inference engine called
Mini-TACITUS (Mulkar, Hobbs, and Hovy 2007) that uses
the logical form, along with a set of axioms to derive infer-
ences on the input text. This section provides an example
of abductive reasoning for granularity identification. For
describing the working of the NL pipeline, let us consider
the following sentence:

Chris Kinzer kicked the field goal to give Virginia Tech a
victory over North Carolina.

Part-Whole relation between entities

PART WHOLE
Elvis Grbac San Francisco 49ers
Part-Whole relation between events

PART WHOLE
play game

Causal Connectives

to give

Table 1: Table of Part-Whole and Causal Relations

Figure 4: Graphical representation of the Logical Form be-
fore Inferencing

In this sentence, we can observe a person level granu-
larity, and an action performed by an individual. There is
also a team level granularity and the concept of victory at
that granular level. A causal relation exists between these
two granularities and is expressed by “to give”.

Parsing and Logical form conversion
We use the Charniak parser (Charniak 2000) and then
LFToolkit (Rathod and Hobbs 2005) to convert the parse
tree into a logical form (Hobbs 1985).

The simplified logical form for the above sentence is
shown as follows:

ChrisKinzer-nn’(e4,x0) & kick-vb’(e6,x0,x8) & fieldgoal-
nn’(e13,x8) & give-vb’(e10,x8,x9,x10) & VirginiaTech-nn’(e16,x9)
& a’(e19,x10,e15) & victory-nn’(e15,x10) & over-in’(e18,x10,x15)
& NorthCarolina-nn’(e20,x15)

The graphical version of this logical form is shown in
Figure 4. The logical form is the input to the Mini-
TACITUS system for abductive inference.

Abductive Inference Engine: Mini-TACITUS
Mini-TACITUS 2(Mulkar, Hobbs, and Hovy 2007) attempts
to find the best possible explanation for the content of the
sentence, given a set of general axioms as the knowledge
base. A small set of axioms is shown in Table 2. Axioms

2http://www.rutumulkar.com/download/TACITUS/tacitus.php
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Figure 5: Deep Inferencing for Granularity Level Identification. The numbers next to the arrows represent the axiom numbers
from Table2.

1 PERSON(x1)→ ChrisKinzer-nn’(e1,x1)
2 TEAM(x1)→ VirginiaTech-nn’(e1,x1)
3 SCORE(x1,x2)→ fieldgoal-nn’(e1,x1)

Part-Whole relation between events

4 PART-OF(x0,x3)→ PERSON(x0) & TEAM(x3)
Part-Whole relation between entities

5 PART-OF(x1,x2)→ SCORE(x1,x2) & victory-nn’(e1,x2)

Table 2: Sample axioms for Mini-TACITUS

1, 2 and 3 are instantiation axioms. Axiom 1 can be read
as, if x1 is a person, one possibility is that the x1 is Chris
Kinzer. Axiom 4 says that if there is a person and a team,
the person might be a part of the team3. Similarly Axiom
5 says that if there is a scoring event and a victory event,
scoring might be a part of the victory.

Figure 5 shows the process of abduction using the Table
2 for inference. Axioms 1, 2 and 3 are applied first, to infer
Person, Team and Score. Axioms 4 and 5 introduce part-of
relations between the Person and Team and score and vic-
tory respectively. The final set of granularity levels obtained
from the sentence after inferencing, with the two granularity
levels connected by part-of relations. This process becomes
more complex as the axiom numbers increase.

4 Experimental Details

The objective was to compare the performance of causality
relation detection using only granularity features as opposed
to using pure causal connectives/indicators. We performed
the experiments by implementing the following systems:

3The propositions person, team, score etc. are written in CAPS
as they are domain theory propositions and not propositions from
the text. Case sensitivity is one way to distinguish between these
propositions

1. Causality detection using granularity shift identification

(a) Surface level techniques
(b) Deep semantic reasoning

2. Causal relation detection using causal markers

(a) Domain independent causal markers
(b) Domain dependent causal markers

From here on, we will refer to each of these systems by their
corresponding number.

4.1 Corpus details

We performed our experiments on a part of the LDC -
New York Times Annotated corpus (LDC2008T19A) that de-
scribes football games. We selected the first 31 articles de-
scribing football games. There were a total of 544 sentences
in this corpus. Section 5 describes the reasons why a larger
corpus could not be used.

4.2 Background knowledge-base

For experiments 1(a) and 1(b) a background knowledge-
base containing part-whole relations was required. We
use meronymic relations described in (Winston, Chaffin,
and Herrmann 1987) as the part whole relations between
events and between entities in our granularity model. A
detailed description for this selection can be found in
(Mulkar-Mehta, Hobbs, and Hovy 2011). (Winston, Chaf-
fin, and Herrmann 1987) introduce six types of part-whole
relationships of which the Feature-Activity (paying is part
of shopping) type relation is used as the part-whole relation
for events, and the rest are part-whole relations for entities.
As most of the entity part-whole relations in football are
player-team relations (member-collection from (Winston,
Chaffin, and Herrmann 1987)), we extracted the list of
team-player relations from http://databasefootball.com.
Example relation instances include – William Floyd is a
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Player, San Francisco 49ers is a Team, Player is part of
a Team. For events, there does not exist a dictionary of
part-whole relations that can be extracted from the web.
To get event part-whole relations, 10 articles were studied
(∼100 sentences), and a list containing 95 domain specific
sub event relationships was manually developed. Example
relation instances include – touchdown is part of game,
game is part of a season.

For experiments 2(a) and 2(b) a background knowledge
base containing domain specific and domain independent
causal cue words was required. The domain independent
causal cue words were obtained from the causal QA system
developed by (Prager, Chu-Carroll, and Czuba 2004) for
TREC QA. The domain dependent causal cue words were
extracted by studying 10 articles (∼100 sentences) and
manually creating lists of football domain specific causal
cue words such as - gave, lead to, set up and so on.

4.3 Gold Standard

A gold standard was created on the union of all the sentences
that were marked to have a positive causality by any of the
above systems. All the sentences in the dataset were inde-
pendently annotated by 2 annotators. Each annotator was
asked to judge whether the given sentence contained a causal
relation, and was asked to mark the causal cue words in the
sentence. The Kappa agreement (Cohen 1960) between the
two annotators was 0.86. The annotations from the primary
annotator were taken as the gold standard for evaluation.

5 Results and Analysis

The precision and recall of systems 1(a), 1(b) and 2(b) are
shown in Figure 6. System 2(a) which used the domain
independent causal cue words performed extremely poorly,
with a precision of 0.25. This showed that causal markers
are very domain specific, and differ largely with the domain
selected. For instance, the causal markers in a biomedical
domain such as (Mulkar-Mehta et al. 2009) are completely
disjoint from the causal markers in the football domain.

Both the granular causality identification systems (sys-
tems 1(a) and 1(b)) outperformed the pure causal extraction
systems (systems 2(a) and 2(b)) with a precision and recall
of 0.92 and 0.79 respectively for the surface level system
1(a) and precision and recall of 0.89 and 0.60 respectively
for the deep semantic system 1(b). The precision and recall
of the system 2(b) using domain causal markers was 0.79
and 0.44 respectively. System 2(b) had a lower recall than
1(a) and 1(b) as these systems marked sentences which
were missed by 2(b). Following are a few examples:

Derek Loville added a 19-yard touchdown catch and a one-
yard touchdown run in the second quarter as the San Francisco
49ers rolled to a 31-7 half-time edge

Here causality is represented by the word “as”.

The Miami Dolphins went ahead 21-6 at halftime behind

Figure 6: Accuracy for detection of causality

three touchdown throws by Dan Marino, who found Keith Jackson
twice and gave seldom-used Mike Williams his first touchdown in
four seasons with the Miami Dolphins

Here causality is conveyed by the word “behind”.

There were two major reasons for low precision of
system 2(b). First, the parser sometimes incorrectly parsed
“lead” as a verb, when it was a noun in the sentence.
Such sentences were incorrectly identified to have a causal
relation. The following sentence is an example:

Nogh seized a 10-0 lead in the first quarter on Jeff Reed’s
45-yard field goal and a three-yard Jerome Bettis touchdown run
but the New York Jets answered on Doug Brien’s 42-yard field
goal and a 75-yard punt return touchdown by Santana Moss.

Another reason for low precision of system 2(b) was
that the domain specific causal verbs often had other
meanings besides causality.

5.1 Limitations of the Reasoning Engine

It was unexpected that the deep semantic reasoning system
1(b) would be outperformed by the surface level system 1(a).
Upon inspection, we found the limitations of the reasoning
engine (Mini-TACITUS) (Mulkar, Hobbs, and Hovy 2007)
which were blocking inferencing. One of the major prob-
lems we faced with Mini-TACITUS was that the system did
not allow backchaining on the same proposition more than
once. This created issues in cases where a sentence con-
tained mentions of a team and multiple players in the team.
Mini-TACITUS was able to apply only one of the axioms,
and often marked the sentence to not have a granularity rela-
tion. Another issue with Mini-TACITUS was that it did not
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support loopy axioms. This meant that one could not write
axioms such as a→ b and b→ a in the same axiom set.

5.2 Issues with Mapping Part-Whole relations

Mapping part-whole relations to the entity mentions in the
discourse proved to be a very complex task. Although we
were able to extract the part-whole relations for entities from
http://databasefootball.com, the entities extracted from the
website were all in their canonical form i.e. all the players
and teams were mentioned by their full name. However
this is rarely the case in discourse mentions of player or
team names. For instance, the entity William Ali Floyd, was
mentioned as William Floyd or Floyd in discourse. In some
scenarios entities had a preferred name which was often
different from their given names. For instance the entity
David Michael Brown has a preferred name of Dave Brown.
This made part-whole mapping more challenging as current
co-reference solutions are not usable for this task. Similar
was the case for team names. For instance San Francisco
49ers, 49ers and San Francisco are all used interchangeably.

One of the solutions for team names was to mark the loca-
tion and team name as a team and then apply co-reference
and select the largest fragment as the canonical form for the
team. However, the canonical form is not always mentioned
in the article. For instance consider the following paragraph:

San Francisco moved ahead 7-3 on Floyd’s two-yard touch-
down run 11:19 into the game. Merton Hanks returned an
interception 31 yards to set up a 36-yard Doug Brien field goal
that gave the 49ers a 23-3 lead.

This sequence of sentences mentions San Francisco
and 49ers but not the canonical form of the entity San
Francisco 49ers. In order to simplify the downstream
process, we manually converted all the proper names into
their canonical form. As a result, we are not currently able
to scale this to a larger corpus.

6 Conclusions

In this paper we describe a theory of granularity as it occurs
in natural language text. We use this theory for identification
of sentences containing causal relations. We compare this
with a system that identifies causal relations using causal
markers only. Our granularity based system outperforms the
causal markers based system in precision as well as recall.
This provides strong evidence that causality is not always
sequential in nature and can often have a granular structure,
which is a theory that has been largely overlooked.
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