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Abstract

In this paper, we combine a novel Sequential Graph Col-
oring Heuristic Algorithm (SGCHA) with a non-systematic
method based on a cultural algorithm to solve the graph color-
ing problem (GCP). The GCP involves finding the minimum
number of colors for coloring the graph vertices such that ad-
jacent vertices have distinct colors. In our solving approach,
we first use an estimator which is implemented with SGCHA
to predict the minimum colors. Then, in the non-systematic
part which has been designed using cultural algorithms, we
improve the prediction. Various components of the cultural
algorithm have been implemented to solve the GCP with a
self adaptive behavior in an efficient manner. As a result of
utilizing the SGCHA and a cultural algorithm, the proposed
method is capable of finding the solution in a very efficient
running time. The experimental results show that the pro-
posed algorithm has a high performance in time and quality
of the solution returned for solving graph coloring instances
taken from DIMACS website. The quality of the solution is
measured here by comparing the returned solution with the
optimal one.

1 Introduction

Graph coloring is a combinatorial optimization problem
which has many applications such as scheduling (Leighton
1979), frequency allocation (Gamst 1986) and task schedul-
ing (Chaitin 1981). Let G be a given graph; solving the
Graph Coloring Problem (GCP) consists of determining its
chromatic number denoted by χ(G). χ(G) is the minimal
number of colors needed to color the graph vertices such
that two adjacent (neighboring) ones have different colors
(see Figure 1). Finding the chromatic number for a graph is
NP-hard and deciding whether a graph is k-colorable or not
is NP-complete (Garey and Johnson 1979).

Yet for such hard problems many algorithms and their
variations have been developed and explored. Also, several
heuristics have been proposed for solving the GCP. There are
generally three main solving approaches. The first one con-
sists of directly minimizing the number of colors by work-
ing in the legal colors space of the problem. The second
approach comprises of first choosing a numbering color K,
and then iteratively try to minimize the number of conflicts
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for the candidate K. Whenever a solution with zero conflicts
has been found, K is reduced by one and this procedure con-
tinues until we reach a K where the number of conflicts can-
not be equal to zero. As a result, the last legal K will be kept
as the best solution. For the third approach, the number of
colors is fixed and no conflict is allowed, thus, some vertices
might not be colored. The objective of the algorithm is to
maximize the number of colored vertices (Mabrouk, Hasni,
and Mahjoub 2009).

Figure 1: An example of graph coloring problem

In this paper, we propose a solving method including two
phases: the Estimation Phase (EP) and the Improvement
Phase (IP). For the EP we have designed a new algorithm
based on the idea of sequential graph coloring meaning that
vertices will be colored sequentially with a systematic ap-
proach. The EP provides an upper bound for the graph’s
chromatic number and passes this prediction to IP. Then the
IP uses the predicted number as one of its initial parameters
and starts to improve the results. To design an algorithm
for the IP, we used the second strategy in solving the GCP
with non-systematic approach, but with a considerable dif-
ference compared to the idea described in that strategy. We
combined the second strategy with the facilities provided by
the cultural algorithm. In other words, the algorithm syn-
chronously obtains legal coloring combinations for various
values of K. Whenever the problem is solved for a value
of K, all groups that are organized for solving the problem
with a greater value are discarded.

Evolutionary computation is the metaphorical use of con-
cepts, principles and mechanisms extracted from our under-
standing of how natural systems evolve to help solve com-
plex computational problems. Currently, much of this work
has focused on the processes of natural selection and genet-
ics (Reynolds 1994). Cultural algorithms are based on some
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theories proposed in sociology and archaeology to model
cultural evolution. Such theories indicate that cultural evo-
lution can be seen as an inheritance process that occurs at
two levels: the micro-evolutionary level, and the macro-
evolutionary level (Coello and Becerra 2003). At the micro-
evolutionary level, there is a population of individuals, each
described in terms of a set of behavioral traits. Traits can be
modified and exchanged between individuals by means of a
variety of socially motivated operators. At the macro evolu-
tionary level, individuals experiences are collected, merged,
generalized, and specialized in the belief space. This infor-
mation can serve to direct the future actions of the popula-
tion and its individuals. Therefore, cultural algorithms are
useful in exploring large search space accumulating global
knowledge about the problem space. Also, it is clear that
cultural evolution proceeds at a faster rate than biological
evolution (Chung and Reynolds 1996).

The remaining of the paper describes our efficient cul-
tural algorithm combined with a new systematic method for
solving GCP. First, basic concepts of cultural algorithms are
introduced. Then, we introduce the EP and IP algorithms in
detail in Sections 3 to 5. Finally, the experimental results
are listed in Section 6 and a conclusion and possible future
work are discussed in section 7.

2 Basic Concepts of Cultural Algorithm
Cultural algorithms were developed by Robert G. Reynolds
as a complement to the metaphor adopted by evolution-
ary algorithms, which was mainly focused on genetic con-
cepts and on the natural selection mechanism (Reynolds
1994). Cultural evolution can be seen as an inheritance pro-
cess that occurs at two levels: the micro-evolutionary level,
and the macro-evolutionary level. At the micro-evolutionary
level, individuals are described in terms of behavioral traits
(which can be socially acceptable or unacceptable). These
behavioral traits are passed from generation to generation
using several socially motivated operators. At the macro-
evolutionary level, individuals are able to generate mappa
(Renfrew 1994), or generalized descriptions of their expe-
riences. Individual mappa can be merged and modified to
form group mappa using a set of generic or problem spe-
cific operators. Both levels share a communication link.
The micro-evolutionary level refers to the knowledge ac-
quired by individuals through generations which, once en-
coded and stored, is used to guide the behavior of the indi-
viduals that belong to a certain population (Renfrew 1994;
Durham 1994). Reynolds attempts to capture this double in-
heritance phenomenon through his proposal of cultural algo-
rithms (Reynolds 1994). The main goal of such algorithms
is to increase the learning or convergence rates of an evolu-
tionary algorithm such that the system can respond better to
a wide variety of problems (Franklin and Bergerman 2000).
Therefore, the cultural algorithm can be viewed as a dual
inheritance system with evolution taking place at the pop-
ulation level and at the belief level. The two components
interact through a communications protocol. The protocol
determines the set of acceptable individuals that are able to
update the belief space. Likewise, the protocol determines
how the updated beliefs are able to impact the adaptation of

the population component. A component level description
of the cultural algorithms is given in Figure 2 (Soza et al.
2011).

Figure 2: Spaces of a Cultural Algorithm

Cultural algorithms operate in two spaces. First, there is
the population space, which consists of (as in all evolution-
ary algorithms) a set of individuals. Each individual has a set
of independent features that are used to determine its fitness.
Through time, such individuals can be replaced by some of
their descendants, which are obtained through the applica-
tion of a set of operators from the population. The second
space is the belief space, which is where the knowledge, ac-
quired by individuals through generations, is stored. The in-
formation contained in this space must be accessible to each
individual, so that they can use it to modify their behavior.

Generate the initial population
Initialize the belief space
Evaluate the initial population
repeat

Update the belief space (with the individuals accepted)
Apply the variation operators (under the influence of the
belief space)
Evaluate each child
Perform selection

until the end condition is satisfied

Figure 3: Pseudo-code of a Cultural Algorithm

Figure 3 shows the pseudo-code of a Cultural Algorithm
(Soza et al. 2011). Most of the steps of a cultural algorithm
correspond with the steps of a traditional evolutionary al-
gorithm. It can be clearly seen that the main difference lies
in the fact that cultural algorithms use a belief space. In the
main loop of the algorithm, the belief space must be updated.
It is at this point in which the belief space incorporates the
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individual experiences of a select group of members of the
population. Such a group is obtained with the function ac-
cept, which is applied to the entire population.

On the other hand, the variation operators (such as recom-
bination or mutation) are modified by the function influence.
This function applies some pressure such that the children
resulting from the variation operators can exhibit behaviors
closer to the desirable ones and farther away from the unde-
sirable ones, according to the information stored in the belief
space (Soza et al. 2011).

3 Estimator Phase (EP)

The algorithm receives graph G as input and initializes an
empty graph A and at each step adds a vertex to A according
to vertices in G. The EP algorithm is as follows.

1. Create a list from vertices of G based on their degrees in
a decreasing order.

2. Choose an uncolored vertex gi from G with the maximum
degree and add it to A and name it ai.

3. Apply the constraints between the newly added vertex ai
and the rest of vertices in A according to G.

4. Solve the partial1 GCP and mark gi as colored in G.

5. While there exists an adjacent vertex adjgi to gi in G that
does not have a corresponding vertex adjacent to ai in A
do the following.

(a) Choose the vertex adjgi with maximum degree and add
it to A and name it adjai.

(b) Apply the constraints between adjai and the rest of ver-
tices in A according to its correspondence to G.

(c) Solve the partial GCP and mark adjgi as colored in G.

6. If there exists an uncolored vertex goto step 2.

7. Return the total number of colors used.

The idea behind the EP algorithm is to first identify the most
constrained sub-graph of G (which is the sub-graph created
by the most constrained vertex and its adjacent vertices) and
then solve the whole sub-graph according to the constraints
that we have so far in the partially constructed graph A. Once
a sub-graph is solved, the algorithm moves to the next most
constrained unsolved sub-graph. This process continues un-
til the whole problem is solved and there is no other un-
colored vertex left. The algorithm uses a greedy method for
choosing a color for a vertex since it always seeks for the
minimum available color.

Figure 4 shows the steps of the algorithm for a sample
graph. For the sake of simplicity, we suppose that colors are
enumerated starting with zero. In each step of the algorithm,
we add one vertex to the partial graph A. As a result, we just
need to check the adjacency matrix for newly added vertex
and choose a color with the minimum possible number for
the added vertex. The algorithm discussed above is rather
conceptual as we can implement it without actually using

1The term partial graph (partial GCP) means a graph (GCP) is
not completely constructed yet to be exactly like the original graph
(GCP).

Figure 4: Steps of EP algorithm for a sample graph

the partial graph A. We only need to keep track of colored
vertices; every colored vertex is in A. The algorithm can be
implemented to run in O(|V |2) where |V | is the number of
vertices.

4 Components of the Improvement Phase

Algorithm

Prior to formulating the problem, the following terms must
be described.

• Belief of an Individual: The belief of an individual is the
number of colors that it suggests as the minimum colors
for coloring the graph.

• Belief of a Group: The belief of a group is the number
of colors that the group suggests as the answer of graph
coloring.

• General Belief: The general belief is the best solution
found so far by the algorithm, that is the current minimum
number of colors.

• Group: A group can be defined as a set of individuals hav-
ing the same belief.

Next, the following components of the algorithm are dis-
cussed in detail.

1. Representation of Individuals
Each individual in the population is represented with an
integer array, which has a length equal to the number of
graph vertices. The value of each column is a color num-
ber less than or equal to the general belief. Figure 5 il-
lustrates an example of an individual for an eight vertex
graph with the general belief equal to three.

2. Fitness Function
The fitness function evaluates the number of conflicts that
might exist among adjacent vertices which have the same
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0 2 2 1 0 1 0 2

Figure 5: Example of an individual (eight vertex graph)

color. In order to compute this value we simply find adja-
cent vertices from the graph adjacency matrix and check
their color number in the integer array of the individual.
Therefore, the total number of color conflicts is the result
of the fitness function. When the result is equal to zero, a
solution is found. The fitness of a solution, fs, is defined
as follows:

fs =
∑
i∈VG

∑
j∈adji

conflict(i, j)

where VG is the set of all vertices of the graph and adji is
the set of all adjacent vertices to vertex i.
The conflict function is defined as follows:

conflict(i, j) =

{
1 if i and j have the same color
0 otherwise

3. Reproduction and Crossover
Reproduction takes place amongst a number of fittest in-
dividuals of each group and amongst fittest individuals of
different groups. The chosen individuals are then passed
to crossover as parents of new individuals. To produce
each new child, the crossover operator randomly chooses
a pivot. It then finds the vertex colors of the first parent’s
vertices which have a vertex number less than or equal
to the pivot and concatenates them with the vertex colors
of the second parent’s vertices which have a vertex num-
ber greater than or equal to the pivot. Figure 6 shows an
example of the crossover with a pivot equal to 2 on two
individuals of a five vertex graph coloring problem.

Figure 6: Example of crossover (five vertex graph)

The reproduction and crossover operations are performed
under the influence of the belief space. This assures that
each newly produced individual has a belief which is less
than or equal to the general belief. To proof this, we rely
on the fact that each parent passed to the crossover func-
tion has color numbers that are less than or equal to the
general belief. When the crossover is applied to individu-
als, it only concatenates them regarding to the pivot value
and it never modifies the color of any vertex. As a result,
it can be deduced that the vertices of the produced child
have color values between 1 and the general belief.

4. Mutation
We propose two different methods for the mutation.

(a) Mutation to minimize the number of conflicts. In this
type of mutation, some random vertices of the individ-
ual is selected and the number of color conflicts around
the chosen vertices and their adjacent vertices are min-
imized.

(b) Stochastic color change.This mutation method chooses
some vertices and randomly changes their color. The
color number is less than or equal to the general belief.

As discussed before, in a cultural algorithm, the mutation
operator is influenced by the belief space. Here the influ-
ence means operating in the range of colors which are less
than or equal to the general belief. The first method pro-
posed for the mutation has been implemented such that
the number of used colors for individuals does not exceed
the general belief. In other words, during the process of
minimizing the number of conflicts, when a vertex is cho-
sen for color change, its new color is selected from avail-
able colors within the individual. Therefore we can claim
that the numbers of used colors remain less than or equal
to the general belief. It is also intuitive that the second
proposed mutation method always results in individuals
that have color numbers less than or equal to the general
belief. Thus, it can be concluded that the proposed muta-
tion operator always produces individuals that satisfy the
constraints of the belief space.

5. Self Adaptiveness
The proposed algorithm keeps track of the ratio of im-
provement of each group (rg) and best individuals in
available groups. Whenever the algorithm finds out that
there is not any improvement in the groups, it adds Kg

newly random generated individuals to each group and
increases the mutation chance until an improvement is
achieved in a group; once this condition is met, it removes
the additional individuals from the population and resets
the mutation chance to its initial value. The algorithm cal-
culates a new value for each group’s rg at the end of each
iteration according to the following formula:

rg = 1− (current best fitness)g
(previous best fitness)g

It is obvious that 0 ≤ rg ≤ 1. Kg is calculated with the
following formula:

Kg =

⎧⎨
⎩

�K × (rg + 0.1)� rg ≤ 0.9,
beliefg ≥ general belief − 2

�K × rg� otherwise

The value of Kg ranges over [0,K] ⊂ Z
+ where K is

the maximum number of individuals that can be added to
a group. The way Kg and rg are calculated implies that
each time more focus is given to the groups with bigger
ratio of improvement and especially to groups with beliefs
near the general belief.

6. Stopping Criteria
The algorithm is allowed to enter the Self Adaptive phase
S consecutive times. If after S consecutive times no im-
provement has been made in the groups, the algorithm ter-
minates and returns its latest result as the final solution.
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5 Algorithm for the Improvement Phase (IP)

1. Set B to the result of the EP (B now is equal to the esti-
mated minimum number of colors). Randomly generate a
population of size P which has virtually B groups; mean-
ing that there exists B different beliefs among individuals
and each group consists of P/B individuals.

2. Set the current general belief to B.

3. If the stopping criteria are satisfied (which means T =
S, where T and S are respectively the current and the
maximum number of tries) stop the algorithm and return
the best result found so far. Else go to step 4.

4. Update the belief space by finding a new possible belief
that is better than the current one.

5. Check the fitness value of the best individual in each
group and compare it to their previous fitness value. If
no progress has been made in the groups, advance T by
one and run self adaptive mechanism. Otherwise, remove
the changes of self adaptive mechanism (if any) and set T
to zero and reset the mutation chance to its default value.

6. If the general belief is changed, influence the population
by removing individuals belonging to the groups with a
belief greater than the new general belief.

7. Perform reproduction and mutation and go to step 3.

6 Experimental Results

Our proposed algorithm has been implemented using Java
language and has been applied to a variety of graph coloring
instances. The test machine had an Intel Core 2 Duo CPU of
2.5 GHz with 4 GB of Memory and JDK 1.6. Furthermore,
the graph coloring instances used in this section are from an
Internet website formally named DIMACS graphs1.

Table 1: Comparison of EP and DSATUR algorithms
Problem χEP χDSATUR χ

zeroin.i.2.col 31 31 30
mulsol.i.1.col 49 50 49
queen10 10.col 15 15 ?1

mulsol.i.2.col 31 32 31
2-Insertions 4.col 5 5 4
1-Insertions 5.col 6 6 ?
myceil7.col 8 8 8
miles250.col 8 9 8
miles1500.col 73 73 73
le450 25b.col 25 25 25

1.The chromatic number is not reported by DIMACS.

First, we have compared our proposed EP algorithm with
a well-known sequential graph coloring algorithm, namely
DSATUR of Brèlaz (Brélaz 1979) in terms of resulting esti-
mations of chromatic number (χ). Table 1 which shows the
results of this comparison suggests that in some cases our
proposed algorithm returns better results. However, in most

1http://mat.gsia.cmu.edu/COLOR03/

cases both algorithms return the same result. Note that in
theory, the complexity of our EP algorithm is O(|V |2) while
the complexity of DSATUR is O(|V |3) (Klotz 2002).

Next, we have compared our algorithm with the paral-
lel genetic-tabu algorithm (PGTA) designed to solve GCP
(Mabrouk, Hasni, and Mahjoub 2009). The tests have been
conducted without and with our estimator EP and the results
are respectively reported in Table 2 and Table 3.

Table 2: Comparative Results without EP

Problem IP Only PGTA

Instances EP Disabled1 Algorithm2

Instance V E T (s) χ UC3 T (s) χ

queen5 5 25 160 1.10 5 0 2.18 5
queen6 6 36 290 3.98 8 1 5.05 7
queen7 7 49 476 10.15 8 1 11.18 8
games120 120 638 122.81 9 0 153.47 9
miles250 128 387 55.05 8 0 185.46 8
anna 138 493 128.33 11 0 229.85 11

1. To disable the EP, at the first step of the IP algorithm, we initialize B to the number
of vertices instead of the result of the EP.
2. The results are taken from experiments with two processors (Mabrouk, Hasni, and
Mahjoub 2009).
3. The number of Unresolved Conflicts (UC) of the best individual in the group with
correct belief.

Table 3 lists the results of the second experiment with dif-
ferent problem instances.

Table 3: Comparative Results with EP
Problem Proposed Algorithm

Instances (EP+IP)

Instance V E χ TEP (s) TEP+IP (s) χ

myciel3 11 20 4 0.001 0.18 4
myciel4 23 71 5 0.001 0.40 5
queen5 5 25 160 5 0.001 0.95 5
queen6 6 36 290 7 0.002 2.84 7
myciel5 47 236 6 0.002 1.24 6
queen7 7 49 476 7 0.002 7.81 8
huck 74 301 11 0.002 3.12 11
jean 80 254 10 0.004 2.73 10
david 87 406 11 0.003 5.55 11
games120 120 638 9 0.008 16.23 9
miles250 128 387 8 0.007 8.99 8
anna 138 493 11 0.008 9.67 11

Results of Table 2 and Table 3 are shown together in Fig-
ure 7. According to the chart, it is obvious that the proposed
algorithm with EP is more efficient. The main reason for
such efficiency is that the other algorithms proposed in the
literature (e.g. PGTA (Mabrouk, Hasni, and Mahjoub 2009))
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start the solving process assuming the graph is |V | colorable
at the beginning. They then iteratively try to improve the
results. In our proposed algorithm, we provide a rough esti-
mate for the chromatic number using a systematic algorithm
(EP) which is very fast. Then, the IP algorithm tries to im-
prove this by estimation working on different possible chro-
matic numbers at the same time. This way, the algorithm
saves a lot of time reaching the solution. Finally, in Figure 8
we compare the running time results of our algorithm which
are shown in Table 3 with the running time results of PGTA
gathered with 24 processors. The figure shows that our algo-
rithm performs better in most cases.

Figure 7: Comparison of different algorithms’ results

Figure 8: Comparison of the proposed algorithm and PGTA
with 24 Processors in terms of running times

7 Conclusion and Future Work

This paper proposes a new approach for solving GCP us-
ing a combination of a systematic method and a cultural
algorithm. The systematic method is based on an estima-
tor that we propose. The use of the cultural algorithm re-
sulted in reaching a solution in an acceptable time. How-
ever, when combined with our systematic method, the pro-
posed algorithm is capable of finding the solution in a very

efficient running time. The experimental results were gath-
ered mainly on medium sized problem instances primarily
because our algorithm is sequentially implemented. Due to
the nature of cultural algorithms, further work can be done to
parallelize the IP. Solving very large instances of the graph
coloring problem seems to be unfeasible without paralleliza-
tion. Moreover, for large problem instances one can develop
a scheme for finding a lower bound for the graph’s chromatic
number. This would allow the cultural algorithm to be more
focused on possible chromatic numbers and as a direct result
the algorithm would use less memory and processor time.
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