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Abstract

We discuss and evaluate metrics for difficulty rating of Su-
doku puzzles. The correlation coefficient with human perfor-
mance for our best metric is 0.95. The data on human perfor-
mance were obtained from three web portals and they com-
prise thousands of hours of human solving over 2000 prob-
lems. We provide a simple computational model of human
solving activity and evaluate it over collected data. Using
the model we show that there are two sources of problem
difficulty: complexity of individual steps (logic operations)
and structure of dependency among steps. Beside providing
a very good Sudoku-tuned metric, we also discuss a metric
with few Sudoku-specific details, which still provides good
results (correlation coefficient is 0.88). Hence we believe that
the approach should be applicable to difficulty rating of other
constraint satisfaction problems.

Introduction

The general theme of this work is human problem solv-
ing (Simon and Newell 1972). Particularly, we focus on the
study of problem difficulty: What determines which prob-
lems are difficult for humans? Beside giving us insight into
human cognition and thinking, the study of this issue has im-
portant applications in human-computer collaboration and
training of problem solving skills, e.g., in development of
intelligent tutoring systems (Anderson, Boyle, and Reiser
1985; Caine and Cohen 2007).

Difficulty of Problem Solving

We study problem difficulty of one particular problem – Su-
doku puzzle. Our specific goal is the following: Provide
a difficulty rating metric for Sudoku puzzle, that achieves
as high correlation with human performance (measured by
time) as possible. This goal has direct applications – such
metrics are heavily used since Sudoku is currently very pop-
ular and even commercially important, and difficulty rating
of puzzles is one of the key things which influence user’s
experience of puzzle solving.

Despite the straightforwardness of our goal and its direct
applicability, there is no easily applicable theory that could
be used to guide the development of difficulty rating metrics.
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Currently used Sudoku metrics are usually built in an ad-hoc
manner, they are not properly evaluated and their merits are
not clear. In general there has been only little research deal-
ing with the issue of problem difficulty; results are avail-
able only for few specific puzzles, e.g., Tower of Hanoi and
its izomorphs (Kotovsky, Hayes, and Simon 1985), Chinese
rings (Kotovsky and Simon 1990), 15-puzzle (Pizlo and Li
2005), and Sokoban puzzle (Jarušek and Pelánek 2010).

The aim of this work goes beyond the specific study of
Sudoku puzzle. We would like to raise the interest in the
study of problem difficulty, for example by showing that ex-
tensive and robust data for study are easily available on the
Internet. In this way we would like to contribute towards a
theory of difficulty in human problem solving.

Sudoku and Constraint Satisfaction Problems

Sudoku is a well-known number placement puzzle: for a
partially filled 9 × 9 grid, the goal is to place numbers
1 to 9 to each cell in such a way that in each row, col-
umn, and 3 × 3 sub-grid, each number occurs exactly once.
Sudoku has been subject to many research studies, par-
ticularly with respect to its mathematical and algorithmic
properties, e.g., enumerating possible Sudoku grid (Felgen-
hauer and Jarvis 2005), NP-completeness of generalized
version of Sudoku (Yato and Seta 2003), use of constraint
propagation (Simonis 2005) or genetic algorithms (Man-
tere and Koljonen 2007) for solving the puzzle, or algo-
rithms for generating puzzles (O’Sullivan and Horan 2007;
Fowler 2009). Recently, also psychological aspects of the
puzzle has been studied (Lee, Goodwin, and Johnson-Laird
2008).

We focus on the Sudoku puzzle for several reasons.
The Sudoku puzzle has very simple rules, which makes it
amenable to analysis. Thanks to its current popularity we
can easily obtain large scale data on human solving activity.
Sudoku is also a member of an important class of constraint
satisfaction problems, which contains many other puzzles
and also many real life problems (e.g., timetabling, schedul-
ing). Although we use data for the Sudoku puzzle, our goal
is to make the analysis and difficulty metrics as general as
possible, so that the results are potentially applicable to other
constraint satisfaction problems.
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Data on Human Problem Solving

Difficulty rating of Sudoku puzzles is, of course, not a
novel problem. The issue of Sudoku difficulty rating is
widely discussed among Sudoku players and developers, but
it has not been subject to serious scientific evaluation. Cur-
rent rating algorithms are based mainly on personal experi-
ences and ad-hoc tuning. There are several research papers
which discuss methods for difficulty rating (Simonis 2005;
Mantere and Koljonen 2007; Henz and Truong 2009); how-
ever, these works study the correlation of proposed metric
with the difficulty rating provided by the puzzle source (usu-
ally a newspaper), not with the data on human performance.
Such analysis is not very meaningful since the rating pro-
vided in puzzle sources is just another rating provided by a
computer program (nearly all published puzzles are gener-
ated and rated by a computer). The only work that we are
aware of and that uses data on real human performance is
the brief report by Leone, Mills, and Vaswani (2008).

Due to the popularity of the Sudoku puzzle we have been
able to obtain data capturing hundreds of thousands hours of
human problem solving activity (approximately 2000 puz-
zles, hundreds of human solvers for each puzzle). This
means that we have data several orders of magnitude more
extensive than the usual data used in study of human prob-
lem solving – most previous research is based on tens or
hundreds of hours of human problem solving activity (usu-
ally about 20 people and 5 puzzles). Even though this way
of data collection has its disadvantages (e.g., lack of direct
control over participants), thanks to the scale of the “exper-
iment”, the data are robust and applicable for research pur-
poses.

Sudoku and Constraint Satisfaction Problems

The Sudoku puzzle is a special case of a more general type
of problems called constraint satisfaction problems (CSP).
In this section we describe both the general CSP and the
specific Sudoku problem. We also discuss basic techniques
for solving these problems.

Constraint Satisfaction Problems

Constraint satisfaction problem is given by a set of vari-
ables X = {x1, . . . , xn}, a set of domains of variables
{D1, . . . , Dn} (we consider only finite domains), and a
set of constraints {C1, . . . , Cm}. Each constraint involves
some subset of variables and specifies allowed combinations
of variable values (usually given in a symbolic form, e.g.,
x1 �= x2).

A solution of a constraint satisfaction problem is an as-
signment of values to all variables such that all constraints
are satisfied. The class of CSPs contains many puzzles
(e.g., eight queen problem, cryptarithmetic puzzle) as well
as many important practical problems (map coloring prob-
lems, timetabling problems, transportation scheduling). The
general CSP is NP-complete.

Sudoku Puzzle

Sudoku puzzle is a grid of 9×9 cells, which are divided into
nine 3 × 3 sub-grids, partially filled with numbers 1 to 9.

Figure 1: A sample 4 × 4 Sudoku puzzle with enumerated
candidate sets. Circle marks naked single, rectangle marks
hidden single.

The solution of the puzzle is a complete assignment of num-
bers 1 to 9 to all cells in the grid such that each row, column
and sub-grid contains exactly one occurrence of each num-
ber from the set {1, . . . , 9}. Sudoku puzzle is well posed,
if it admits exactly one solution. We study only well-posed
puzzles.

Sudoku puzzle can be easily generalized for any grid size
of n2 × n2 and values from 1 to n2 (Simonis 2005). More-
over, there are many variants of Sudoku which use non-
regular sub-grids (e.g, pentomino), or additional constraint
(e.g., arithmetic comparison of values). In this work we use
4 × 4 Sudoku puzzle as a small running example, other-
wise we consider solely the classical 9× 9 Sudoku puzzles.
Sudoku can be easily expressed as a constraint satisfaction
problem (Simonis 2005).

Constraint Propagation

Classical Sudoku can be easily solved computationally by
backtracking search (Pelánek 2011). However, backtracking
search is not very relevant to estimating human performance.
Another approach to solving CSP is constraint propagation.
This method tries to to find values of (some) variables by
reasoning about constraints. For each variable xi we define
a current candidate set – a set of such values that do not
lead to direct violation of any constraint (see Figure 1). By
reasoning about candidate sets and constraints we can often
derive solution without any search.

Constraint propagation is not guaranteed to find a solu-
tion, but it may be more efficient than backtracking search
and can also be combined with backtracking search to pro-
duce superior results. We are interested in constraint prop-
agation particularly because this is the natural way how hu-
mans try to solve CSPs.

Let us consider specifically the case of Sudoku puzzle.
Human solving of Sudoku proceeds by sequence of steps
in which values are filled into cells. Two basic techniques
directly correspond to the rules of the puzzle (see also Fig-
ure 1). Naked single technique (also called singleton, sin-
gle value, forced value, exclusion principle): For a given
cell there is only one value that can go into the cell, be-
cause all other values occur in row, column or sub-grid of
the cell (any other number would lead to a direct violation
of rules). Hidden single technique (also called naked value,
inclusion principle): For a given unit (row, column or sub-
grid) there exists only one cell which can contain a given
value (all other placements would lead to a direct violation
of rules).
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Sudoku problems solvable by iteration of these two tech-
niques are further denoted as “simple Sudoku”. Most of the
publicly used puzzles which are ranked as easy or mild are
simple Sudokus. There exists many advanced techniques,
such as pointing, chaining, naked and hidden pairs (see,
e.g., (Juillerat 2009)), but we do not elaborate on these tech-
niques in order to keep Sudoku-specific details minimized.

Data on Human Sudoku Solving

For obtaining data on human problem solving we exploited
the current popularity of on-line puzzle solving and par-
ticularly the popularity of Sudoku puzzle. The data were
obtained from three Sudoku web portals. From the server
sudoku.org.uk we have summary data provided by the
server: total number of solvers (the mean is 1307 solvers
per puzzle) and the mean time to solve the puzzle (no data
on individual solvers), we have used 731 puzzles. From the
portal fed-sudoku.eu we have also information about
individual users (the overall time to solve each puzzle). We
have used 1088 puzzles, the mean number of solvers is 131
per puzzle. Finally, from the server czech-sudoku.com
we have not just the time to solve the puzzle, but also the
record of each play. We analyzed these detailed records for
60 users and 15 puzzles.

As a measure of problem difficulty for humans we use
the mean solution time from all solutions. We have thor-
oughly checked that the main results are not dependent on
this choice (we have done the analysis also for median time
or for mean time computed only from a selected subset of
active users). For detailed analysis and description of the
datasets see (Pelánek 2011).

Computational Model of Human Solver

In this section we discuss a simple model of a human Sudoku
solving. We also provide evaluation of the model using the
data on human problem solving. Although we specify and
evaluate the model only for Sudoku puzzle, the basic model
is general, easily modifiable and applicable to other CSPs.

Our main motivation for developing the model is diffi-
culty rating. Nevertheless, the model could be useful in
other applications as well, e.g., as a part of a tutoring sys-
tem (Caine and Cohen 2007) or for detection of cheating
in Internet Sudoku competitions (if the user fills repeatedly
cells in wrong order, then it is probable that he did use com-
puter solver to solve the puzzle).

General Model

We propose a simple model of human CSP solving, which is
based on the following assumptions1. Humans are not good
at performing systematic search, and there are not willing
to do so. Humans rather try to solve CSPs by ‘logic tech-
niques’, i.e., by constraint propagation. Moreover humans
prefer ‘simple’ techniques over ‘difficult’ ones (we elabo-
rate on difficulty of logic techniques bellow).

1We are not aware of any scientific research which could be
used to support these assumptions, but there is ample support for
them in popular books about puzzle solving.

Figure 2: Example of a model run on a sample 4×4 Sudoku
puzzle. Grey cells are cells for which the value can be di-
rectly determined using one of the simple techniques (naked
single, hidden single). In each step one of these cells is se-
lected randomly. Only first three steps of the model run are
shown.

The model proceeds by repeatedly executing the follow-
ing steps until the problem is solved (see Figure 2 for illus-
tration):

1. Let L be the simplest logic technique which yields for the
current state some result (variable assignment, restriction
of a candidate set).

2. Let a by an action which can be performed by the tech-
nique L. If there are several possibilities how to apply L
in the current state, select one of them randomly.

3. Apply a and obtain new current state.

Note that this model makes two simplifying assumptions:
at first that the solver does not make any mistakes (i.e., no
need to backtrack) and that the solver is always able to make
progress using some logic technique, i.e., the solver does not
need to perform search. These assumptions are reasonable
for Sudoku puzzle and are supported by our data on human
problem solving. For other CSPs it may be necessary to
extend the model.

Logic Techniques and Their Difficulty Rating

To specify the stated abstract model, we have to provide list
of logic techniques and their difficulty rating. The usual ap-
proach used by Sudoku tools is based on a list of logic tech-
niques which are supposed to be simulations of techniques
used by humans; each of these techniques is assigned diffi-
culty rating. This rating is provided by the tool developer,
usually based on personal experience and common knowl-
edge.

This approach has the disadvantage that it contains lot of
ad-hoc parameters and it is highly Sudoku-specific, i.e., it
gives us limited insight into human problem solving and it is
not portable to other problems (the success of the approach
is based on significant experience with the problem).

We propose an alternative approach to classification of
logic techniques. The approach is based on the assumption
that many advanced logic techniques are in fact “short-cuts”
for a search (what-if reasoning).

We therefore provide rating of difficulty of logic tech-
niques with the use of search. This approach contains nearly
no parameters and is not specific to Sudoku (i.e., it is appli-
cable to any CSP). The only Sudoku specific issue is the se-
lection and realization of “simple” techniques – in our case
these are hidden single and naked single techniques; note
that these techniques are basically derived from the rules of
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the problem. For most CSP problems it should be possible
to derive basic simple techniques on a similar basis.

Let us suppose that we have a state in which the speci-
fied simple techniques do not yield any progress. For each
unassigned variable (empty cell) we compute a “refutation
score”, this score expresses the difficulty of assigning the
correct value to this variable in the given state by refuting all
other possible candidates.

For each wrong candidate value v we denote ref v the
smallest number of simple steps which are necessary to
demonstrate the inconsistency of the assignment. The “ideal
refutation score” is obtained as a sum of values ref v . If
some of the values is not refutable by simple steps, we set
the score to ∞.

The computation of ref v can be done by breadth-first
search over possible puzzle states, but it is computationally
expensive and anyway the systematic search does not cor-
respond to human behavior. Therefor we use randomized
approach analogical to our main model – instead of comput-
ing the smallest number of steps necessary to refute a given
value, we just use a randomized sequence of simple steps
and count the number of steps needed to reach an inconsis-
tency. The refutation score is thus a randomized variable.

The variable (cell) with the lowest score is deemed to be
the easiest to fill and the refutation score is used as a dif-
ficulty rating of an (unknown) logic technique. For all our
considered Sudoku puzzles there was always at least one cell
with finite score; for more complex problems it may be nec-
essary to further specify the model for the case that all refu-
tation scores have value ∞.

Evaluation of the Model

Using the described notions we specify a “Simple Sudoku
Solver” (SiSuS) model: the general model described in Sec-
tion with two hard-wired logic techniques (hidden single,
naked single) of equal difficulty which uses refutation score
when the basic techniques are not applicable.

We have evaluated the SiSuS model over detailed data
records from czech-sudoku.com. To evaluate our
model we compare the order in which the cells are filled
by humans and the model. For the evaluation we used 15 se-
lected puzzles of wide range of difficulty (from very easy to
very difficult). Each puzzle was solved by 10 to 60 solvers.

Based on the data records of human solvers we computed
the mean order for each cell. Similarly we computed for
each cell mean order over 30 randomized runs of our model.
In most cases the Spearman’s correlation coefficient be-
tween the two orderings is between 0.85 a 0.95; see (Pelánek
2011) for illustrations over specific examples. Best results
are obtained for puzzles of intermediate difficulty. For very
easy puzzles there are many ways in which cells can be filled
and therefore it is hard to predict the exact order (in this
cases the order also differs among individual solvers). Dif-
ficult puzzles cannot be solved by the basic techniques used
by the model and hence the prediction is again bit worse.
Nevertheless, given the simplicity of the SiSuS model, we
consider the overall performance to be very good.

Difficulty Metrics

Based on the model of human solution progress we now pro-
vide several difficulty metrics and evaluate them on the data
on human behaviour. For all studied metrics we report the
Pearson’s correlation coefficient.

Note that difficulty rating is interwoven with modeling
human solvers. Difficulty metrics are based on the data col-
lected by simulating the model of human solver, but the
model depends on the rating of difficulty of techniques.
Models which incorporate many logic technique depend on
the intuition of the human designer (alternatively they could
use some kind of bootstrapping).

Combining Rating of Logic Techniques

Given a model of a human solver, a straightforward ap-
proach to difficulty rating is to run the model, count how
often each logic technique is used and produce the overall
rating as a simple function of these statistics. This is the ap-
proach used by most Sudoku generators. For our evaluation,
we use the following metrics:

Serate metric Default metric used by the Sudoku Explainer
tool (Juillerat 2009), which uses more than 20 techniques.
The metric is a maximal difficulty of a used logic tech-
nique.

Serate LM metric Linear model over techniques used by
the Sudoku Explainer tool; this approach is inspired
by (Leone, Mills, and Vaswani 2008). We compute how
many times each logic technique2 was used over each
problem. Using half of the problems as a training set we
compute parameters for a linear model; the metric is eval-
uated on the remaining problems (a test set).

Fowler’s metric Default metric used by G. Fowler’s
tool (Fowler 2009); the metric is given by a (rather com-
plicated) expression over number of occurrences of each
logic techniques (with ad-hoc parameter values).

Refutation sum metric Mean sum of refutation scores
over 30 randomized run of our SiSuS model.

Dependency Metric

So far we have focused on the difficulty involved in single
steps. The overall organization of these steps was considered
only as a simple function of difficulty ratings of individual
steps. Insufficiency of this approach can be seen particularly
for simple Sudokus – these problems are solvable by the ba-
sic simple techniques (i.e., the above describe metrics return
very similar numbers), but for humans there are still signifi-
cant differences in difficulty (some problems are more than
two times more difficult than others).

Some of this additional difficulty can be explained by the
concept of ‘dependency’ among steps in the solution pro-
cess (applications of logic techniques). An important aspect
of human CSP solving is “the number of possibilities lead-
ing to a next step” in each step. For example in our small

2We take into account only techniques which were used in at
least 0.5% of all technique applications. There are 13 such tech-
niques, all other techniques were grouped together.
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Figure 3: Dependency among steps captured by graph of
number of possibilities for the next step. Results for three
sample puzzles of different difficulty are shown (the diffi-
culty is indicated by mean solution time of human solvers).

Sudoku example from Figure 2, there are 3 possibilities in
the first step, 4 possibilities in the second and third steps,
and so on. It is quite clear that for the classical 9×9 Sudoku
it it makes a big difference if we can in the first step apply a
logic technique at 10 different cells or only at just 2.

To apply this idea, we count in each step of the SiSuS
model the number of possibilities to apply a simple tech-
nique. Since the model is randomized, we run the model
several times and compute for each step mean number of
possibilities. Figure 3 shows a difference among several
specific instances – it shows that for easy problem there are
many possibilities for progress in each step whereas for hard
problem there are only few of them.

To specify a difficulty metric, we need to convert the
graphs in Figure 3 to a single number. We simply com-
pute the mean over the first k steps (k is a parameter of the
metric). But what is a good value of k? As illustrated by
examples in the Figure 3, in the second half of the solution
there are usually many possibilities for all problems; i.e.,
these steps probably do not contribute to the difficulty and
therefore it is better to limit the parameter k, on the other
hand too small k ignores potentially useful information. We
have evaluated the preciseness of the metric with respect to
the parameter k over our data sets. The results show that
a suitable value of k is slightly dependent on the data set,
but generally it is between 20 and 30 and results are not too
much dependent on the precise choice of k (for the interval
20 to 30).

Evaluation

Except for the metrics described above, we also evaluated
combinations of metrics, more specifically linear models
over several metrics. Parameters of linear models were de-
termined over a training set (one half of the problems), re-
sults were evaluated over the other half of models (testing
set). We evaluated two linear models. The first combined
metric is based on data obtained only from our SiSuS model

Table 1: Correlation coefficients between metrics and hu-
man results. Refutation sum metric is not applicable to sim-
ple problems.

fed-sudoku sudoku.org
metric all simple all simple
number of givens 0.25 0.22 0.27 0.34
Serate 0.70 0.55 0.86 0.28
Serate LM 0.78 0.60 0.86 0.66
Fowler’s 0.68 0.53 0.87 0.64
Refutation sum 0.68 – 0.83 –
Dependency 0.67 0.73 0.69 0.78
Combined (RD) 0.74 – 0.88 –
Combined (SFRD) 0.84 0.75 0.95 0.83

(linear combination of Refutation sum and Dependency met-
ric; denoted “RD” in Table 1). The second combined metric
is a based on four metrics (Serate, Fowler’s, Refutation sum,
Dependency; denoted “SFRD” in Table 1).

Results are given in Table 1. Figure 4 gives scatter plots
for combined metric SFRD as an illustration of the distribu-
tion of the data points.

We get consistently better results for sudoku.org.uk
than for fed-sudoku.eu. This is probably mainly due to
the wider variability of difficulty in the sudoku.org.uk
dataset. Beside the difference in absolute numbers, all other
below discussed trends are the same over both datasets.

For the “Simple” subset of puzzles (solvable only by hid-
den single and naked single techniques), previously studied
metrics (Serate, Fowler’s) achieve rather poor results; on the
other hand, the new Dependency metric works quite well.

The Refutation sum metric achieves only slightly worse
results than classical metrics (Serate, Fowler’s), despite the
fact that it is much more general and simpler technique with
only little Sudoku specific aspects (particularly it does not
have ad-hoc parameters).

Serate LM metric (linear model over data about the us-
age of 14 logic techniques) achieves similar results as basic
Serate metric. Fowler’s metric, which differs in details and
parameter values but uses the same basic approach as Ser-
ate, also achieves similar results. It seems that given the ba-
sic approach, the selection of exact parameter values is not
that much important. Nevertheless, by combining 4 differ-
ent metrics, we can significantly improve the overall perfor-
mance and achieve really good performance of the metric.

Conclusions

Current popularity of puzzle solving via the Internet enables
us to easily collect extensive data on human problem solv-
ing. Although such data collection is not done under con-
trolled laboratory conditions, our analysis shows that data
from the Internet may be robust and definitively useful. In
our evaluation we used two different datasets; although we
did get different absolute results for each dataset, relative
results (comparison among different techniques) was nearly
the same – this supports our believe in robustness and use-
fulness of the data collected from the Internet. In this work
we use the data to study and evaluate difficulty ratings of
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Figure 4: Scatter plots showing relation between prediction of difficulty by combined rating metric and real difficulty; each dot
corresponds to one Sudoku puzzle. Graphs correspond to the last line in Table 1.

a sample problem; but the approach could be used also for
other problems and for studies of other cognitive issues (e.g.,
what kind of errors humans do).

In this work we study a Sudoku puzzle as an example of a
constraint satisfaction problem. We provide a general model
of human CSP solving. We show that by instantiating the
model with only few and simple Sudoku-specific details, we
can obtain quite reasonable difficulty rating metric (corre-
lation coefficient up to 0.88). By combining several tech-
niques which are specifically tuned for Sudoku we are able
to obtain very good difficulty rating metric (correlation co-
efficient up to 0.95).

We identify two aspect which influence the problem diffi-
culty: difficulty of individual logic steps during the solution
and dependency among individual steps. Previously used
techniques (Fowler 2009; Juillerat 2009) focused only on
individual logic steps. The novel concept of dependency en-
abled us to significantly improve the performance of rating.
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