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Abstract

We revisit a framework for designing peer-based intel-
ligent tutoring systems motivated by McCalla’s ecolog-
ical approach, where learning is facilitated by the previ-
ous experiences of peers with a corpus of learning ob-
jects. Prior research demonstrated the value of a pro-
posed algorithm for modeling student learning and for
selecting the most beneficial learning objects to present
to new students. In this paper, we first adjust the valida-
tion of this approach to demonstrate its ability to cope
with errors in assessing the learning of student peers.
We then deepen the representation of learning objects
to reflect the expected time to completion and demon-
strate how this may lead to more effective selection of
learning objects for students, and thus more effective
learning. As part of our exploration of these new ad-
justments, we offer insights into how the size of learning
object repositories may affect student learning, suggest-
ing future extensions for the model and its validation.

Introduction

In this paper, we provide a model for determining which
learning objects to present to students in an intelligent tutor-
ing system1, against the backdrop of a repository of learn-
ing objects and a history of the previous experiences of
peers with these objects. This approach uses techniques in-
spired by collaborative filtering (Breese, Heckerman, and
Kadie 1998), identifying which users in a system are sim-
ilar to each other, to then preferentially recommend what
has been most useful to similar students. Our work is also
motivated by McCalla’s ecological approach to e-learning
systems (McCalla 2004) described as “attaching models of
learners to the learning objects they interact with, and then
mining these models for patterns that are useful for various
purposes”. This approach demands that, in real-time, the
learning of the students adjusts and informs the process of
selecting the appropriate content for each new student.

In previous work (Champaign and Cohen 2010) two pri-
mary elements were in focus: i) specifying the algorithm
that determines which peers and which learning objects are
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1A learning object might be a lesson on fractions or a video
showing a sorting algorithm, for example.

most important for each new student, based on a modeling
of similarity matching and of the benefit derived from learn-
ing objects by previous peers ii) presenting a validation of
the approach that simulates student learning, leveraging an
assessment in terms of letter grades (through pre- and post-
tests) as well as a modeling of the target knowledge levels
for each learning object.

In this paper, we first of all demonstrate the robustness
of the algorithm (item i) above) by introducing error into
the assessment used as part of the validation. Through this
extension, we are able to show that the average knowledge
level attained by the students continues to reflect appropri-
ate learning, because the ongoing collaborative recommen-
dation of learning objects helps to compensate for errors that
are introduced.

We also explore a richer modeling of learning objects in
terms of their expected time requirements. From here, we
return to populate our simulations with learning objects of
varying temporal demands, continuing to operate with pos-
sible errors in assessment as well. We also extend the size of
the student population to be much larger, in our experiments.
We are able to show that our revised algorithm continues to
provide high levels of knowledge to students, on average.
We conclude with a detailed discussion of the value of this
extended model, in comparison with related work, leading
to some proposed directions for future research.

Background

The previous algorithm for determining which learning
objects to assign to students (Champaign and Cohen 2010)
is presented in Algorithm 1. It assumes that we are tracking
a set of values, v[j,l], representing the benefit of the interac-
tion for user j with learning object l. v[j,l] is determined by
assessing the student before and after the interaction, and the
difference in knowledge is the benefit. For each learning ob-
ject, the previous interactions of students with that object (in
terms of their initial and final assessments) is also recorded.2
A student’s knowledge is assessed by mapping it to 18 con-
crete levels: A+, A, A-, ... F+, F, F-, each representing 1

18 th

2The algorithm would be run after an initial phase where stu-
dents are learning through the use of a set of learning objects.
These students’ experiences would then form the basis for instruct-
ing the subsequent students.
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Algorithm 1 Collaborative Learning Algorithm
1: Input the current-student-assessment (CSA)
2: for each learning object (LO): do
3: Initialize currentBenefit to zero
4: Initialize sumOfBenefits to zero
5: Input previous interactions between students and LO
6: for each previous interaction on LO: do
7: similarity = calculateSimilarity(CSA, interaction-

initial-assessment (IIA))
8: benefit = calculateBenefit(IIA, interaction-final-

assessment)
9: sumOfBenefits = sumOfBenefits + similarity *

benefit
10: end for
11: currentBenefit = sumOfBenefits / numberOfPrevi-

ousInteraction
12: if bestObject.benefit < currentBenefit then
13: bestObject = currentObject
14: end if
15: end for
16: if bestObject.benefit < 0 then
17: bestObject = randomObject
18: end if

of the range of knowledge.
The anticipated benefit of a specific learning object l, for

the active user, a, under consideration would be: 3

p[a, l] = κ

n∑

j=1

w(a, j)v(j, l) (1)

w(a,j) reflects the similarity ∈ (0,1] between each user j
and the active user, a, and κ is a normalizing factor. 1

|n| was
used as the value for κ in this work where n is the number
of previous users who have interacted with learning object l.
w(a,j) was set as 1

1+difference where difference is calculated
by comparing the initial assessment of j and the current-
student-assessment of the active student a, and assigning an
absolute value on the difference of the letter grades assigned.
This permits us to obtain a similarity value between 0 and
1, with 1 representing identical assessments and is shown
as the calculateSimilarity function in Algorithm 1. v(j,l) is
also computed using a difference, not an absolute difference
but an actual difference (between the initial and final assess-
ments). For example, v(j,l) where j is initially assessed as
A+ and finally assessed at B- would be -5. This is shown
as the calculateBenefit function in Algorithm 1. The user a
is ultimately assigned the learning object l that maximizes
p[a,l].

In order to simulate the learning achieved by students, the
following approach was used. Let LOK[l,k] represent some
learning object l’s target instruction level of knowledge k,
such that LOK[l,k] ∈ [0,1]. For example, the target instruc-
tion level might be 0.68 for a 90 minute lab on recursion,
since students have completed previous learning but are still
gaining an understanding of nuances.

3Adapted from (Breese, Heckerman, and Kadie 1998)

Learning objects also have an impact, which can be pos-
itive or negative4. Let I[l,k] ∈ R , represent the impact of
learning from learning object l on the knowledge k, that is,
in the optimal case how much the learning object can adjust
a student’s knowledge k. The impact can be thought of as,
for a student at the target level, what is the expected learn-
ing benefit of the object. This is information used by our
approach to simulate the learning that is occurring.

Let UK[j,k] represent user j’s knowledge of k ∈ K, such
that UK[j,k] ∈ [0,1]. An example from computer science
would be a knowledge of recursion recorded to be at 0.33.
This would be interpreted as the student has an understand-
ing of 33% of the course content dealing with recursion.

After an interaction with an object l, a user j’s knowledge
of k is changed by:

ΔUK[j,k] =
I[l, k]

1 + (UK[j, k]− LOK[l, k])2
(2)

This has the implication that the impact of a lesson is at a
maximum when the student’s knowledge level matches the
target level of the learning object. As the two values differ,
the impact of the lesson exponentially decreases.

Based on this change, the user’s knowledge in that area is
updated as:

UK ′[j, k] = UK[j, k] + ΔUK[j, k] (3)

The user’s average knowledge can then be calculated as:

UK[j] =
1

|K|
∑

k∈K

UK[j, k] (4)

In order to plot learning curves, the average knowledge
(∈ [0, 1]) of all students is plotted against their progress in
the course of study. Algorithms perform well when the av-
erage knowledge attained by students is high. Previously,
a set of algorithms to select learning objects for students
were run, to demonstrate the value of the proposed ap-
proach. Random Association associates each student with
a randomly assigned learning object; Greedy God chooses
the best possible interaction for each student for each trial.
There two curves are the benchmarks (low performance and
“the ideal”). Three variations of Algorithm 1 were then run.
Raw Ecological has each student matched with the learn-
ing object best predicted to benefit her knowledge; Pilot
Group has a subset of the students (10%) assigned, as a pilot
group, systematically to learning objects - these interactions
are used to reason about the best sequence for the remain-
ing 90% of the students; Simulated Annealing is such that
during the first 1/2 of the trials there is an inverse chance,
based on the progress of the trails, that each student would
be randomly associated with a lesson; otherwise, the ecolog-
ical approach was applied. Encouraging results for all three
variations of Algorithm 1 were found.

4The negative impact was introduced to simulate the possibility
of misinformation from a poor quality learning object or a learning
object that does a good job teaching one concept, while undermin-
ing the understanding of another concept.
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Figure 1: Comparison for Varying Standard Deviation of Error in Assessment

Error

Algorithm 1 proposes the selection of learning objects for
students based on their similarity to peers and the benefits
these peers have obtained from existing learning objects.
Both similarity and benefit are determined in terms of the
assessment levels of the students (obtained by some kind of
pre- and post-test of each student, mapped to a level of a
letter grade).

Since assessment in the real world is both imprecise and
occasionally inaccurate5, there is merit in exploring how
well the algorithm would perform when validated in a simu-
lated environment where the assessments include an element
of error. Our interest is in how well the algorithm makes rec-
ommendations using this noisy data6.

ERROR: approach

Our original hypothesis was that we expected errors in as-
sessment, of the form of introduced noise, to degrade the
learning curves observed. That is, we expected that as the
noise increased, the slope of each learning curve embodying
Algorithm 1 would decrease and they would gradually move
away from the ideal greedy god curve and towards the ran-
dom baseline. It was expected that rather than converging
on perfect knowledge (the 1 value on the y axis), the curves
would converge on a lower value (that would drop ever lower
as the noise increased). This would happen as the number of
interactions between students and learning objects increased
(modeled as trials in the x axis).

If the algorithm were robust in the face of error (that is, if
the learning curves stay closer to the ideal case), this tells us
that our approach can handle errors in assessment and con-
tinue to provide worthwhile recommendations to students,
even in the face of assessment errors. Poor performance,
where the slope of the curves would drop quickly towards
the random baseline, would tell us that this approach is

5Even with a ideal assessment tool, there will still be situations
where student mistakenly give incorrect information that they un-
derstand (known as a slip) or accidentally give the right answer to
something they don’t understand (known as a guess).

6It is important to note that there are different approaches to
model a “bad assessment”. By randomly adding noise, we’re mod-
eling an assessment that has variability in every assessment. This
does not model an assessment with a systemic bias, for example,
one that always evaluates C+ students as D students.

highly dependant on good assessments (and would thus con-
strain the environment where it would be appropriate to use
this approach).

In order to produce the error, we modified that assess-
ment function in our simulation. Rather than mapping a
knowledge level (continuous values in the range [0,1]) to
a discrete level {A+, A, ... F, F-}, we first added a ran-
dom number, using a Gaussian distribution, with a mean of
zero and a standard deviation of 0.05, 0.1, and 0.57. These
experiments, taken as a whole, should provide us with an
understanding of how increasing levels of noise in the as-
sessment affects the effectiveness of curriculum sequencing
performed by this approach. The greedy god and random
baselines remained unchanged, since neither relied on as-
sessment.

ERROR: results and discussion

We did not see evidence of what we originally expected with
the 3 graphs created with standard deviation (0.05, 0.1, 0.5).
Instead, all 3 curves looked quite similar to the learning
curves obtained using this approach on data without noise
added to it as presented in (Champaign and Cohen 2010). In
Figure 1 (a)(b)(c), all three variations of the algorithm are
performing well, in getting close to attaining the ideal aver-
age level of knowledge for students (i.e. the greedy god) by
the end of the 200 trials. Note, as expected, simulated an-
nealing takes longer to converge, as it is coping with random
information at the beginning.

An initial concern was that our experiment might some-
how be accidentally determining the appropriate learning
objects without relying on the assessment. To test this con-
cern, we replaced the assessment function with a function
that randomly provides one of the 18 discrete levels (in-
stead of an assessment, it provides a random grade). Since
the three variations on this approach (ecological, ecological
with pilot and simulated annealing) all rely on assessments
to function, our expectation was that this change would pro-
duce 3 curves that were degraded to the performance of the
random baseline. This is the result we saw.

7The idea is that if a student could be modelled with an erro-
neous assessment level (e.g. B vs. A) then with greater standard
deviation, the likelihood of an erroneous label increases. Note val-
ues closer to the true value will still be the most likely to be as-
signed.

497



In all, these results tell us that this approach is, in fact,
highly robust with noisy data. As long as there is a ten-
dency for an assessment to be closer to a correct value than
an incorrect value, this approach will steadily improve the
curriculum sequence suggestions as more data is obtained.
Realistic amounts of noise, which are expected with any as-
sessment, would seem to be acceptable to the functioning of
this approach.

What is happening with our approach is the following.
Suppose the error in assessment led to an inappropriate
learning object being proposed for a new student (e.g. the
previous student was assessed as deriving benefit from that
object where, in fact, he had not). The simulation would
model this new student’s interaction with the learning ob-
ject. Now, this should reflect a poor increase in knowledge
(i.e. the student’s knowledge level is not attuned to the target
level of knowledge (Equation 2)). When the new student’s
assessment is modeled, therefore, this will be attached as
one of the experiences with that learning object. As a result,
this learning object would now be less likely to be assigned
to new peers.

Part of the power of this peer-based algorithm is the abil-
ity to correct mistakes. If a recommendation is made be-
cause of an inaccurate assessment (that is, an interaction that
was actually harmful is instead recorded as being useful) this
will lead to further recommendations of that object to similar
students. However, when those similar students use the ob-
ject, they will in turn be assessed. As this approach consid-
ers all previous interactions, with more students interacting
with the object, a larger history of interactions will accu-
mulate. The average of these assessments will approach the
true value, even if some of those assessments are distorted
by noise. As this happens, the system is less likely to recom-
mend the bad object, and will increasingly direct students to
a better choice, leading to a self-correcting system.

While our initial feeling was that a standard deviation of
0.5 was a large amount of noise, we then ran an experiment
with a standard deviation of 1.5 (see Figure 1 (d)). The con-
sequence of this is that we’re adding noise which is very
likely to move data points anywhere in the range (with a
standard deviation of 1.5, there is roughly a 25% chance
of a perfect knowledge of 1 being mapped to a F-). With
this massive amount of noise being added, we then saw the
degradation we had initially expected (with the ecological
condition converging on 0.8 instead of 1.0).

Variable Time of Instruction
In the previous approach outlined the Background section,
which learning object should be assigned to a particular stu-
dent is dependent on similarity of peers and the previous
learning benefit obtained by those peers, alone. We explored
a new extension, where we incorporate reasoning about the
length of time it takes to complete an interaction with a
learning object as well.

Clearly, in real learning situations, learning events can
take variable amounts of time. Watching a recording of a
lecture might take 76 minutes, while attending a day long
seminar might take 8 hours. Rather than making the simpli-
fying assumption that each interaction with a learning object

will take an equivalent length of time, we can incorporate
this concept into our reasoning.

calculateBenefit in Line 8 of Algorithm 1 then needs to be
modified to incorporate time. Rather than consider the ben-
efit of the learning object, we can think of the proportionate
benefit, that is, how much benefit it provides per minute of
instruction (assuming a repository where each learning ob-
ject’s average time to completion is recorded). This can be
calculated by dividing the benefit of the learning object by
the length of time it takes to complete the interaction for the
average student.

We are interested in ensuring that, with this more sophis-
ticated consideration incorporated, the approach outlined in
Algorithm 1 continues to provide worthwhile recommenda-
tions for curriculum sequencing.

TIME: approach

We modified the previous approach (Champaign and Cohen
2010) such that, as well as generating a random set of target
instruction levels for each learning object, we also gener-
ated a random length of completion (ranging from 30 to 480
minutes). We used 50 students, 100 learning object and three
runs – an error of 0.05, 0.1 and 0.5 standard deviation – each
time for 20000 minutes of simulated instruction. As well as
the random and greedy god baselines, we again considered
the pure ecological, ecological with pilot and simulated an-
nealling variants. These results are displayed in Figure 2 (a),
(b) and (c).

It is worthwhile to note that initially we experimented
with about 2400 minutes of instruction, based on this be-
ing roughly the amount of instruction in a typical university
course. This was determined to be far too short a length of
experiment as the learning curves reflected only the initial
part of the graphs shown here. Our conclusion was that we
were simply failing to see, yet, the benefit to learning that
the students achieve and that either longer lesson times were
needed or that it may be valuable to track students over mul-
tiple classes.

TIME: results and discussion

With the increased time provided in Figure 2 (a) (b) (c), we
did indeed attain the kind of student learning that we ex-
pected (reasonably high average level of knowledge, for stu-
dents). With the added sophistication of allowing learning
objects to require different lengths of times to complete, this
approach continues to make worthwhile curriculum recom-
mendations to students. The fact that all three variants on
the algorithm are approaching the ideal of the greedy god at
the end of the trials is encouraging. As expected, the greater
the standard deviation, the more challenged each algorithm
is to attain appropriate student knowledge levels, but the dif-
ferences between Figure 2 (a)(b)(c) are still relatively minor.

In some of our runs with varying standard deviations of
error, we saw that in the early stage (up to 2000 minutes) the
ecological with pilot variant would outperform the greedy
god. This should be impossible, since the greedy god is an
upper bound benchmark. Our theory about what is happen-
ing is that the pilot group interacts with learning objects, and
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Figure 2: Comparison for Varying Standard Deviation of Error Including Time of Instruction

because interactions with short learning objects can be com-
pleted more quickly, we will naturally tend to have more
data about them. This leads to a bias towards short learn-
ing objects. Since the learning isn’t assessed until after the
completion of a learning object, if the greedy god approach
assigns a student to an (optimal) 8 hour learning object, this
won’t be reflected in the average knowledge for the group
of students for 480 minutes. It would be expected that the
greedy god will, in the long run, overtake the ecological with
pilot variant, which is what happened.

One approach to avoiding this would be to assess the stu-
dents’ knowledge every minute: Rather than waiting until
the completion of the interaction, assess the student’s every
minute and apply 1

length of lesson to their knowledge. Us-
ing such an approach, the greedy god should be the upper
bound, even during the early stages.

Another unusual feature is that the learning curves ap-
proach a final knowledge less than 1, whereas in the exper-
iments of Figure 1 they approached one. Initially this was
thought to be a consequence of the introduced error; how-
ever, considering the curves from the error section above
does not support this idea. It is possible that each approach is
again developing a bias towards short lessons, and is there-
fore not taking advantage of the full range of learning objects
that may help the students approach complete mastery.

One valuable extension to this work therefore would be to
incorporate a requirement that students must complete a va-
riety of learning objects of varying lengths. We believe that
our experiments run with this stipulation would no longer
produce the early stage anomalies.

In addition, historically learning gain has been the ac-
cepted metric for measuring a learning event for ITS re-
searchers. One alternative which is being considered is is
to use the proportional learning gains proposed by (Jackson
and Graesser 2007), is defined as: post-test−pretest

1−pretest . This
would be another useful alternative for avoiding a bias to-
wards interactions where a student has a low initial score, if
this formula were used instead on the right hand side of the
equation in line 8 of Algorithm 1. For example, with this
formula, advancing from A to A+ is a greater learning gain
than advancing from B to B+.

Large Corpus

It has been suggested (McCalla 2004) that ecological ap-
proaches, rather than degrading with large amounts of in-
formation, improve. Intuitively this makes sense, with more
data better recommendations should be possible. In order
to investigate this, we considered a student group interact-
ing with a large library of learning objects (5000 objects).
Collecting a massive amount of educational content offers a
valuable resource, but also introduces the challenge of navi-
gating a large corpus.

When we consider a simulation with dramatically more
learning objects (Figure 2(d)), we see that both the simulated
annealing and the ecological with pilot learning curves be-
come steeper. This corresponds with McCalla’s prediction.
The ecological with pilot group has a sustained improve-
ment and outperforms the raw ecological more dramatically
than in previous experiments. Similarly, the simulated an-
nealing conditions performs well with a larger library. The
additional exploration of the corpus available to these algo-
rithms in their initial phases appears to be providing some
valuable benefit. Note that these curves approach the ideal
average knowledge of the greedy god to a greater extent with
the larger repository (compared to the small repository used
in Figure 2 (a)(b)(c)), which again confirms McCalla’s hy-
pothesis.

Conclusion and Discussion

In this paper, we have outlined some key extensions to an
existing model for curriculum sequencing in a peer-based
intelligent tutoring environment. This model is distinct in its
use of the previous learning experiences of peers, rather than
simply relying on peers to collaborate in real-time, to assist
in student learning (as in (Cheng and Vassileva 2006)). This
approach focuses on determining the most appropriate, sim-
ilar peers and the most appropriate learning objects (those
that provided the most benefit to those similar peers). In ad-
dition, that model was validated through the use of simulated
students, modeling the knowledge levels expected for each
learning object and leveraging a pre- and post-test assess-
ment of each student, to measure whether effective learning
had occurred.

The extensions that we introduce here first of all focus on
our methods for validating the model. We are able to demon-
strate that even in the presence of some error in assessment,
the content sequencing algorithm that forms the basis of the
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student learning is providing very effective learning objects
for our simulated students. These results not only confirm
the value of this particular peer-based tutoring approach but
also reinforce the appropriateness of using simulated stu-
dents as an important part of validation. The simulations do
rest on a specification of student assessments, but the meth-
ods that would be used to set these values can tolerate some
inaccuracy.

As a result, we feel that our work continues to promote the
value of simulated student validations, for other researchers
as well. Our use of simulations differs from that of others
such as (VanLehn, Ohlsson, and Nason 1996; Beck 2002;
Matsuda et al. 2007) who all used simulated students as a
technique for understanding the behaviour of real students.
In particular, in (Matsuda et al. 2007) after training a simu-
lated student using logs of interactions with real users, the
simulated student they developed could explain 82% of cor-
rect problem solving steps performed by subsequent stu-
dents. This approach has the benefit of creating a cognitive
model through demonstration alone. Our system is different
from these, in that our simulated students are used entirely
to evaluate the efficacy of our techniques, and are not used
as peers for human students or to predict their actions.

Our methods also contrast with those of others who con-
duct studies with actual human learners (e.g. (Jackson and
Graesser 2007)). These researchers may be interested in ex-
amining the value of their approaches for much larger popu-
lations of students and thus the use of simulations may be of
value. In our future research, we anticipate eventually con-
ducting studies with (a modest number of) human users as
well. The robustness of the Collaborative Learning Algo-
rithm to errors in assessment also provides encouragement
for coping with inaccuracies in assessments which would
undoubtedly occur. Simulations allow us to observe the ben-
efit of our approach in a environment with a very large num-
ber of students.

The other primary direction for our extensions was to ex-
plore the modeling of the time demands of learning objects.
Our results indicate effective learning by students when de-
cisions about what to present to these students takes the time
to completion into consideration. We feel that this offers a
new direction for other designers of intelligent tutoring sys-
tems, suggesting that not only the inherent value of the con-
tent but the overall demand, in time, on the student should
be brought to bear when determining the student’s overall
curriculum. We have also noted some avenues for future
work in our exploration of time demands, evolving to a re-
quirement of both short and long duration learning objects
for students, rather than simply a total time restriction.

A final insight that is gained through the process of ex-
tending our model and its validation is information about
how the size of a student population affects the student
learning that can be achieved, in peer-based tutoring en-
vironments. McCalla hypothesized that as the peer base
grows, student learning can improve. Our experimental re-
sults show that with larger repositories there are larger learn-
ing gains. This also suggests a direction for future research
in the design of intelligent tutoring systems that learn on the
basis of peers, trying to measure and quantify the relative

value of an increased population. Our observation is that the
reputability of these peers will then be an important consid-
eration – a larger population of less valued peers will likely
in fact detract from the learning that can be achieved. We
plan to explore trust-based modeling of peers in intelligent
tutoring environments, using models such as (Zhang and Co-
hen 2008); to this end, the work of (Gorner and Cohen 2010)
which uses trust modeling to investigate how to determine
the ideal size of social network for providing appropriate
advice may also be of some interest.
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