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Abstract 
A parallel plan is a sequence of sets of actions such that any 
ordering of actions in the sets gives a traditional sequential 
plan. Parallel planning was popularized by the Graphplan 
algorithm and it is one of the key components of successful 
SAT-based planers. SAT-based planners have recently 
begun to exploit multi-valued state variables – an area 
which seems traditionally more suited for constraint-based 
planners – and they improved their performance further. In 
this paper we propose a novel view of constraint-based 
planning that uses parallel plans and multi-valued state 
variables. Rather than starting with the planning graph 
structure like other parallel planners, this novel approach is 
based on the idea of timelines and their synchronization. 

Introduction   
Classical AI planning deals with finding a sequence of 
actions that transfer the world from some initial state to a 
desired state. We assume a fully observable (we know 
precisely the state of the world), deterministic (the state 
after performing the action is known), and static (only the 
entity for which we plan changes the world) world with a 
finite (though possibly large) number of states. We also 
assume actions to be instantaneous so we only deal with 
action sequencing. Actions are usually described by a set 
of preconditions – features that must hold in a state to 
make the action applicable to that state – and a set of 
effects – changes that the action makes to the state. Action 
sequencing is naturally restricted by causal relations 
between the actions – the effect of certain action gives a 
precondition of another action. 
 Traditional sequential planning algorithms explore 
directly the sequences of actions. One of the disadvantages 
of this approach is liability to exploring symmetrical plans 
where some actions can be swapped without changing the 
overall effect. Hence if some sequence of actions does not 
lead to a goal then the algorithm may explore a similar 
sequence of actions where certain actions are swapped 
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though this sequence leads to exactly same non-goal state. 
This is called plan-permutation symmetry (Long and Fox 
2003). It is possible to remove some of these symmetries 
by symmetry breaking constraints as suggested in 
(Grandcolas and Pain-Barre 2007) or (Barták and Toropila 
2009). Another way to resolve this problem is partial-
order planning where the plans are kept as partially 
ordered sets of actions (the partial order respects the causal 
relations). CPT planner (Vidal and Geffner 2004) is 
probably the most successful (in terms of International 
Planning Competition) constraint-based planner that does 
partial-order planning. A half way between partial-order 
and sequential planning is parallel planning, where the 
plan is represented as a sequence of sets of actions such 
that any ordering of actions in the sets gives a traditional 
sequential plan. This concept was popularised by the 
Graphplan algorithm (Blum and Furst 1997) that 
introduced a so called planning graph to efficiently 
represent causal relations between the actions. Planning 
graph became a popular representation of parallel plans for 
approaches that translate the planning problem to other 
formalisms such as Boolean satisfiability or constraint 
satisfaction (Do and Kambhampati 2000; Lopez and 
Bacchus 2003). 
 In this paper we propose a novel constraint model for 
parallel planning. This model is motivated by recent 
success of SAT-based planner SASE (Huang, Chen, and 
Zhang 2010) that exploits multi-valued state variables 
(Helmert 2006). Rather than following the planning graph 
translation to a constraint satisfaction problem, the novel 
model is much closer to the modern timeline-based 
approach to planning (Pralet and Verfaillie 2009). The 
model is proposed for the multi-valued state variable 
representation of planning problems and it is based on idea 
of describing the evolution of each state variable and 
synchronizing the changes between the different state 
variables. In the paper, we will first formally introduce the 
planning problems to be solved and give necessary 
background and related works. Then we will describe the 
core concept of the planner and after that we will formally 
define the constraint model and describe the used search 
strategy. We will conclude with the experimental 
evaluation of the new planner. 
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The Problem  
AI planning task is to find a sequence of actions that 
transfer the initial world state to a state satisfying a given 
goal condition. For describing world states and actions we 
use a so called SAS+ formalism (Bäckström and Nebel 
1995) that is based on multi-valued state variables 
(Helmert 2006). For each feature of the world, there is a 
state variable describing this feature, for example 
rloc(r1,S) describes the location of robot r1 at state S. This 
state variable may acquire one of finitely many values. 
Each world state is described by a complete instantiation of 
the state variables. The advantage of this representation 
over the classical propositional representation is that it 
naturally expresses some facts, such as that the robot 
cannot be simultaneously at two locations which is not 
directly expressed when the logical propositions are used. 
 Action is applicable to world states satisfying the action 
precondition. Briefly speaking the action precondition 
expresses which values of the state variables are required 
by the action. Formally, action precondition is a set (a 
conjunction) of expressions in the form either state-
variable = value or state-variable � set-of-values (not in 
SAS+) such that each state variable appears at most once in 
this set. Actions change the values of the state variables, 
which is captured by actions’ effects. Formally, an action 
effect is a set (a conjunction) of expressions in the form 
state-variable � value such that each state variable 
appears at most once in the set. After performing the 
action, the state variables that do not appear in the action 
effect will not change their value (the frame axiom) while 
the state variables appearing in the effect will take the 
value specified in the effect. Figure 1 gives an example of 
such representation. 
 The planning task can be formulated as follows. Given a 
complete specification of the initial state (the values of all 
state variables) and a description of the goal condition as a 
set of expressions in the form either state-variable = value 
or state-variable � set-of-values find a sequence of actions 
that transfer the world from its initial state to the state 
satisfying the goal condition. This is called sequential 
planning. In this paper we deal with parallel planning 
where we are looking for a sequence of sets of independent 
actions such that the sequential plan is obtained by 
arbitrary ordering of actions in the sets. Two actions are 
independent if no state variable appearing in the effect of 
one action appears in the precondition or effect of the other 
action. This condition ensures that if both actions are 
applicable to a given state then they can be applied in any 
order and the states after application of both actions will be 
identical. Hence for a given state s and a set AS of pair 
wise independent actions applicable to this state we can 
define a state after application of these actions as the state s 
modified by the effects of actions in SA. Note that this is 
possible because the actions in SA are setting different state 
variables thanks to their independence. Obviously, a 
sequential plan is a special case of the parallel plan; the 
advantage of using parallel plans is removing some plan-
permutation symmetries. 

Domain 
DWR domain with two locations (loc1,loc2), a robot  (r) capable 
of loading and unloading containers, and one container (c) 

 
State Variables 

rloc � {loc1,loc2}      ;; robot’s location 
cpos � {loc1,loc2,r} ;; container’s position  

 
Actions 

1 : move(r, loc1, loc2) 
;; robot r at location loc1 moves to location loc2 
Precond: rloc = loc1 
Effects: rloc � loc2 

2 : move(r, loc2, loc1) 
;; robot r at location loc2 moves to location loc1 
Precond: rloc = loc2 
Effects: rloc � loc1 

3 : load(r, c, loc1) 
;; robot r loads container c at location loc1 
Precond: rloc = loc1, cpos = loc1 
Effects: cpos � r 

4 : load(r, c, loc2)  
;; robot r loads container c at location loc2 
Precond: rloc = loc2, cpos = loc2 
Effects: cpos � r 

5 : unload(r, c, loc1) 
;; robot r unloads container c at location loc1 
Precond: rloc = loc1, cpos = r 
Effects: cpos � loc1 

6 : unload(r, c, loc2) 
;; robot r unloads container c at location loc2 
Precond: rloc = loc2, cpos = r 
Effects: cpos � loc2 

 
Figure 1. Example of planning domain represented using multi-
valued state variables. 

Background and Related Works  
Constraint satisfaction problem (CSP) is defined by a set 
of variables, each variable has a finite set of possible 
values, and constraints specify allowed combinations of 
values assigned to the variables. The task is to find an 
instantiation of the variables satisfying all the constraints. 
CSPs are solved by the combination of search and 
inference realized via maintaining constraint consistency. 
Designing the proper constraint model is the key step in 
problem solving as it defines the level of inference – how 
much the search space is pruned. 
 Constraint satisfaction techniques were first applied in 
AI planning via manually designed constraint models for 
concrete planning domains (van Beek and Chen 1999). 
General models applicable to any planning problem were 
based on translation of the planning graph to a CSP (Do 
and Kambhampati 2000; Lopez and Bacchus 2003). Barták 
and Toropila (2008) reformulated these models to use 
multi-valued state variables and ad-hoc tabular constraints. 
These ideas are used in planning systems SeP (Barták and 
Toropila 2009) and Constance (Gregory, Long, and Fox 
2010). 
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The Concept 
There are many ways to describe planning problems in a 
form appropriate for problem solving. A natural 
representation for multi-valued state variables is a state 
transition diagram (also known as a domain transition 
graph) which is basically a finite state automaton (FSA). 
Each planning state variable is represented using a single 
automaton whose states correspond to the values of the 
variable and the arcs describe how the actions are changing 
the value of the state variable. In particular, if a given state 
variable v is both in the precondition (v = a) and effect 
(v � b) of the action then the arc(s) connects the value(s) 
from the precondition with the value in the effect (a � b). 
If the state variable is only in the effect then there are arcs 
from all values to the value in the effect. If the state 
variable is only in the precondition then there is a loop in 
the corresponding value. Finally, if the state variable is not 
used by a given action then there are loops in all values. 
The initial state in FSA describes the initial value in the 
planning problem; the final states are defined by the goal 
condition (all states are final, if the state variable does not 
appear in the goal condition). Figure 2 gives an example of 
the FSA representation for the planning domain from 
Figure 1, where we assume the robot to be initially at 
location loc1 and the container at location loc2 and the 
goal is to have the container at location loc1. 
 
 
 
 
 
 
 
 
 
Figure 2. Representation of the planning domain (Figure 1) and 
problem using finite state automata. 

Each finite state automaton defines a regular language 
describing the sequences of actions transferring the 
automaton from the initial state to the goal state. Hence, 
any plan belongs to the intersection of the regular 
languages defined by the automata for the state variables. 
In other words, to solve the planning problem we need to 
find a path in each FSA and the paths must be 
synchronized between the automata. We can describe the 
evolution of the state variable as a timeline as Figure 3 
shows. Notice that the sequences of actions are identical 
for all the state variables. 
 
 
 
 
 
 
 
Figure 3. Timelines describing the synchronized evolution of the 
state variables (the action numbers are taken from Figure 1). 

The above representation using FSA is appropriate for 
sequential planning as each action changes the states in all 
automata. In parallel planning we allow different actions to 
appear at a single planning step provided that the actions 
are independent. In other words, it is possible to change the 
states in different automata using different actions at the 
same planning step if these changes are not in conflict. To 
support parallel planning we modify the FSA 
representation in the following way. Each FSA contains 
two sorts of arcs: the arcs defining the effects of the actions 
for actions changing the state variable and the arcs defining 
the no-op actions indicating that the state variable is not 
changed. The difference from the no-op actions used in the 
planning-graph is that we use a dedicated no-op action for 
each value of the state variable. Figure 3 gives an example 
of this modified representation where the no-op actions are 
indicated by negative numbers. 
 
 
 
 
 
 
 
 
 
 
Figure 4. Representation of the planning domain (Figure 1) and 
problem using finite state automata with no-op actions. 

The reason for having more no-op actions per FSA is that 
we still need to synchronize the automata, in particular to 
model the preconditions of actions. If some action requires 
a particular value of the state variable but the action is not 
changing that state variable then we require the 
corresponding FSA to move along the arc annotated by the 
no-op action representing the value in the action 
precondition. Notice that this model allows different 
actions in a single step to have the same precondition 
exactly in accordance with the definition of independent 
actions. Figure 5 shows the evolution of the state variables 
in this modified model. We also show there how the real 
actions are forcing the presence of some no-op actions. 
 
 
 
 
 
 
 
Figure 5. Timelines describing the evolution of the state variables 
with no-op actions (the arrows indicate synchronization). 

The FSA model with no-op actions supports parallel 
independent actions, but the synchronization of automata is 
more complex and must be done explicitly as different 
actions may change the values of different state variables 
at the same time. We shall now describe how to encode 
this model as a constraint satisfaction problem. 
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The Constraint Model  
We are using the traditional approach of converting the 
planning problem where the number of actions in the plan 
is unknown in advance to a static constraint satisfaction 
problem as suggested in (Kautz and Selman 1992). In 
particular, we formulate the problem of finding a parallel 
plan of length n as a CSP and we solve the original 
planning problem by starting with n = 0 and incrementing 
n by 1 if no plan is found.  Let k be the number of state 
variables then we introduce k(n+1) state variables Si

j in the 
constraint model describing all the states “visited” by the 
parallel plan (i = 1,…,k, j = 0,…,n). The domain of 
variable Si

j consists of values of the i-th state variable. The 
state variables Si

0 are instantiated using the values from the 
initial state while the state variables Si

n are restricted based 
on the goal condition. We also introduce kn action 
variables Ai

j in the constraint model describing the actions 
changing the state variables. The domain of variable Ai

j 
consists of actions that have the i-th state variable among 
the effects and the no-op actions for that state variable. For 
example, the domain of Acpos

j is {-3,-2,-1,3,4,5,6} for the 
problem from Figure 4. 
 There are two core types of constraints in our model. 
First, we need to model the state transitions based on the 
FSA representation. We use a ternary sequencing 
constraint connecting variables Si

j-1, Ai
j, Si

j. Basically, this 
constraint describes the arcs in the FSA representation. The 
triple (p,a,q) satisfies the constraint for the i-the state 
variable if one of the following conditions hold: 
� a is a real action such that q is the value of its effect in 

the i-th state variable and value p is compatible with 
the precondition of a (a is using value q as its 
precondition or a has no precondition in the i-th state 
variable), 

� a is a no-op action for value p of the i-th state variable 
and p = q. 

In the terms of FSA, we can say that a annotates the arc 
connecting states p and q in the automaton. Hence, the 
sequencing constraint describes the evolution of the 
corresponding state variable as shown in Figure 5. 
 The second type of constraint describes the 
synchronisation between the evolutions of the state 
variables. In particular, if the action is changing several 
state variables then the action must be assigned to the 
action variables for all these states in a given layer (we call 
the variables Ai

j with identical j a layer). Moreover, if the 
action has a precondition in the state variable that is not 
among its effects (for example actions 3-6 in Figure 1 have 
precondition in the state variable rloc while changing only 
the variable cpos) then we must ensure that the 
corresponding state variable is assigned to the requested 
value. This is done indirectly by requesting the action 
variable for that state variable to be assigned to the specific 
no-op action. It would be possible to describe the 
synchronisation constraint as a single k-ary constraint 
between the variables A1

j,..., Ak
j. However, the extensional 

representation of this constraint would be too large as in 

general it must describe all possible subsets of independent 
actions. Hence, we decided to use k k-ary synchronisation 
constraints each describing the requirements of some state 
transition. Let i be the index of certain state variable. Then 
for each action from the FSA representation of the i-th 
state variable we define which actions are compatible in 
other action variables of the same layer. If a is a real action 
assigned to variable Ai

j then the constraint requires the 
following assignment: 
� if a affects the l-th state variable then Al

j = a, 
� if a has a precondition (but not effect) in the l-th state 

variable and b is the no-op action corresponding to 
the value of the precondition then Al

j = b, 
� if  a does not use the l-th state variable then Al

j can be 
assigned to any action independent of a or no-op. 

If a is a no-op action then we assume that it is compatible 
with all actions in other action variables to make the 
extensional representation compact. Note that the 
synchronisation constraints for other state variables may 
connect this no-op action with real action as described 
above. Though we described the synchronisation 
constraints as k-ary constraints, in fact we can cut-off some 
variables from the constraint, if these variables are not 
really constrained. This significantly reduces the arity of 
the constraint as the actions usually use a small number of 
state variables in preconditions and effects. 
 Figure 6 sketches the structure of the base constraint 
model. In addition to above constraints there are also active 
layer constraints connecting all action variables in each 
layer and requesting at least one action to be a real action. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The structure of the constraint model, circles represent 
the state variables, squares represent the action variables. 

 To strengthen inference we add one more sequencing 
constraint. Notice that action b can immediately follow 
action a in the timeline for a given state variable if the 
effect of a restricted to that state variable is compatible 
with the precondition of b on the same state variable. 
However, there might be another state variable where the 
effect of a is in conflict with the precondition of b and 
hence a cannot directly precede b. To discover this conflict 
using inference, we include a binary action sequencing 
constraint between all subsequent pairs of action variables 
in each timeline (see Figure 6). Let a and b be two actions 
from the FSA describing a certain timeline then the pair 

…�
…�

synchronization 
+ active layer 

sequencing action sequencing 

action variables state variables 
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(a,b) satisfies the action sequencing constraint if one of the 
following conditions hold: 
� a and b are identical no-op actions, 
� a is a no-op action compatible with the precondition 

of real action b, 
� b is a no-op action that corresponds to the effect of 

real action a, 
� all effects of real action a are compatible with all 

preconditions of real action b. 
Figure 7 gives an example of all above mentioned 
constraints for the planning problem described by the finite 
state automata from Figure 4. One can easily check that the 
instantiation of action variables shown in Figure 5 satisfies 
all the constraints. 
 

sequencing action sequencing 
Srloc

j-1 Arloc
j Srloc

j  Arloc
j Arloc

j+1

loc1 1 loc2  1 {-2,2}
loc2 2 loc1  2 {-1,1}
loc1 -1 loc1  -1 {-1,1}
loc2 -2 loc2  -2 {-2,2}

 
Scpos

j-1 Acpos
j Scpos

j  Acpos
j Acpos

j+1

loc1 3 r  3 {-3,5}
loc2 4 r  4 {-3,6}

r 5 loc1  5 {-1,3}
r 6 loc2  6 {-2,4}

loc1 -1 loc1  -1 {-1,3}
loc2 -2 loc2  -2 {-2,4}

r -3 r  -3 {-3,5,6}
 

synchronisation 
Arloc

j Acpos
j  Acpos

j Arloc
j

1 {-1,-2,-3}  3 -1
2 {-1,-2,-3}  4 -2

{-2,-1} {-3,…,6}  5 -1
   6 -2
   {-3,-2,-1} {-2,…,2}

 
Figure 7. The compact representation of ad-hoc constraints for 
the planning problem from Figure 4. 

Search Strategy 
The constraint model can be accompanied by a specific 
search strategy that guides the search algorithm exploring 
the possible instantiations of the variables. This search 
strategy is composed of two types of heuristics: the 
variable ordering heuristic that recommends which variable 
is instantiated first and the value ordering heuristic that 
suggests which value is tried first.  
 In our constraint model, we use only the action variables 
as the decision variables participating in the search 
procedure. The state variables are instantiated by means of 
constraint propagation (local inference). There exist 
several generally applicable variable ordering heuristics 
typically based on the first-fail principle. Dom heuristic 

(Golomb and Baumert 1965) that prefers instantiation of 
the variables with the smallest domain is among the most 
widely used. We slightly modified this heuristic in the 
following way. We select only among the variables whose 
domains contain at least one real action. The action 
variables that can be instantiated only to some no-op action 
are ignored during search. These variables are instantiated 
by means of constraint propagation. Note that this decision 
is done dynamically during search as constraint 
propagation can remove some actions from the domain of 
action variables. The value ordering heuristics are based 
on the succeed-first principle, but there are no widely 
accepted general value ordering heuristics. Obviously, it is 
not clear in advance which value (action) belongs to the 
solution. We used the following simple heuristic. First, the 
domain of the selected variable is split into two parts: the 
no-op actions and the real actions. This leads to binary 
branching; the branch where the no-op actions remain in 
the variable domain is explored first. The motivation was 
that this will minimize the number of used actions (see the 
experiments). If a variable whose domain contains only the 
real actions is being instantiated then we simply try the 
actions in the order in which the actions appear in the 
problem description. Though the search strategy may seem 
important for problem solving, it is the constraint model 
that influences most the efficiency. 

Experimental Results 
We implemented the PaP constraint model using the clpfd 
library of SICStus Prolog 4.1.2 and compared it with the 
SeP planner built on top of the same constraint library. We 
used selected planning domains from past International 
Planning Competitions (STRIPS versions) for the 
comparison. The experiments ran on 2.0 GHz Intel Xeon 
CPU with 8GB RAM under Ubuntu Linux 8.04.2 (Hardy 
Heron). Both planners run with the 30 minutes timeout.  
 Table 1 reports the number of solved problem instances 
in selected planning domains. PaP is better in all domains 
but openstacks and elevator. For openstacks, it seems that 
no-good recording helped SeP to solve the problems. For 
elevator, we identified some overhead in the PaP constraint 
model that caused longer runtime. 
 Table 2 gives a more detailed view for three domains 
with actual runtimes and plan lengths. PaP is slower in 
blockworld problems because the plans cannot be 
parallelized there and more constraints (compared to SeP) 
cause overhead. In other domains the results are similar to 
zenotravel and tpp domains. An interesting observation is 
that PaP finds plans with identical or only slightly larger 
number of actions in comparison to the shortest plans 
found by SeP. We think that this is due to used search 
strategy that prefers the no-op actions over the real actions. 
We did not perform a direct comparison with the 
Constance planner that beat SeP in domains such as 
driverlog, zenotravel, and tpp, but the detailed results 
reported in (Gregory, Long, and Fox 2010) show that PaP 
achieves better performance at these domains. 
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domain SeP PaP 
airport (15) 4 6 
blocks (16) 7 7 
depots (10) 2 2 
driverlog (15) 4 12 
elevator (30) 30 27 
freecell (10) 1 3 
openstacks (7) 5 0 
rovers (10) 4 6 
tpp (15) 4 8 
zenotravel (15) 6 11 

Table 1. The number of solved problems in each domain (the 
numbers in parenthesis indicate the number of tried problems). 

 

problem 
plan length runtime (ms) 

SeP 
PaP 

SeP PaP 
par seq 

blocks-p-4-1 10 10 10 160 190 
blocks-p-5-0 12 12 12 1 670 4 600 
blocks-p-5-1 10 10 10 1 050 4 790 
blocks-p-5-2 16 16 16 37 420 34 160 
blocks-p-6-0 12 12 12 8 720 59 370 
blocks-p-6-1 10 10 10 9 760 74 450 
blocks-p-7-0 20 20 20 926 820 - 
tpp-p01 5 5 5 10 0 
tpp-p02 8 5 8 20 10 
tpp-p03 11 5 11 160 30 
tpp-p04 14 5 14 2 110 20 
tpp-p05 �17 7 23 - 100 
tpp-p06 �15 9 29 - 4 110 
tpp-p07 �14 9 38 - 3 170 
tpp-p08 �14 9 44 - 5 930 
zenotravel-p01 1 1 1 10 20 
zenotravel-p02 6 5 6 60 50 
zenotravel-p03 6 5 9 300 130 
zenotravel-p04 8 5 11 970 130 
zenotravel-p05 11 5 14 153 990 240 
zenotravel-p06 11 5 12 530 390 510 
zenotravel-p07 �12 6 16 - 560 
zenotravel-p08 �10 5 15 - 1 690 
zenotravel-p09 �11 6 24 - 145 760 
zenotravel-p10 �12 6 24 - 252 040 
zenotravel-p11 �9 6 16 - 41 780 

Table 2. The length of found plans and the runtime (in 
milliseconds) for selected planning problems. 

Conclusions 
The paper describes a novel constraint-based planner PaP 
for parallel planning with multi-valued state variables. 
Despite the simplicity of the constraint model and the 
search strategy, the new planner beats significantly existing 
constraint-based optimal sequential planners SeP and 
Constance in most planning domains. We expect that 
performance of PaP can be further improved by removing 
some redundancy in constraints and by integrating 
advanced techniques such as nogood recording. 
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