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Abstract

Defeasible argumentation and default reasoning are usually
perceived as two similar, but distinct approaches to common-
sense reasoning. In this paper, we combine these two fields
by viewing (defeasible resp. default) rules as a common cru-
cial part in both areas. We will make use of possible worlds
semantics from default reasoning to provide examples for ar-
guments, and carry over the notion of plausibility to the argu-
mentative framework. Moreover, we base a priority relation
between arguments on the tolerance partitioning of system Z
and obtain a criterion phrased in system Z terms that ensures
warrancy in defeasible argumentation.

Key Words: Defeasible argumentation, default reasoning,
system Z, possible worlds

1 Introduction
Argumentation techniques have gained increasing rele-
vance in artificial intelligence research during the past two
decades, mainly due to their wide range of applicability
within agent systems, providing bases both for single agent
reasoning and deliberation, and for coordination and ex-
change of information in multiagent systems. Basically, ar-
gumentation investigates how arguments attack and defend
one another, thereby pondering in a dialectical way the pro
and cons of options to make up a proper decision. Presum-
ably the most foundational and abstract framework of ar-
gumentation has been provided by Dung (Dung 1995), but
lots of other more constructive approaches to argumenta-
tion have been brought forward as well, making use of log-
ical elements like rules and deduction, and of priority re-
lations to decide between good and worse arguments (see,
e.g., (Besnard and Hunter 2008)).

Defeasible Logic Programming (DELP) (Garcı́a and
Simari 2004) combines logic programming with defeasi-
ble argumentation, allowing the representation of tentative
knowledge and leaving for the argumentation mechanism
the task of finding those conclusions for which it is not
possible to find valid reasons against. DELP works in a
highly dialectical way, allowing series of attacks and coun-
terattacks to finally mark those statements as warranted for
which all attackers could be invalidated. Although DELP
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rests on logic programming grounds and its warrant proce-
dure corresponds nicely to human argumentation behaviour,
it has not yet been possible to characterize its semantics of
warrant along established formal logical lines (Thimm and
Kern-Isberner 2008).

In this paper, we take an alternative semantical way to
support the conclusions drawn by DELP. First, we intro-
duce possible worlds as examples and counterexamples of
arguments, and characterize crucial notions like attack and
concordance in DELP in these terms. Then, we make use of
ordinal conditional functions (Spohn 1988) that provide de-
grees of (dis)belief to possible worlds in order to assign pri-
ority information to arguments. The basic idea here is that
arguments are as convincing and successful as their most
plausible examples. So, arguments with more plausible ex-
amples should prevail, in particular when compared to coun-
terarguments and counterexamples.

Then, in order to sharpen our results, we make use of
the distinguished system Z approach (Goldszmidt and Pearl
1996) as a particularly well-behaved ordinal conditional
function to assign plausibility to examples of arguments and
prioritize arguments by Z-specificity values. We prove a
sufficient condition to ensure warrant in DELP, and show
that our combined Z-DELP-approach is able to solve the so-
called drowning problem.

The rest of this paper is organized as follows: Section 2
recalls the background needed for ordinal conditional func-
tions, system Z and DELP. Then, our semantics based on
examples of arguments is developed in section 3, and is
connected to plausibility in section 4. Afterwards, section
5 presents the combined Z-DELP-approach, and section 6
concludes this paper. All notions and techniques are illus-
trated by a running example.

2 Formal and methodological background
Logical prerequisites. Let L be a finitely generated propo-
sitional language with atoms a, b, c, . . ., and with formulas
A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connector, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e. A means ¬A.
Let Ω denote the set of possible worlds over L; Ω will be
taken here simply as the set of all propositional interpreta-
tions over L. ω |= A means that the propositional formula
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A ∈ L holds in the possible world ω ∈ Ω. The set of models
of A is denoted by Mod(A) = {ω ∈ Ω | ω |= A}.

By making use of a new binary operator |, we obtain the
set (L | L) = {(B|A) | A,B ∈ L} of conditionals over
L. In the framework of default reasoning, (B|A) formalizes
“if A then B is plausible” and establishes a defeasible con-
nection between the antecedent A and the consequent B. In
the framework of argumentation, (B|A) may be read as “If
there are reasons to believe A, then there are reasons to be-
lieve B”. Here, conditionals are supposed not to be nested,
that is, antecedent and consequent of a conditional will be
propositional formulas. A conditional (B|A) is an object
of a three-valued nature, partitioning the set of worlds Ω in
three parts: those worlds satisfying AB and thus verifying
the conditional, those worlds satisfying AB, thus falsifying
the conditional, and those worlds not fulfilling the premise
A and so which the conditional may not be applied to at all
(cf. (DeFinetti 1974)).
OCFs and system Z. Ordinal conditional functions (OCFs,
also called ranking functions) are functions κ : Ω → N ∪
{∞} with κ−1(0) �= ∅, expressing degrees of plausibility
of propositional formulas A by specifying degrees of disbe-
liefs of their negations A (cf. (Spohn 1988; Goldszmidt and
Pearl 1996)). More formally, we have κ(A) := min{κ(ω) |
ω |= A}, so that κ(A ∨ B) = min{κ(A), κ(B)}. A
conditional (B|A) is accepted in the epistemic state repre-
sented by κ, or κ satisfies (B|A), written as κ |= (B|A),
iff κ(AB) < κ(AB), i.e. iff AB is more plausible than
AB. A set Δ = {δi = (Bi|Ai) | 1 ≤ i ≤ n} of con-
ditionals is said to be consistent iff there exists an OCF
κ that accepts all conditionals in Δ, i.e. for which holds
κ(AiBi) < κ(AiBi), 1 ≤ i ≤ n. Consistency can be
checked easily by applying the notion of tolerance. A condi-
tional (B|A) is tolerated by a set of conditionals Δ iff there
is a world ω such that ω verifies (B|A) and ω does not fal-
sify any of the conditionals in Δ. Δ is consistent, iff there
is an ordered partition Δ0,Δ1, . . . ,Δk of Δ such that each
conditional in Δm is tolerated by

⋃k
j=m Δj , 0 ≤ m ≤ k

(Goldszmidt and Pearl 1996).
A well-known method to compute an ordinal conditional

function which accepts all conditionals in a (finite) set Δ =
{δi = (Bi|Ai) | 1 ≤ i ≤ n} is system Z of Goldszmidt and
Pearl ((Goldszmidt and Pearl 1996)). System Z makes use
of the tolerance partitioning described above, where each
subset Δi of the partition is maximal, i.e. contains as many
conditionals as possible. Then to each δ ∈ Δ, a rank is
associated by setting Z(δ) = j iff δ ∈ Δj . The system Z
ranking function, κz , accepting all conditionals in Δ is then
given by

κz(ω) =

⎧⎨
⎩

0, if ω does not falsify any δi,
1 + max

1≤i≤n

ω|=AiBi

Z(δi), otherwise (1)

κz assigns to each world ω the lowest possible rank admis-
sible with respect to the constraints in Δ. System Z can
be used to define a nonmonotonic inference relation |∼ Z :
Given some consistent set of conditionals Δ and proposi-
tional formulas A,B, we have A |∼ ZB iff κz |= (B|A),

i.e., iff in the context of A, B turns out to be plausible. For
more details see, for instance, (Goldszmidt and Pearl 1996).
We illustrate default reasoning with system Z in the fol-
lowing benchmark example taken from (Garcı́a and Simari
2004).

Example 1 We consider the propositional variables b bird,
p penguin, c chicken, s is scared, f flies, w has wings, and
the set of conditionals: Δ = {δ1 = (b|c), δ2 = (b|p), δ3 =
(f |b), δ4 = (f |p), δ5 = (f |c), δ6 = (f |cs), δ7 = (w|b)}.
The tolerance partitioning used by system Z is Δ0 =
{δ3, δ7},Δ1 = {δ1, δ2, δ4, δ5},Δ2 = {δ6}. We compute
κz(pbf) = 2 > 1 = κz(pbf), so penguin-birds do not
fly, as expected. Also scared penguins do not fly, since
κz(psf) = 2 > 1 = κz(psf).

The basic problem of default reasoning is to decide if
some formula A is a plausible consequence of a set of con-
ditionals, Δ, given some prerequisite B. This amounts to
checking if the conditional (B|A) is accepted on the ground
of Δ. Ranking functions and, in particular, system Z provide
a convenient semantics to verify this inference relation.

Defeasible argumentation. We will present the basics
of the formalism of DELP, following the presentation
in (Garcı́a and Simari 2004). A defeasible logic program
(de.l.p.) P = (Π,Δ) consists of a set Π of facts and strict
logic rules, and a set Δ of defeasible rules which are written
as conditionals (L|B1 . . . Bn) with literals L,B1, . . . , Bn in
this paper. Let Δ′ ⊆ Δ be a subset of Δ. A literal L can be
defeasibly derived from Δ′, iff there exists a finite sequence
L1, . . . , Ln = L of ground literals, such that each Li is ei-
ther a fact in Π or there exists a rule in Π ∪Δ′ with head Li

and body {B1, . . . , Bm}, and every literal Bj in the body
is such that Bj ∈ {Lk}k<i. Π ∪Δ′ is called contradictory
iff there is a literal L such that both L and L have defea-
sible derivations from Π ∪ Δ′. For any de.l.p. P we will
presuppose that Π is non-contradictory.

Given a de.l.p. P = (Π,Δ) and a literal L, A is an argu-
ment for L, denoted 〈A, L〉, if A is a set of defeasible rules
in Δ such that:

1. there exists a defeasible derivation of L from Π ∪ A;

2. Π ∪ A is non-contradictory;

3. there is no A′ ⊆ A such that A′ satisfies (1) and (2), i.e.,
in that sense A is minimal.

An argument 〈B, Q〉 is a sub-argument of 〈A, L〉 if B is sub-
set of A.

Argument 〈A1, L1〉 attacks, or counterargues another
〈A2, L2〉 at a literal L if there exists a sub-argument of
〈A2, L2〉, 〈A, L〉, i.e., A ⊆ A2, such that there exists a lit-
eral P verifying both Π∪{L,L1} � P and Π∪{L,L1} � P .
Note that an argument 〈∅, L〉 with L ∈ Π can not be attacked
since all arguments have to be consistent with Π.

Example 2 We will look at example 1 in the DELP-
framework. Let propositionals and conditionals be given as
specified in example 1. Consider the defeasible logic pro-
gram P1 = ({cs},Δ). Then the following arguments can
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be built supporting f resp. f :

〈A1, f〉, A1 = {(b|c), (f |b)};
〈A2, f〉, A2 = {(f |c)};
〈A3, f〉, A3 = {(f |cs)}.

Clearly, 〈A2, f〉 attacks 〈A1, f〉, and 〈A3, f〉 attacks
〈A2, f〉.

An argumentation process proceeds through comparisons
among arguments. The standard criterion of comparison
used in DELP is specificity, but any criteria that establishes
preference could be used. Since we will use other preference
criteria here, we will not go into further details here.

If 〈A1, L1〉 and 〈A2, L2〉 are two arguments 〈A1, L1〉 is
a proper defeater for 〈A2, L2〉 at literal L iff there exists a
sub-argument of 〈A2, L2〉, 〈A, L〉 such that 〈A1, L1〉 coun-
terargues 〈A2, L2〉 at L and 〈A1, L1〉 is strictly preferred
over 〈A, L〉. Alternatively, 〈A1, L1〉 is a blocking defeater
for 〈A2, L2〉 at literal L iff there exists a sub-argument of
〈A2, L2〉, 〈A, L〉 such that 〈A1, L1〉 counterargues 〈A2, L2〉
at L and neither 〈A1, L1〉 is strictly preferred over 〈A, L〉
nor is 〈A, L〉 preferred over 〈A1, L1〉. If 〈A1, L1〉 is either
a proper or a blocking defeater of 〈A2, L2〉, it is said to be a
defeater of the latter.

An argumentation line for an argument 〈A0, L0〉 is a se-
quence λ = [〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, · · · ] where for
each i > 0 〈Ai+1, Li+1〉 is a defeater of 〈Ai, Li〉. λS =
[〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉, · · · ] is the sequence of sup-
porting argument of λ, while the sequence of interfering
ones is λI = [〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, · · · ].

An acceptable argumentation line in a defea-
sible program P = (Π,Δ) is a finite sequence
λ = [〈A0, L0〉, · · · , 〈An, Ln〉] such that some con-
straints on the addition of arguments to the sequence are
considered. For example, not allowing the addition of an
already introduced argument, or using an argument simul-
taneously as a supporting and as an interfering argument
(see (Garcı́a and Simari 2004) for an in-depth analysis of
the problem). A constraint that we will postulate for any
acceptable argumentation line to hold is concordance of all
supporting respectively interfering arguments.

Definition 3 (concordance) A set of arguments Ai, 1 ≤
i ≤ m, of a defeasible logic program (Π,Δ) is called con-
cordant iff Π ∪

⋃n
i=1 Ai is non-contradictory.

To answer a query Q, the warrant procedure builds up a
candidate argument 〈A, Q〉. Then, it associates to this argu-
ment a dialectical tree T〈A,Q〉 as follows:

1. The root of the tree is labeled, 〈A0, Q0〉, i.e., A0 = A and
Q0 = Q.

2. Let n be a non-root node, with label 〈An, Qn〉 and λ =
[〈A0, Q0〉, · · · , 〈An, Qn〉] the labels in the path from the
root to n. Let B = {〈B1, R1〉, · · · , 〈Bk, Rk〉} be the
set of all the defeaters for 〈An, Qn〉. For 1 ≤ i ≤ k,
if λ

′
= [〈A0, Q0〉, · · · , 〈An, Qn〉, 〈Bi, Ri〉] is an accept-

able argumentation line, n has a child ni labeled 〈Bi, Ri〉.
If B = ∅ or no 〈Bi, Ri〉 ∈ B is such that λ

′
is acceptable,

then n is a leaf of the tree.

The nodes of T〈A,Q〉 can be marked U (undefeated) or D
(defeated), yielding a tagged tree T ∗〈A,Q〉 as follows:

• All leaves of T〈A,Q〉 are marked U in T ∗〈A,Q〉.

• If 〈B, R〉 is the label of a node which is not a leaf, the
node will be marked U in T ∗〈A,Q〉 if every child is marked
D. Otherwise, if at least one of its children is marked U ,
it is marked as D.

Then, given an argument 〈A, Q〉 and its associated tagged
tree T ∗〈A,Q〉, if the root is marked U , the literal Q is said to
be warranted, and A is said to be the warrant for Q.

In this paper, we will be assuming that there are no strict
rules, so that the strict logical knowledge is represented by
facts, and will write Φ instead of Π. With this prerequisite,
argument 〈A1, L1〉 attacks another 〈A2, L2〉 at a literal L
if there exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such that
L = L1. Concordance can be checked easily, too.

Proposition 4 Let P = (Π,Δ) be a defeasible logic pro-
gram the strict part Π of which contains only facts. A set
of arguments A1, . . . ,Am of P is concordant iff for any two
rules δ1 ∈ Ai, δ2 ∈ Aj , it holds that head(δ1) �= head(δ2).

Defeasible rules can be taken as conditionals, and we will
use both terms synonymously. In the rest of the paper, a de-
feasible logic programm P = (Φ,Δ) consists of a collection
of facts, Φ, and conditionals, Δ, both specified in a suitable
propositional language L with Ω being the appertaining set
of possible worlds. As a further important prerequisite, we
postulate that the set Δ of conditionals be consistent (as de-
fined in section 2). Then, this setting is fully compatible to
the methodology of OCF’s and system Z described in sec-
tion 2, and we will elaborate this connection in the follow-
ing sections. For ease of notation, Φ will also denote the
conjunction of all facts of P .

3 A semantics of examples and
counterexamples for arguments

The basic idea of argumentation is to support beliefs by ar-
guments that are often built from rules. This logical under-
pinning of arguments is crucial for DELP, but can not be
taken into regard by Dung’s abstract argumentation frame-
work (Dung 1995) which is considered to be one of the stan-
dard approaches to give semantics to arguments. Here, we
propose a semantical approach to arguments which works
particularly well if the arguments have a logical structure but
might be applied more generally. Our approach differs from
Dung’s framework and also from more logical approaches
like those presented in (Besnard and Hunter 2008). The ba-
sic idea first to be developed in this paper is that arguments
are as convincing as their (most plausible) examples. We
will introduce the notion of examples and counterexamples
of arguments in this section to justify a priority relation be-
tween arguments. Plausibility issues will be taken into con-
sidereation in the next section.

Possible worlds verifying all conditionals occurring in an
argument may be used as examples to illustrate the statement
of this argument.
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Definition 5 (Examples, counterexamples) Let P =
(Φ,Δ) be a defeasible logic program. Let ω ∈ Ω be a
possible world, and let 〈A, L〉 be an argument in P .
ω is an example for 〈A, L〉 iff ω satisfies all facts, ω |=

Φ, and ω verifies all rules in A. ω is a counterexample to
〈A, L〉 iff ω |= Φ and there is at least one rule in A that is
falsified by ω. ω is a supported counterexample to 〈A, L〉 iff
ω is a counterexample to 〈A, L〉 and there is an argument
〈A′, L′〉 such that ω is an example of 〈A′, L′〉.

The set of examples of an argument 〈A, L〉 is denoted by
〈A, L〉+, the set of counterexamples by 〈A, L〉−.

Proposition 6 Every argument 〈A, L〉 has examples; more
precisely1,

〈A, L〉+ = Mod(Φ ∧
∧

δ∈A head(δ)).
The set of counterexamples to 〈A, L〉 is given by

〈A, L〉− = Mod(Φ ∧
∨

δ∈A head(δ)).

Proof: Since Φ∪A is not contradictory, Φ∧
∧

δ∈A head(δ)
is satisfiable, hence Mod(Φ ∧

∧
δ∈A head(δ)) �= ∅. Let

ω ∈ Mod(Φ ∧
∧

δ∈A head(δ)). Then ω |= Φ, and, since
all conditionals in A are applicable when the preceding con-
ditionals have been applied, and ω satisfies all heads of con-
ditionals in A, ω verifies all conditionals occurring in A. So,
ω ∈ 〈A, L〉+.

Conversely, let ω ∈ 〈A, L〉+; then ω |= Φ and ω verifies
all conditionals in A, in particular, ω satisfies all heads of
rules occurring in A. Hence ω ∈ Mod(Φ∧

∧
δ∈A head(δ)).

For the counterexamples, it is obvious that 〈A, L〉− ⊆
Mod(Φ ∧

∨
δ∈A head(δ)); in particular, if A = ∅ then

〈A, L〉− = ∅ = Mod(Φ ∧
∨

δ∈A head(δ)). Conversely, if
ω ∈ Mod(Φ ∧

∨
δ∈A head(δ)), then ω must falsify a (first)

rule in A, so ω ∈ 〈A, L〉−. �

Hence, the models of the facts Φ provide a common reser-
voir of examples and counterexamples for all arguments of
the de.l.p. P:

Corollary 7 Let 〈A, L〉 be an argument. Then 〈A, L〉+ ∪
〈A, L〉− = Mod(Φ).

Example 8 For the arguments 〈A1, f〉, 〈A2, f〉, 〈A3, f〉
stated in example 2, examples and counterexamples are
given as follows:

〈A1, f〉+ = Mod(csbf) 〈A1, f〉− = Mod(cs(b ∨ f))

〈A2, f〉
+
= Mod(csf) 〈A2, f〉

−
= Mod(csf)

〈A3, f〉+ = Mod(csf) 〈A3, f〉− = Mod(csf)

Hence, ω1 = csbpfw is an example of 〈A1, f〉 and 〈A3, f〉
and a counterexample of 〈A2, f〉. Reciprocally, ω2 =
csbpfw is an example of 〈A2, f〉, and a counterexample of
〈A1, f〉 and 〈A3, f〉.

Relationships between arguments can be characterized
easily by considering their examples:

1As usual, we set
∧ ∅ = � and

∨ ∅ = ⊥.

Proposition 9 Let 〈A1, L1〉, 〈A2, L2〉 be two arguments.
If 〈A1, L1〉 attacks 〈A2, L2〉, then all examples of

〈A1, L1〉 are (supported) counterexamples to 〈A2, L2〉, i.e.
〈A1, L1〉+ ⊆ 〈A2, L2〉−.

Conversely, if all examples of 〈A1, L1〉 are counterexam-
ples to 〈A2, L2〉, then there is a sub-argument of 〈A1, L1〉
that attacks 〈A2, L2〉.
Proof: First, assume that 〈A1, L1〉 attacks 〈A2, L2〉 at lit-
eral L. Then there exists a sub-argument 〈A, L〉 of 〈A2, L2〉
such that L = L1. Any example ω of 〈A1, L1〉 must verify
any rule occurring in A1, in particular, ω |= L1 = L, and L
is the head of a rule occurring in A2. By Prop. 6, ω is a coun-
terexample to 〈A2, L2〉. Hence, 〈A1, L1〉+ ⊆ 〈A2, L2〉−.

Assume now that 〈A1, L1〉+ ⊆ 〈A2, L2〉− holds. Since
the set of examples and counterexamples of an argument
are disjoint, we have 〈A1, L1〉+ ∩ 〈A2, L2〉+ = ∅. By
Prop. 6, Φ ∧

∧
δ∈A1

head(δ) ∧
∧

δ∈A2
head(δ) must be

inconsistent. So, there are rules δ1 ∈ A1, δ2 ∈ A2 with
head(δ1) = Q1, head(δ2) = Q2 such that Q1 = Q2.
Let 〈A′1, Q1〉 the subargument of 〈A1, L1〉 that ends in Q1.
Then 〈A′1, Q1〉 attacks 〈A2, L2〉 at Q2. �

Proposition 10 A set of arguments 〈Ai, Li〉, 1 ≤ i ≤
m, is concordant iff they have common examples, i.e. iff⋂

1≤i≤m 〈Ai, Li〉+ �= ∅.

Proof: By Prop. 4, a set of arguments Ai, 1≤ i≤m,
is concordant iff there are no rules with conflict-
ing heads in

⋃
1≤i≤m Ai. Hence, concordance

holds iff Mod(Φ ∧
∧

δ∈⋃1≤i≤mAi
head(δ)) �= ∅.

Since
⋂

1≤i≤m 〈Ai, Li〉+ =
⋂

1≤i≤m Mod(Φ ∧∧
δ∈Ai

head(δ)) = Mod(Φ ∧
∧

δ∈⋃1≤i≤mAi
head(δ)), the

proposition is proved. �

Corollary 11 Two arguments 〈A1, L1〉 and 〈A2, L2〉 are ei-
ther concordant, or there are subarguments of 〈A1, L1〉 and
〈A2, L2〉 that attack the other argument.
Proof: For any two arguments 〈A1, L1〉 and 〈A2, L2〉
either 〈A1, L1〉+ ∩ 〈A2, L2〉+ = ∅, or 〈A1, L1〉+ ∩
〈A2, L2〉+ �= ∅. In the latter case, they are concordant, by
Proposition 10. In the former case, we have A1

+ ⊆ A2
−

and A2
+ ⊆ A1

−. By Proposition 9, there are subarguments
of 〈A1, L1〉 and 〈A2, L2〉 that attack the other argument. �

Moreover, the subargument relationship has also implica-
tions for the examples.
Proposition 12 If 〈A1, L1〉 is a subargument of 〈A2, L2〉,
then all examples of 〈A2, L2〉 are also examples of 〈A1, L1〉,
i.e. 〈A2, L2〉+ ⊆ 〈A1, L1〉+.
Proof: If 〈A1, L1〉 is a subargument of 〈A2, L2〉, then all
rules occurring in A1 also occur in A2, hence are also veri-
fied by all examples of 〈A2, L2〉. �

The converse of Prop. 12 does not hold. If 〈A2, L2〉+ ⊆
〈A1, L1〉+, then all heads of rules of A1 must occur in the
facts or as heads of rules of A2, but bodies of rules in A1

may be different from those in A2.
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4 Priorities based on plausibility
To decide whether an argument not only attacks but also de-
feats another, we need a priority relation among arguments
to provide a proper criterion. Here, we will base this prior-
ity relation on degrees of plausibility that can be assigned to
examples of arguments by ordinal conditional functions. We
consider an argument to be as plausible as its most plausible
examples. Moreover, the plausibilities of its counterexam-
ples represent the degree to which it can be challenged.
Definition 13 (κ-values of arguments) Let κ be an ordi-
nal conditional function on Ω, let 〈A, L〉 be an argument.
Then κ+(〈A, L〉) = min{κ(ω) | ω ∈ 〈A, L〉+}, and
κ−(〈A, L〉) = min{κ(ω) | ω ∈ 〈A, L〉−}.

When comparing two arguments, the argument the exam-
ples of which are more plausible prevails.
Definition 14 (κ-preference) Let κ be an ordinal condi-
tional function on Ω, let 〈A1, L1〉, 〈A2, L2〉 be two argu-
ments. Then 〈A1, L1〉 �κ 〈A2, L2〉 iff κ(A1

+) ≤ κ(A2
+).

By using κ-preference as priority relation between DELP-
arguments, an easy criterion for warrant can be derived.
Proposition 15 Let 〈A, L〉 be an argument. If
κ+(〈A, L〉) < κ−(〈A, L〉), then 〈A, L〉 is undefeated
and hence warranted.
Proof: Let κ+(〈A, L〉) < κ−(〈A, L〉). Assume there is an
argument 〈A1, L1〉 that (attacks and) defeats 〈A, L〉. Then,
according to proposition 9 and definition 14, there must be
an example ω1 ∈ 〈A1, L1〉+ that is a counterexample to
〈A, L〉 such that κ(ω1) ≤ κ+(〈A, L〉). But this contradicts
the presupposition κ+(〈A, L〉) < κ−(〈A, L〉). �

Therefore, making use of arbitrary κ-functions allows for
a straightforward and intuitive semantical specification of
priority between DELP-arguments. In the following section,
we will focus on a specific κ-function – namely system Z –
to develop a more syntactical priority relation.

5 Using system Z preference for DELP
In the original DELP-framework (Garcı́a and Simari 2004),
generalized specificity was used to define a priority relation
between arguments, taking the derivation behaviour of ar-
guments into account. In system Z ((Goldszmidt and Pearl
1996) and section 2), a tolerance partitioning of the set of de-
fault rules is construed that is also based on a notion of speci-
ficity, here applied to single conditionals, not arguments. An
idea already mentioned in (Garcı́a and Simari 2004) will be
elaborated in the following: From a priority relation between
rules, a corresponding relation between arguments is derived
and used for the evaluation of arguments. In this paper, we
make use of the Z-ordering on the conditionals in Δ for this
purpose and will be able to sharpen proposition 15.

Since we presupposed Δ to be consistent, there is a toler-
ance partitioning Δ = Δ0 ∪ . . . ∪ Δk, i.e. the one used by
system Z (cf. section 2). Then, we can measure the plausi-
bility of an argument 〈A, L〉 by the plausibility of its most
plausible rule by setting

Z(〈A, L〉) = min
δ∈A

Z(δ).

〈A3, f〉 U

〈A2, f〉 D

〈A1, f〉 U

Figure 1: The dialectical tree for example 17

Note that in fact, the most plausible rules are the weakest
links in the chain supporting the conclusion of an argument.
Now, arguments can be compared by their Z-values:

Definition 16 (Z-preference) Argument 〈A1, L1〉 is Z-
preferred over argument 〈A2, L2〉, 〈A1, L1〉 �Z 〈A2, L2〉,
iff Z(〈A1, L1〉) > Z(〈A2, L2〉). 〈A1, L1〉 and 〈A2, L2〉
are equally Z-preferred, 〈A1, L1〉 ≈Z 〈A2, L2〉, iff
Z(〈A1, L1〉) = Z(〈A2, L2〉).

To check if a literal is warranted by an argument we
have to build up the dialectical tree for this argument from
acceptable argumentation lines. Using Z-preference, an
argumentation line [〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, · · · ]
is acceptable iff all supporting arguments
[〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉, · · · ], respectively inter-
fering arguments [〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, · · · ] are
concordant, and each blocking defeater is followed by a
proper defeater, i.e. 〈Am+1, Lm+1〉 �Z 〈Am, Lm〉 and
〈Am+1, Lm+1〉 �Z 〈Am−1, Lm−1〉 must hold.

We will check which literals can be warranted in our pen-
guin & chicken example 1.

Example 17 We consider the de.l.p. P1 = ({cs},Δ), with
propositionals and conditionals as specified in example 1.
The Z-values of the arguments 〈A1, f〉, 〈A2, f〉 and 〈A3, f〉
as given in example 2 are computed as Z(〈A1, f〉) =
0, Z(〈A2, f〉) = 1, Z(〈A3, f〉) = 2, so 〈A2, f〉 properly de-
feats 〈A1, f〉, and 〈A3, f〉 properly defeats 〈A2, f〉. Hence,
〈A1, f〉 is finally undefeated in the dialectical tree which is
shown in figure 1, so f is warranted.

In the example above, the warrant procedure proved to be
in accordance with system Z. In the next example, argumen-
tation is shown to do even better than system Z.

Example 18 We work again in the setting of example
1, now considering the defeasible logic program P2 =
({p},Δ). We will check if w is warranted, i.e. if penguins
have wings can be proved in our argumentation framework.
The only argument that can be built to connect p and w is
〈{(b|p), (w|b)}, w〉, which is not attacked at all, so, in par-
ticular, is undefeated. Hence, w can be warranted.

On the other hand, in system Z, we have κz(pw) =
κz(pw) = 1, since each of the models to be considered fal-
sifies at least one of (b|p), (f |b), or (f |p), the most plausible
of which – (f |b) – is in Δ0, just as (w|b). So, the status of
the query w can not be determined by system Z. This effect
has become known as the drowning effect (see, e.g. (Gold-
szmidt and Pearl 1996)).
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We will now prove some general results on arguments and
their examples. The following lemma is straightforward,
taking into regard that subarguments are actually subsets of
their superarguments.

Lemma 19 Let 〈A1, L1〉 be a subargument of 〈A2, L2〉.
Then Z(A1) ≥ Z(A2).

Next, we elaborate a relationship between the Z-value of
an argument and its counterexamples.

Lemma 20 Let 〈A, L〉 be an argument. Then for all coun-
terexamples ω ∈ 〈A, L〉−, κz(ω) ≥ Z(A) + 1.

Proof: Each ω ∈ 〈A, L〉− falsifies at least one rule δ in A
with rank Z(δ) ≥ Z(A), so κz(ω) ≥ Z(A) + 1. �

Finally, we show how the warrant of an argument can be
ensured by “good” examples in this framework.

Proposition 21 Let 〈A, L〉 be an argument. If
κ+
z (〈A, L〉) ≤ Z(〈A, L〉), then 〈A, L〉 is undefeated,

hence warranted.

Proof: Assume there is 〈A1, L1〉 that defeats 〈A, L〉 at
subargument 〈A′, L′〉. Then Z(〈A1, L1〉) ≥ Z(〈A′, L′〉) ≥
Z(〈A, L〉) and L′ = L1. Each example ω of 〈A′, L′〉 falsi-
fies at least one rule in 〈A1, L1〉 so κz(ω) ≥ Z(〈A1, L1〉)+
1 ≥ Z(〈A, L〉) + 1 for all ω ∈ 〈A′, L′〉+. Since
〈A, L〉+ ⊆ 〈A′, L′〉+, by Proposition 12, and 〈A, L〉+ =
Mod(Φ ∧

∧
δ∈A head(δ)), by Proposition 6, this implies

κz(Φ ∧
∧

δ∈A head(δ)) > Z(〈A, L〉), a contradiction. �

The following corollary is a straightforward consequence.

Corollary 22 Let 〈A, L〉 be an argument. If there is an
example ω of 〈A, L〉 such that κz(ω) ≤ Z(〈A, L〉), then
〈A, L〉 is undefeated, hence warranted.

Example 23 We apply these last results to our penguin &
chicken example. For 〈A3, f〉, we compute κ+

z (〈A3, f〉) =
κ(csf) = 2 and Z(〈A3, f〉) = 2, so from proposition 21,
we can conclude that f is warranted by 〈A3, f〉, identify-
ing 〈A3, f〉 immediately as a “good” argument for f . A
“good” example for f in the sense of corollary 22 can be
given by ω1 = csbpfw. Note that 〈A1, f〉 can not be estab-
lished as a “good” argument for f by proposition 21, since
κ+
z (〈A1, f〉) = κ(csbf) = 2, whereas Z(〈A1, f〉) = 0.

From the last part of example 23, it is obvious that propo-
sition 21 states a sufficient but not necessary condition for
warrant in the DELP-framework.

6 Conclusion
The novel combination of defeasible argumentation with
methods from default and conditional reasoning elaborated
in this paper was shown to be fruitful in several respects:
First, a possible worlds semantics widely used in default rea-
soning provides a novel semantics for DELP arguments by
taking possible worlds as examples. This allows for attach-
ing a notion of plausibility to arguments in a straightforward
way, thus being able to associate a meta-logical priority cri-
terion to the DELP-framework. Finally, we considered the

particular system Z approach to plausibility and proved that
in some cases, the complex dialectical evaluation procedure
of DELP can be circumvented by directly comparing the
Z-values of examples to the Z-values of the arguments. In
this way, each of the two frameworks enriches the other one
by new methods and insights. It must be emphasized that
DELP features a fully dialectical frame for argumentation
more expressive than other approaches to argumentative in-
ference. In (Benferhat, Dubois, and Prade 1993), argumen-
tative inference is based only on comparing degrees of pos-
sibility so that attack there is the same as defeat whereas
DELP also uses the notion of defense to warrant arguments.

Further work might continue in different directions: For
example, the Z-value of arguments here was based on the
minimum of the Z-degrees of the involved rules, taking the
most general (i.e. weakest) rules as a reference point. Other
choices are possible, one might go for the most specific rules
here, or compare the conflicting rules directly. The aim to be
kept in mind would be to specify the results of DELP’s di-
alectical inference procedure most appropriately in a declar-
ative way. On the other hand, with a focus on default rea-
soning, one might investigate in more depth in which cases
system Z inferences can be realized as results of argumenta-
tion processes. Either way, although default reasoning and
argumentation are both techniques usable for commonsense
reasoning, our impression is that these fields rather comple-
ment one another in many fruitful ways than compete with
each other.
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