
How Many Software Metrics Should be Selected for Defect Prediction?

Huanjing Wang
Western Kentucky University

huanjing.wang@wku.edu

Taghi M. Khoshgoftaar
Florida Atlantic University

khoshgof@fau.edu

Naeem Seliya
University of Michigan–Dearborn

nseliya@umich.edu

Abstract

A software practitioner is interested in the solution to
“for a given project, what is the minimum number of
software metrics that should be considered for building
an effective defect prediction model?” During the de-
velopment life cycle various software metrics are col-
lected for different reasons. In the case of a metrics-
based defect prediction model, an intelligent selection
of software metrics prior to building defect predictors
is likely to improve model performance. This study
utilizes the proposed threshold-based feature selection
technique to remove irrelevant and redundant software
metrics (a.k.a. features or attributes). A comparative in-
vestigation is presented for evaluating the size of the
selected feature subsets. The case study is based on
software measurement data obtained from a real-world
project, and the defect predictors are trained using three
commonly used classifiers. The empirical case study re-
sults demonstrate that an effective defect predictor can
be built with only three metrics; and moreover, model
performances improved when over 98.5% of the soft-
ware metrics were eliminated.

Introduction

A typical software defect prediction model is trained us-
ing software metrics and fault data that have been col-
lected from previously-developed software releases or sim-
ilar projects. The model can then be applied to program
modules with unknown defect data. The characteristics of
software metrics (a.k.a. features or attributes) influences
the performance and effectiveness of the defect prediction
model. We are interested in providing a solution to the prob-
lem of how many features should be used to build a de-
fect predictor. From a practitioner’s point of view, mod-
eling with a small set of metrics is very appealing. In a
given set of software metrics, it is likely that some of them
are superfluous in characterizing the project’s knowledge.
Some of them provide redundant knowledge, or provide no
new information, or in some cases, have an adverse effect
on the defect prediction model. For example, recent stud-
ies demonstrate performance improvement of defect predic-
tion models when irrelevant and redundant features are re-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

moved before modeling (Gao, Khoshgoftaar, & Wang 2009;
Wang, Khoshgoftaar, & Hulse 2010).

Feature selection is the process of choosing a subset of
features. It is broadly classified as feature ranking and fea-
ture subset selection, where feature ranking sorts the at-
tributes according to their individual predictive power, and
feature subset selection finds subsets of attributes that col-
lectively have good predictive power. Filters are feature se-
lection algorithms in which a feature subset is selected with-
out involving any learning algorithm. A wrapper-based fea-
ture selection technique is learner-dependent, because they
use feedback from a learning algorithm to determine which
feature(s) to include in building a classification model.

An exhaustive literature review is out of scope to space
considerations; however some key studies are presented.
Guyon and Elisseeff (Guyon & Elisseeff 2003) provide a
good overview on the various aspects of the feature selection
problem and outlined key approaches used for feature selec-
tion, including feature construction, feature ranking, multi-
variate feature selection, efficient search methods, and fea-
ture validity assessment methods. Liu and Yu (Liu & Yu
2005) provide a comprehensive survey of feature selection
algorithms and presented an integrated approach to intelli-
gent feature selection.

The application of feature selection in the software qual-
ity and reliability domains is very limited. This study will
add to the respective scientific knowledge base. Chen et
al. (Chen et al. 2005) have studied the applications of
wrapper-based feature selection in the context of software
cost/effort estimation. They conclude that the reduced data
set improved the estimation.

In the context of software defect prediction, we conduct
an empirical investigation of our proposed Threshold-Based
Feature Selection technique (TBFS). It belongs to the filter-
based feature ranking techniques category. Five different
and effective versions of TBFS feature rankers are consid-
ered in this study. These five different versions are based on
five different performance metrics (Witten & Frank 2005),
including Mutual Information (MI), Kolmogorov-Smirnov
(KS), Deviance (DV), Area Under the ROC (Receiver Op-
erating Characteristic) Curve (AUC), and Area Under the
Precision-Recall Curve (PRC). Different sizes of feature
subsets are selected using the five TBFS techniques. Sub-
sequently, using the smaller subsets of selected attributes,

69

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



classification models are built with the following classifiers:
multilayer perceptron (MLP), k-nearest neighbors (KNN),
and logistic regression (LR). Finally, the performance of a
classifier is evaluated with respect to the AUC performance
metric.

The empirical validation of the different models was im-
plemented through a case study of the nine data sets from
the Eclipse project. In the experiments, ten runs of five-
fold cross-validation were performed. We ranked the fea-
tures and selected the top features according to their respec-
tive scores. The experimental results demonstrate that three
attributes are sufficient to build defect prediction models.
From a software practice point of view, researchers and prac-
titioners would like to work with a smaller set of metrics for
defect prediction rather than analyze a large number of met-
rics. This is the first study to investigate the impact of size of
feature subsets on the performance of classifiers for TBFS.

Threshold-Based Feature Ranking

Filter-based feature ranking techniques (rankers) order the
features independent of any learning (classification) algo-
rithm. The best features are then selected from the rank-
ing list. There are various ways to rank features – we used
five different threshold-based feature ranking techniques
(TBFS). The procedure of TBFS is shown in Algorithm 1.
First each attribute’s values are normalized between 0 and 1
by mapping F j to F̂ j . The normalized values are treated as
posterior probabilities. Each independent attribute (software
predictor variable) is then paired individually with the class
attribute (fault-prone or not-fault-prone label) and the re-
duced data set is evaluated using five different performance
metrics based on a set of posterior probabilities. In standard
binary classification, the predicted class is assigned using
the default decision threshold of 0.5. The default decision
threshold is often not optimal, especially when the relative
class distribution is imbalanced. Therefore, we propose the
use of performance metrics that can be calculated at various

points in the distribution of F̂ j . At each threshold position,
the values above the threshold are classified as positive, and
negative otherwise. We then consider swapping the positive
and negative, i.e. values about the threshold are classified
as negative, and positive otherwise. Whichever direction of
the positive and negative labeling produces the more optimal
attribute values is used.

In a binary classification problem such as fault-prone
(positive) or not-fault-prone (negative), there are four pos-
sible classification rates: true positive rate (TPR), true neg-
ative rate (TNR), false positive rate (FPR), and false neg-
ative rate (FNR). These four classification rates can be cal-
culated at each threshold t ∈ [0, 1] relative to the normalized

attribute F̂ j . The threshold-based feature ranking technique
utilizes the classification rates as described below.

• Mutual Information (MI) measures the mutual depen-
dence of two random variables. High mutual informa-
tion indicates a large reduction in uncertainty, and zero
mutual information between two random variables means
the variables are independent.

Algorithm 1: Threshold-Based Feature Selection

input :

1. Data set D with features F j , j = 1, . . . ,m;

2. Each instance x ∈ D is assigned to one of two classes c(x) ∈ {fp, nfp};

3. The value of attribute F j for instance x is denoted as F j(x);

4. Metric ω ∈ {MI, KS, DV, AUC, PRC};

5. A predefined threshold: number (or percentage) of the features to be selected.

output:

Selected feature subsets.

for F j , j = 1, . . . ,m do

Normalize F j �→ F̂ j =
Fj
−min(Fj)

max(Fj)−min(Fj)
;

Calculate metric ω using attribute F̂ j and class attribute at various

decision threshold in the distribution of F̂ j . The optimal ω is used,

ω(F̂ j).

Create feature ranking R using ω(F̂ j) ∀j.

Select features according to feature ranking R and a predefined threshold.

• Kolmogorov-Smirnov (KS) utilizes the Kolmogorov-
Smirnov statistic to measure the maximum difference be-
tween the empirical distribution functions of the attribute
(software metric) values of the instances (program mod-
ules) in each class. It is effectively the maximum differ-
ence between the curves generated by the true positive
and false positive rates as the decision threshold changes
between 0 and 1.

• Deviance (DV) is the residual sum of squares based on
a threshold t. It measures the sum of the squared er-
rors from the mean class given a partitioning of the space
based on the threshold t. As deviance represents errors,
the minimum value is considered optimal.

• Area Under the ROC (Receiver Operating Characteris-
tic) Curve (AUC) has been widely used to measure clas-
sification model performance (Fawcett 2006). The ROC
curve is used to characterize the trade-off between true
positive rate and false positive rate. In this study, ROC
curves are generated by varying the decision threshold t
used to transform the normalized attribute values into a
predicted class.

• Area Under the Precision-Recall Curve (PRC): is a
single-value measure that originated from the area of in-
formation retrieval. The area under the PRC ranges from
0 to 1. The PRC diagram depicts the trade off between
recall and precision.

The TBFS can be extended to incorporate additional met-
rics, such as F-measure, Odds Ratio, Gini Index, and Geo-
metric Mean. Our preliminary study showed that MI, KS,
DV, AUC, and PRC-based TBFS performed better. We im-
plemented the TBFS technique within the WEKA frame-
work (Witten & Frank 2005).

Classifiers

The three classifiers (Witten & Frank 2005) used in our
case study are Multilayer Perceptron, k-Nearest Neighbors,
and Logistic Regression. All three learners themselves do
not have a built-in feature selection capability and are com-
monly used in the software engineering community. All

70



classifiers were implemented in the WEKA tool (Witten &
Frank 2005). We used default parameter settings for the dif-
ferent learners as specified in WEKA. Parameter settings
were changed only when doing so improved classifier per-
formance significantly.

Multilayer Perceptrons (MLP) attempt to artificially
mimic the functioning of a biological nervous system. In
our study, the hiddenLayers parameter was changed
to ‘3’ to define a network with one hidden layer contain-
ing three nodes, and the validationSetSize parame-
ter was changed to ‘10’ to cause the classifier to leave 10%
of the training data aside to be used as a validation set to de-
termine when to stop the iterative training process (Witten
& Frank 2005).

k nearest neighbors (KNN) classifiers, also known as
IBK (instance-based classifier), belong to the category of
lazy learners. The choice of distance metric is critical.
KNN was built with changes to three parameters. The
distanceWeighting parameter was set to ‘Weight by
1/distance’, the kNN parameter was set to ‘30’, and the
crossValidate parameter was set to ‘true’. In addition,
we modified the learner so that it chooses the k which pro-
duces the highest mean of the accuracies for each class (i.e.,
the arithmetic mean between the true positive rate and true
negative rate) (Witten & Frank 2005).

Logistic regression (LR) is a statistical technique that
can be used to solve binary classification problems. Based
on the training data, a logistic regression model is created
which is used to decide the class membership of future in-
stances (Witten & Frank 2005).

Classifier Performance Metric

Traditional performance measures such as F-measure, over-
all classification accuracy, or misclassification rate are inap-
propriate when dealing with the classification of imbalanced
data. In a domain such as software quality prediction, the
number of fp (fault-prone) modules is much lower than the
number of nfp (not-fault-prone) modules. Instead, we use
a performance metric that considers the ability of a classi-
fier to differentiate between the two classes: the Area Under
the ROC (Receiver Operating Characteristic) curve (AUC).
It has been shown that AUC has lower variance and is more
reliable than other performance metrics (such as precision,
recall, and F-measure) for software defect prediction (Jiang
et al. 2009).

The AUC is a single-value measurement, whose value
ranges from 0 to 1. The ROC curve is used to character-
ize the trade-off between hit (true positive) rate and false
alarm (false positive) rate. A classifier that provides a large
area under the curve is preferable over a classifier with a
smaller area under the curve. Traditional performance met-
rics consider only the default decision threshold of 0.5. ROC
curves illustrate the performance across all decision thresh-
olds. A perfect classifier provides an AUC that equals 1. In
our study, AUC is used both to select the most predictive
subset of features using TBFS and to evaluate the classifiers
constructed using those set of features.

Table 1: Software Data Set Characteristics
Data #Metrics #Modules #fp %fp #nfp %nfp

Eclipse 2.0-10 208 377 23 6% 354 94%

Eclipse 2.0-5 208 377 52 14% 325 86%

Eclipse 2.0-3 208 377 101 27% 276 73%

Eclipse 2.1-5 208 434 34 8% 400 92%

Eclipse 2.1-4 208 434 50 12% 384 88%

Eclipse 2.1-2 208 434 125 29% 309 71%

Eclipse 3.0-10 208 661 41 6% 620 94%

Eclipse 3.0-5 208 661 98 15% 563 85%

Eclipse 3.0-3 208 661 157 24% 504 76%

Software Measurement Data

The software metrics and fault data for this case study were
collected from a real-world software project, i.e., the Eclipse
project (Zimmermann, Premraj, & Zeller 2007). From the
PROMISE data repository (Zimmermann, Premraj, & Zeller
2007), we obtained the Eclipse defect counts and complex-
ity metrics data set. In particular, we use the metrics and
defects data at the software package level. The original data
for the Eclipse packages consists of three releases denoted
2.0, 2.1, and 3.0 respectively. We transform the original data
by: (1) removing all nonnumeric attributes, including the
package names, and (2) converting the post-release defects
attribute to a binary class attribute: fault-prone (fp) and not-
fault-prone (nfp). Membership in each class is determined
by a post-release defects threshold t, which separates fp from
nfp packages by classifying packages with t or more post-
release defects as fp and the remaining as nfp. In our study,
we use t ε {10, 5, 3} for release 2.0 and 3.0 while we use t
ε {5, 4, 2} for release 2.1. These values are selected in or-
der to have data sets with different levels of class imbalance.
All nine derived data sets contain 208 independent attributes
(predictor metrics). Releases 2.0, 2.1, and 3.0 contain 377,
434, and 661 program modules respectively.

The nine data sets used in this work reflect different dis-
tributions of class skew (i.e, the percentage of fp modules in
the data set). Table 1 lists the characteristics of the nine data
sets utilized in this work.

Empirical Design

When using a filter-based feature ranking technique, the
number of features (size of feature subset) that will be se-
lected is a modeling parameter that must be known to the
techniques. In this study, we also investigate the impact of
size of feature subset. We rank the metrics and choose the
top 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20 metrics according
to their respective scores. Following the feature selection
techniques, the three different types of classification models
are constructed with data sets containing only the selected
attributes. We also construct the classification models us-
ing the original data sets which include 208 metrics. The
defect prediction models are evaluated in terms of the AUC
performance metric. We seek to understand the impact of
(1) different size of feature subset; (2) the five filter-based
rankers; and (3) the three different learners on the models’
predictive power. In the experiments, ten independent runs

71



of five-fold cross-validation were performed. In total, 81000
(9 data sets * 12 sizes * 5 rankers * 3 learners * 10 runs * 5
folds) + 1350 (9 data sets * 3 learners * 10 runs * 5 folds) =
82350 models were build in our case study.

Empirical Results

Table 2 shows the AUC results for each individual learner.
Note that each value presented in the table is the aver-
age over the ten runs of five-fold cross-validation outcomes
across all nine data sets. The best ranker for a given learner
(classifier) is shown in boldfaced. Each value in the table
is determined by three dimensions: (1) feature ranking tech-
niques (MI, KS, DV, AUC, and PRC); (2) classifiers (MLP,
KNN, and LR); and (3) size of feature subset (1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 15, and 20). A total of 180 values are
considered in the three tables. The results are mapped to
figure 1. Table 3 shows the classification results on original
data sets without using any feature selection techniques. We
also summarize the average performance (last row of table 3)
for each learner across nine data sets. From these tables and
figures, we can observe the following:

• For the five threshold-based rankers, AUC performed best
on average. Of course, once the subset of features is fixed,
the classification performance is determined by the learn-
ers we select. For instance, the feature subset selected by
AUC demonstrated better performance than the feature
subsets selected by other rankers for all 12 cases when
MLP was applied (see Table 2(a)); nine out of 12 cases
when KNN was used (see Table 2(b)); and seven out of
12 cases for LR (see Table 2(c)).

• For the MLP learner, the best model is built with four fea-
tures selected by the AUC ranker;

• For the KNN learner, the best model is built with seven
features selected by the AUC ranker;

• For the LR learner, the best model is built with three fea-
tures selected by the AUC ranker;

• Overall, the best classification model is built with three
features selected by the AUC ranker using LR learner.

• The classification models built with smaller feature sub-
sets are better than models built with complete feature set.

Analysis of Results

We performed a one-way ANalysis Of VAriance (ANOVA)
F-test to statistically examine the various effects on perfor-
mances of the classification models across all the data sets.
The ANOVA tests were performed on the three classifiers
individually. The main factor represents the 13 different
sizes (12 sizes of subset and full data sets) that were stud-
ied for the attribute selection. The null hypothesis for the
ANOVA test is that all the group population means are the
same, while the alternate hypothesis is that at least one pair
of means is different.

Table 4 shows the ANOVA results. It includes three
sub-tables, each representing the result for each individual
learner (MLP, KNN, and LR). All the p values are zero, in-
dicating that for the main factor, the alternate hypothesis is

Table 2: Empirical results in terms of AUC

(a) MLP

Size MI KS DV AUC PRC

1 0.8659 0.8627 0.8480 0.8803 0.8638

2 0.8771 0.8724 0.8686 0.8856 0.8817

3 0.8741 0.8713 0.8704 0.8860 0.8792

4 0.8742 0.8708 0.8718 0.8862 0.8787

5 0.8732 0.8697 0.8711 0.8853 0.8766

6 0.8711 0.8684 0.8705 0.8840 0.8738

7 0.8690 0.8679 0.8674 0.8810 0.8724

8 0.8676 0.8619 0.8635 0.8778 0.8696

9 0.8673 0.8622 0.8610 0.8766 0.8656

10 0.8665 0.8625 0.8605 0.8757 0.8644

15 0.8598 0.8534 0.8550 0.8657 0.8582

20 0.8497 0.8491 0.8496 0.8587 0.8509

(b) KNN

Size MI KS DV AUC PRC

1 0.8555 0.8543 0.8406 0.8725 0.8568

2 0.8726 0.8696 0.8659 0.8832 0.8778

3 0.8745 0.8717 0.8668 0.8847 0.8792

4 0.8773 0.8734 0.8731 0.8851 0.8819

5 0.8779 0.8721 0.8772 0.8873 0.8827

6 0.8783 0.8744 0.8809 0.8881 0.8847

7 0.8796 0.8758 0.8832 0.8885 0.8855

8 0.8804 0.8765 0.8839 0.8876 0.8863

9 0.8811 0.8768 0.8832 0.8871 0.8866

10 0.8813 0.8766 0.8830 0.8856 0.8875

15 0.8808 0.8762 0.8815 0.8840 0.8845

20 0.8786 0.8754 0.8792 0.8809 0.8813

(c) LR

Size MI KS DV AUC PRC

1 0.8842 0.8824 0.8734 0.8959 0.8840

2 0.8992 0.8973 0.8943 0.9057 0.9022

3 0.9019 0.8996 0.8972 0.9077 0.9019

4 0.9021 0.8980 0.8978 0.9067 0.9023

5 0.9023 0.8965 0.8964 0.9039 0.9000

6 0.8976 0.8934 0.8956 0.9016 0.8929

7 0.8956 0.8899 0.8925 0.8970 0.8901

8 0.8915 0.8843 0.8878 0.8911 0.8856

9 0.8881 0.8823 0.8841 0.8838 0.8785

10 0.8857 0.8804 0.8819 0.8789 0.8740

15 0.8661 0.8599 0.8656 0.8606 0.8592

20 0.8481 0.8431 0.8458 0.8414 0.8415

Table 3: Classification Results on Original Data sets
Data MLP KNN LR

Eclipse 2.0-10 0.8102 0.7999 0.7390

Eclipse 2.0-5 0.8463 0.7949 0.7465

Eclipse 2.0-3 0.7858 0.7512 0.6796

Eclipse 2.1-5 0.7687 0.6382 0.6262

Eclipse 2.1-4 0.7361 0.6652 0.6531

Eclipse 2.1-2 0.7621 0.7412 0.6443

Eclipse 3.0-10 0.7697 0.7325 0.6596

Eclipse 3.0-5 0.8422 0.8114 0.7632

Eclipse 3.0-3 0.8076 0.7770 0.7452

Average 0.7921 0.7457 0.6952

72



�

����

����

����

���	

���


����

����

����


 � � � 	 
 � � � 
� 
	 ��

��

��

���

���

���

(a) MLP

�

���


����

����

����

���	

���


����

����

����

����


 � � � 	 
 � � � 
� 
	 ��

��

��

���

���

���

(b) KNN

�

����

����

����

���


����

����

����


 � � � 	 
 � � � 
� 
	 ��

��

��

���

���

���

(c) LR

Figure 1: Classification Results

Table 4: Analysis of Variance, Size

(a) MLP

Source Sum Sq. d.f. Mean Sq. F p-value

A 0.8317 12 0.06931 37.99 0

Error 9.9923 5477 0.00182

Total 10.824 5489

(b) KNN

Source Sum Sq. d.f. Mean Sq. F p-value

A 1.84508 12 0.15376 107.29 0

Error 7.84892 5477 0.00143

Total 9.694 5489

(c) LR

Source Sum Sq. d.f. Mean Sq. F p-value

A 4.7388 12 0.3949 246 0

Error 8.7923 5477 0.00161

Total 13.5311 5489

Table 5: Analysis of Variance, Learner
Source Sum Sq. d.f. Mean Sq. F p-value

A 0.626 2 0.31301 180.1 0

Error 28.1491 16197 0.00174

Total 28.7751 16199

accepted, namely, at least two group means are significantly
different from each other. In this study, we also performed
the multiple comparison tests using Tukey’s Honestly Sig-
nificant Difference (HSD) criterion. All tests of statistical
significance utilize a significance level α = 0.05. Both
ANOVA and multiple comparison tests were implemented in
MATLAB. Multiple comparison results as shown in Figure 2
display graphs with each group mean represented by a sym-
bol (◦) and the 95% confidence interval as a line through the
symbol. Two means are significantly different if their inter-
vals are disjoint, and are not significantly different if their in-
tervals overlap. The ANOVA and HSD results demonstrate
the following points.

• Feature selection presents superior performance and per-
forms significantly better than no feature selection.

• The classification models built with seven features outper-
formed models built with fewer features or more features
when KNN is used to build classification models.

• For the MLP classifier, models built with two features out-
performed other sizes;

• For for LR classifier, models built with three features per-
formed best. However there is no significant difference
the models built with two, three, four, and five features.

We also performed a one-way ANOVA test for learners
regardless of rankers and sizes (see Table 5 and Figure 3).
We conclude that LR perform significantly better than KNN
and MLP. Overall, only three features are sufficient to build
classification models, therefore this is our recommendation
for this study. However, the selected classification algorithm
is important in determining the size of the best features.

Conclusion

The paper addresses the question of “what is the minimum
number of software metrics that should be used to build a
software defect prediction model for a given system?” It is
not uncommon to see excessive software metrics collected
and stored in software project repositories. Selection of soft-
ware metrics that are important for software defect predic-
tion is critical, and useful to the practitioner. In this study,
we investigated five threshold-based feature ranking tech-
niques to select different sizes (subsets) of software metrics.
The main goal of this study is to examine and compare the
sizes of selected feature subsets and evaluate their effective-
ness in the context of software defect prediction.

The experiments were conducted on three groups of soft-
ware data sets, each group having three separate releases.
We then built classification models with the selected feature
subsets using three different classifiers. We also compared
the models built with selected metrics and models built with

73



0.78 0.8 0.82 0.84 0.86 0.88 0.9

Full

20

15

10

9

8

7

6

5

4

3

2

1

(a) MLP

0.7 0.75 0.8 0.85 0.9 0.95

Full

20

15

10

9

8

7

6

5

4

3

2

1

(b) KNN

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Full

20

15

10

9

8

7

6

5

4

3

2

1

(c) LR

Figure 2: Multiple Comparison, Size

0.865 0.87 0.875 0.88 0.885 0.89 0.895

LR

KNN

MLP

Figure 3: Multiple Comparison, Learner

the complete feature set. The experiments demonstrate that
in our case study on average three software metrics are suf-
ficient to build effective software defect prediction models.
Furthermore, even after removing 98.5% of the available
number of software metrics the defect prediction models
performed better than when we used all the features. This is
an important fact for software practitioners, since practition-
ers prefer using fewer software metrics for data collection,
management, comprehension, and modeling. We note that,
using a specific classification algorithm can yield different
results.

Future work may include experiments using additional
data sets from other software engineering and non-software
engineering domains. Moreover, more classifiers (such as
C4.5 (Quinlan 1993)) can be considered for model building
process. An interesting area of research would be to deter-
mine which specific metrics are selected in the end to build
the prediction model.

References

Chen, Z.; Menzies, T.; Port, D.; and Boehm, B. 2005. Find-
ing the right data for software cost modeling. IEEE Software
(22):38–46.

Fawcett, T. 2006. An introduction to ROC analysis. Pattern
Recognition Letters 27(8):861–874.

Gao, K.; Khoshgoftaar, T. M.; and Wang, H. 2009. An em-
pirical investigation of filter attribute selection techniques
for software quality classification. In Proceedings of the
10th IEEE International Conference on Information Reuse
and Integration, 272–277.

Guyon, I., and Elisseeff, A. 2003. An introduction to vari-
able and feature selection. Journal of Machine Learning
Research 3:1157–1182.

Jiang, Y.; Lin, J.; Cukic, B.; and Menzies, T. 2009. Variance
analysis in software fault prediction models. Software Reli-
ability Engineering, International Symposium on 0:99–108.

Liu, H., and Yu, L. 2005. Toward integrating fea-
ture selection algorithms for classification and clustering.
IEEE Transactions on Knowledge and Data Engineering
17(4):491–502.

Quinlan, J. 1993. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann.

Wang, H.; Khoshgoftaar, T. M.; and Hulse, J. V. 2010.
A comparative study of threshold-based feature selection
techniques. In IEEE International Conference on Granular
Computing, 499–504.

Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan Kauf-
mann, 2 edition.

Zimmermann, T.; Premraj, R.; and Zeller, A. 2007. Pre-
dicting defects for eclipse. In ICSEW ’07: Proceedings of
the 29th International Conference on Software Engineering
Workshops, 76. Washington, DC, USA: IEEE Computer
Society.

74




