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Abstract

The filter model of feature selection has been well stud-
ied. In previous studies, classification performance has
traditionally been proposed as a way to evaluate fil-
ter solutions. In this study, a new method of compar-
ing feature ranking techniques is presented providing a
straightforward approach for quantifying individual fil-
ters’ robustness to class noise. Six commonly-used fil-
ters, plus one which is rarely used, are investigated re-
garding their ability to retain, in the presence of class
noise, strong classification performance. Three classi-
fiers and one classification performance metric are con-
sidered. The experimental results of this study show
that Gain Ratio, one of the well known and widely used
filters, is very sensitive to class noise. ReliefF offers the
best results with both the NB and kNN learners while
Signal-to-noise, though not as widely used in the liter-
ature as the others, outperforms all the filters with the
SVM learner.

Introduction

Feature selection is a pre-processing technique that finds a
minimum subset of features that captures the relevant prop-
erties of a dataset to enable adequate classification (Gilad-
Bachrach, Navot, & Tishby 2004). Given that no loss of
relevant information is incurred with a reduction in the orig-
inal feature space, feature selection has been widely used.
Feature selection has been considered in many classification
problems (Wang, Khoshgoftaar, & Gao 2010), and it has
been used in various application domains (Liu, Li, & Wong
2002) (Ruiz et al. 2005). Feature selection techniques are
very useful for improving the performance of learning algo-
rithms (Hall & Holmes 2003). For this reason, the strengths
and weaknesses of feature selection techniques are tradition-
ally assessed in terms of the classification performance from
models built with a subset of the original features.

One of the factors that can characterize real world data is
noise introduced in either the independent features, the class
labels, or both. Noise in the independent features is referred
to as attribute noise while noise in the class labels is called
class noise. It is universally accepted that noisy data can be
detrimental to data mining and knowledge discovery (Xiong
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et al. 2006). Surprisingly, to the best of our knowledge,
there are no studies where noise is taken into consideration
when comparing feature ranking techniques, or any other
feature selection method. Given the pervasiveness of noise
in real world data, understanding the behavior of filters in the
presence of noise is of utmost importance. Consequently, a
comparison method that is based on both the application of
the filters to noisy data and the evaluation of the selected
features in terms of classification performances is invalu-
able. This paper presents such a comparison method while
focusing on the filter approach to feature selection. More
specifically, this study considers the feature ranking method,
which ranks the features from the most to the least relevant
(wrapper-based feature ranking methods are not considered
here for space considerations, but could be analyzed in fu-
ture work). Six commonly-used feature ranking techniques
(Chi-squared, Information Gain, Gain Ratio, two versions of
ReliefF and Symmetric Uncertainty), plus one rarely-used
(Signal-to-noise), are studied and compared regarding their
ability to maintain, in the presence of class noise, adequate
classification performance.

Hence, a new method for comparing filters in terms of
their robustness to class noise is presented in this paper. This
method involves applying the filters to noisy data, building
and testing classification models on noisy and clean data re-
spectively, and comparing the models’ classification perfor-
mances. Three learning algorithms are chosen for this study:
Naı̈ve Bayes (NB), k-Nearest Neighbor (kNN), and Support
Vector Machine (SVM). The performance of each learning
algorithm is determined by the area under the receiver op-
erating characteristic curve metric. Particularly, this study
evaluates the effectiveness of seven filters in terms of clas-
sification performances at different class noise injection lev-
els. The robustness of each filter is measured by quantifying
the variation in the classification performances from models
built with the corresponding feature selection. To the best of
our knowledge, this paper is the first to present this method
of comparing feature ranking techniques, and it shows how
a feature ranking technique can be measured in terms of its
robustness to class noise.

Related Work

The filter approach to feature selection evaluates feature rel-
evance by examining the intrinsic characteristics of the data
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without the use of a classifier (Saeys, Inza, & Larrañaga
2007). Filter-based feature ranking in particular has been
well studied. Due to its simplicity, scalability and good em-
pirical success, feature ranking is very attractive (Guyon &
Elisseeff 2003).

In many studies, the feature ranking techniques are of-
ten compared in terms of the classification performance de-
rived from a subset of the original features. For instance, five
feature ranking methods (Document Frequency, Information
Gain, Mutual Information, Chi-test and Term Strength) have
been evaluated and compared in the study of Yang and Ped-
ersen (Yang & Pedersen 1997). Recall and precision were
the two classification performance measures used in their
evaluation. Also, in the study of Liu et al. (Liu, Li, &
Wong 2002), five selection methods, including four rank-
ing techniques, were considered. The classification perfor-
mance in terms of accuracy was used to evaluate and com-
pare each feature ranking technique. Moreover, in Méndez
et al. (Méndez et al. 2006), four feature ranking techniques
(Information Gain, Mutual Information, Chi-test, and Doc-
ument Frequency) were analyzed in terms of their strengths
and weaknesses. Six performance metrics were used in the
assessment: Overall Accuracy, False Positive Rate, False
Negative Rate, Recall, Precision and Total Cost Ratio.

Some works have proposed comparison methods that
combined the performance of the learning algorithms with
some other schemes. For instance, Hall and Holmes (Hall &
Holmes 2003) presented a benchmark comparison of sev-
eral attribute selection methods for supervised classifica-
tion. While their study also used classification performance
in their evaluation, they presented a “wins versus losses”
scheme that consisted of a pairwise comparison between one
feature selection technique and another. Ruiz et al. (Ruiz et
al. 2005), in their analysis of feature rankings, proposed a
method based on the Area Under Feature Ranking Classifi-
cation Curve for comparing different feature ranking tech-
niques. The quality of a feature ranking technique was
then determined by the classification performances on three
classifiers and the number of times that particular ranking
method holds the first position.

This study also uses the classification performance from
models built with a subset of the original features to compare
different ranking techniques. However, the assessment is
done in the presence of class noise, which to our knowledge
has not been explored previously. Given the pervasiveness
of noise in real world data and the negative effects of noise
on data mining and machine learning algorithms, it is im-
perative to understand the effectiveness of feature selection
in the presence of low quality data. This paper shows how
to separate the most from the least effective feature ranking
techniques and points out the importance of considering the
impact of noise on feature selection.

Feature Ranking Techniques
The seven filter-based feature ranking techniques being
compared are described below. The first six are commonly
used in the literature (chi-squared statistic (χ2), Informa-
tion Gain (IG), Gain Ratio (GR), two versions of ReliefF
(RF and RFW) and Symmetric Uncertainty (SU)), while the

last, Signal-to-noise (S2N), is less well known. χ2, IG, GR,
RF, RFW and SU are available in the Weka data mining
tool (Witten & Frank 2005). χ2, IG, GR and SU utilize the
method of Fayyad and Irani (Fayyad & Irani 1992) to dis-
cretize continuous attributes, and all four methods are bivari-
ate, considering the relationship between each attribute and
the class, excluding the other independent variables. S2N,
also a bivariate method, was implemented by our research
group for experimentation purposes since it is not available
in Weka.

1) Chi-Squared (χ2) is based on the χ2-statistic and evalu-
ates each feature independently with respect to the class
labels. The larger the Chi-squared, the more relevant the
feature is with respect to the class. Given the number
of intervals (I), the number of classes (B), and the to-
tal number of instances (N ), the Chi-squared value of a
feature is computed as:

χ2 =
∑I

i=1

∑B
j=1

[Aij−
Ri∗Bj

N
]2

Ri∗Bj

N

(1)

where Ri denotes the number of instances in the ith inter-
val, Bj the number of instances in the jth class, and Aij

the number of instances in the ith interval and jth class.

2) Information Gain (IG) is a commonly used measure in
the fields of information theory and machine learning. IG
measures the number of bits of information gained about
the class prediction when using a given feature to assist
that prediction (Yang & Pedersen 1997). For each feature,
a score is obtained based on how much more information
about the class is gained when using that feature. The
information gain of feature X is defined as:

IG(X) = H(Y )−H(Y |X) (2)

where H(Y ) and H(Y |X) are the entropy of Y and the
conditional entropy of Y given X , respectively. The level
of a feature’s significance is thus determined by how great
is the decrease in entropy of the class when considered
with the corresponding feature individually.

3) Gain Ratio (GR) is a refinement to Information Gain.
While IG favors features that have a large number of val-
ues, GR’s approach is to maximize the feature’s informa-
tion gain while minimizing the number of its values. The
gain ratio of X is thus defined as the information gain of
X divided by its intrinsic value:

GR(X) = IG(X)/IV (X) (3)

where IV (X) = −
∑r

i=1 (|Xi|/N)log(|Xi|/N), from
which |Xi| is the number of instances where attribute X
takes the value of Xi, r is the number of distinct values of
X , and N is the total number of instances in the dataset.

4) ReliefF (RF) is an extension of the Relief algorithm intro-
duced by Kira and Randell (Kira & Rendell 1992) and en-
hanced by Kononenko (Kononenko 1994). RF estimates
the quality of a feature by finding one near miss (M(B))
for each different class and averages their contribution for
updating estimates W [X ]. The average is weighted with
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the prior probability of each class, P (B) (Kononenko
1994):

W [X ] =
∑N

i=1

[∑
B �=c(X)

[
P (B)×d(X,I0,M)

i

]
− d(X,I0,H)

i

]

(4)
where d(X, I1, I2) calculates the difference between the
values of X for both instances I1 and I2.

5) ReliefF-W (RFW) is similar to ReliefF, except that in
ReliefF-W, the “weight nearest neighbors by their dis-
tance” parameter is set to true.

6) Symmetric Uncertainty (SU) is a correlation measure be-
tween the features and the class (Witten & Frank 2005),
and it is obtained by:

SU = 2×
H(X) +H(Y )−H(X,Y )

H(X) +H(Y )

= 2×
H(Y )−H(Y |X))

H(X) +H(Y )
(5)

where H(X) and H(Y ) are the entropies based on the
probability associated with each feature and class value
respectively and H(X,Y ), the joint probabilities of all
combinations of values of X and Y .

7) Signal to Noise (S2N) is a simple univariate ranking tech-
nique which defines how well a feature discriminates two
classes (Lakshmi & Mukherjee 2006). S2N is obtained
for each feature using this formula:

S2N = μ+−μ−

σ++σ−

(6)

where μ+ and μ− are the mean values for the feature from
the positive class and negative class, respectively, and σ+

and σ− are the corresponding standard deviations.

Empirical Evaluation

Datasets

Seven datasets are considered in the empirical evaluation of
the seven feature ranking techniques. The datasets repre-
sent different application domains, ranging from cancerous
gene expression (Wang & Gotoh 2009) to drug activity, im-
age recognition and Internet ad determination (Asuncion &
Newman 2007). Table 1 lists all seven datasets and provides
their characteristics in terms of the total number of attributes,
number of instances, and percentage of positive instances.
They are all binary class datasets with various class distribu-
tion levels.

To accomplish our goal of analyzing filters in the presence
of class noise, noise is injected into the training datasets us-
ing two simulation parameters. These datasets are chosen
because preliminary analysis showed near perfect classifica-
tion. Ensuring that the datasets are relatively clean prior to
noise injection is important because it is very undesirable to
inject class noise into already noisy datasets.

Cross-validation and Runs

A 5-fold cross-validation procedure is used, where the set of
N instances in the original dataset is randomly partitioned

Dataset ID #Attributes #Instances %Positive

Lung Cancer LC 12534 181 17.1
Ovarian Cancer OC 15155 253 36.0
Liver Cancer VC 122 166 47.0
Internet Ad IA 1559 3279 14.0
Musk MK 167 6598 15.4
Satimage-4 S4 65 5620 9.9
Optdigits-8 O8 37 6435 9.7

Table 1: Dataset Characteristics

into 5 equal sets of size N/5. For each fold or partition
which is used as test data, class noise is injected into the
other 4 folds or partitions (i.e., the training data). Next, fea-
ture selection is performed on the noisy training data, and
classification models are built with the selected features on
the same noisy portions. Finally, the classification models
are tested on the remaining ‘clean’ fold. This whole proce-
dure is performed a total of 5 times using a different holdout
‘clean’ partition each time, and the results on each partition
are combined to obtain a single performance metric. For
each of the 5 times, the training dataset contains the noisy
portions, representing 80% of the instances from the origi-
nal dataset. Each classification model is tested on the clean
portion, representing 20% of the instances from the original
dataset, and each instance includes Si top ranked features
and the class. The overall cross-validation procedure is run
four times. That is, the random partioning of the original
datasets into 5 equal folds is repeated three more times, al-
lowing for four distinct observations.

Noise Injection Mechanism

Class noise is injected into the datasets, but only in the
four partitions intended for training. For the noise injection
mechanism, the same procedure as reported by (Van Hulse
& Khoshgoftaar 2009) is used. That is, the levels of class
noise are regulated by two noise parameters. The first pa-
rameter, denoted α (α = 10%, 20%, 30%, 40%, 50%), is
used to determine the overall class noise level (NL) in the
data. Precisely, α is the noise level relative to the number of
instances belonging to the positive class, i.e., the number of
examples to be injected with noise is 2 × α× | P |, where
| P | is the number of examples in the smaller class (often re-
ferred to as the positive class). This ensures that the positive
class is not drastically impacted by the level of corruption,
especially if the data is highly imbalanced. The second pa-
rameter, denoted β (β = 0%, 25%, 50%, 75%, 100%), rep-
resents the percentage of class noise injected in the positive
instances and is referred to as noise distribution (ND). In
other words, if there are 125 positive class examples in the
training dataset and α = 20% and β = 75%, then 50 ex-
amples will be injected with noise, and 75% of those (38)
will be from the positive class. These parameters serve to
ensure systematic control of the training data corruption.
Due to space constraints, more details on the noise injec-
tion scheme are not included. For those details, readers are
referred to (Van Hulse & Khoshgoftaar 2009).
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Feature Selection

Once the features are ranked according to their relevance to
the class, a subset consisting of the most relevant ones is se-
lected. For each dataset, the specified number of features
that is retained is denoted by Si, where i represents one of
the seven datasets. Table 2 shows the value of this parameter
for each dataset. These values were selected based on pre-
liminary experimentation on each dataset and were deemed
reasonable for the corresponding dataset. The intent is not to
investigate different number of attributes, nor is it to analyze
the ‘optimal’ choice for the number of attributes. Our objec-
tive here is to select values that are reasonable and perform
generally well across a wide range of experimental condi-
tions to allow us to effectively compare the different feature
ranking techniques.

Dataset Si Percentage

Lung Cancer 31 0.25
Ovarian Cancer 38 0.25
Liver Cancer 12 10
Internet Advertisements 78 5
Musk 34 20
Satimage-4 13 35
Optdigits-8 19 30

Table 2: Thresholds

Classification Algorithms and Performance
Measure

After selecting the Si relevant features for each dataset, three
different machine learning algorithms are used for the clas-
sification models: Naı̈ve Bayes (NB), k-Nearest Neighbors
(kNN) with k set to 5, and Support Vector Machines (SVM).
These algorithms, commonly used in data mining, are read-
ily available in the Weka data mining tool (Witten & Frank
2005), which is used in this study. The classification perfor-
mance of each algorithm is evaluated by the area under the
receiver operating characteristic curve (AUC) metric, which
is chosen because of its invariance to a priori class proba-
bility distributions and its statistical consistency (Jin et al.
2003). The classification results are then used to compare
the ranking techniques in terms of their robustness to class
noise.

Results

Tables 3 – 5 show the classification performances in terms
of AUC on a particular classifier for all the filters and for
all noise injection schemes. The first two columns of each
figure represent the noise injection schemes (combinations
of noise levels and noise distributions). Each entry in the
remaining columns represents the result in terms of the av-
erage AUC over all 7 datasets (1 ≤ d ≤ 7), for a par-
ticular filter, i, and a particular noise injection scheme, n,

AUCi,n = 1
7

∑7
d=1 AUCd

i,n. For instance, the value .955

shown under the column header χ2 in Table 4 indicates the
average classification performance obtained from 5NN af-
ter χ2 has been applied to the training data which has been

injected with noise corresponding to a 10% noise level and
a 0% noise distribution. Likewise, the average classifica-
tion performance of S2N with 5NN for the noise injection
scheme consisting of a 50% noise level and a 75% noise dis-
tribution is .690.
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Table 3: Filters’ Performances for All Noise Injection
Schemes on NB

At a high noise level (40% or 50%), the classification per-
formance generally decreases as the noise distribution in-
creases for most filters on all three classifiers. For a fixed
noise distribution, the performance decreases as the noise
level increases. The results also show that the filters per-
form better on 5NN at lower noise levels (10% and 20%)
while at higher noise levels (30%, 40%, and 50%), NB ex-
hibits better performance. In other words, NB is generally
more robust to class noise than 5NN, regardless of the fil-
ter. With SVM, the classification performance generally de-
grades for all noise injection schemes in comparison to NB
and 5NN. For more than 85% of the noise injection schemes,
GR shows the lowest classification performance when either
NB or 5NN is the classifier. Conversely, for about 90% of
the noise injection schemes, the filter that has the best clas-
sification performance with NB and 5NN is either IG or RF.
With SVM as the classifier, GR and RFW are the least ef-
fective while S2N proves to be the most effective.

Robustness

The robustness of each filter to class noise is measured
by obtaining the sum of the squared differences between
1 (for a perfect classification) and the corresponding clas-
sification performance. This measure is equivalent to the
sum of squared errors (SSE) and is obtained by: SSEd

i =∑24
n=1(1−AUCd

i,n)
2. The data is provided on a per-dataset
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Table 4: Filters’ Performances for All Noise Injection
Schemes on 5NN
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Table 5: Filters’ Performances for All Noise Injection
Schemes on SVM

basis and over all seven datasets in Tables 6 to 8, with one ta-
ble for each learner. The first column lists the filters ordered
from the most to the least robust. Each filter’s overall robust-
ness is shown in the second column. The remaining columns

show the robustness for each filter according to each dataset.
Contemplating the results on all three classifiers, the most
unstable filter is GR given its highest SSE values. Com-
paring the robustness of S2N with the standard filters, the
results show that S2N outperforms χ2, SU, RFW and GR
for two of the three classifiers (NB and SVM). By contrast,
S2N’s performance on 5NN is rather poor.

Clearly, the effectiveness of a filter depends on the data
as well as the classifier used in the experiments. Nonethe-
less, when dealing with poor quality data, GR, though a
widely used filter, is not recommended. S2N, a rarely used
filter, shows some potential in terms of its robustness to class
noise.
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Table 6: SSE on NB per Dataset
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Table 8: SSE on SVM per Dataset

Conclusion
Studies on feature ranking techniques have traditionally
used classification performances from models built with a
subset of the original features to assess the strengths and
weaknesses of the techniques. However, there has been
no comparative study of feature ranking techniques that has
taken into consideration the impact of class noise on the per-
formance of the filters. In this study, a method for compar-
ing the filters’ robustness is introduced. It involves obtaining
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classification performances through 5-fold cross validation,
whereby feature selection is performed on the portions of
the data injected with class noise and classification models
are tested with the remaining clean portion. For the empir-
ical evaluation, seven feature ranking techniques are used.
Six of these techniques are commonly used and are referred
to as standard filters: Chi-squared, Information Gain, Gain
Ratio, two versions of ReliefF and Symmetric Uncertainty.
The remaining filter is Signal-to-noise, a ranking technique
that is rarely used. The classification performances of three
different learners (NB, 5NN and SVM) in terms of AUC are
used to compare the filters’ robustness to class noise.

Using seven binary classification datasets representing
different application domains and different class distribution
levels, each filter’s robustness against class noise is mea-
sured on all three classifiers in terms of SSE. The empirical
results show that S2N, although rarely used, can outperform
some of the widely used filters. On all three classifiers, S2N
demonstrates more stability than GR.

Given the results of these experiments, GR proves to be
the least effective among the seven filters. On the other
hand, the IG filter stands out in terms of its robustness to
class noise, given its ranking among the top three for all
classifiers. Considering the performance of the filters on
individual classifiers, RF performs best with both NB and
5NN, while S2N outperforms with SVM. S2N, though not as
widely used in literature as the others, is preferred over most
when the learning algorithm is either NB or SVM. Thus,
both the filters and the learning algorithms are affected by
class noise. In the presence of class noise, the most impacted
filter and learning algorithm are GR and SVM, respectively.
The best overall three filters are: RF, IG and S2N.

While this paper only considers class noise in the em-
pirical evaluation, future work could assess the impact of
attribute noise on the feature ranking techniques’ perfor-
mances. Other noise injection schemes could also be con-
sidered.
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