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Abstract

This paper investigates feature level fusion for enhanc-
ing fault detection from vibration signals in an ocean
turbine. Changes in vibration signatures from such ro-
tating machinery typically indicate the presence of a
problem such as a shift in its orientation or mechani-
cal impact from its environment. We applied feature
level fusion to vibration data acquired from two ac-
celerometers attached to a box fan, and then assessed
the abilities of twelve well known machine learners to
detect changes in state from the raw accelerometer data
and from the fused data. Analysis of the performance
of these classifiers showed an overall performance im-
provement in all twelve classifiers in detecting the state
of the fan from the fused data versus from the data from
the two individual sensor channels.

Introduction

Ocean turbines harvest the flow of ocean currents to offer a
promising alternative for clean and renewable energy. They
operate autonomously in varying and sometimes harsh en-
vironmental conditions, and are required to produce a con-
stant output while satisfying uptime requirements. Detecting
problems as soon as they occur minimizes damage to the tur-
bine, but is only possible through uninterrupted monitoring.
Frequent manual inspections are infeasible due to high expe-
ditionary costs to access the machines, and problems which
occur between inspection intervals can go undetected until
the next maintenance visit.

Machine condition monitoring (MCM) systems provide
a means for continuous and intelligent problem detection
within complex systems such as ocean turbines. Such sys-
tems allow for constant error checking and require mini-
mal human intervention. They utilize a suite of heteroge-
neous sensors to monitor different physical phenomena such
as oil quality, external and internal temperatures, and vi-
bration. In this setting, data mining and machine learning
techniques can help automate fault detection, identify failure
states, and extract patterns in operational state and environ-
ment from the massive amount of data generated from the
sensors. These techniques can also predict life and future
health of the machine. Sensor fusion techniques are needed
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in such systems to combine sensor data at different stages
of the monitoring process, including state detection, health
assessment, and advisory generation, to produce more accu-
rate and complete results.

This paper focuses on employing feature-level sensor fu-
sion to enhance the performance of machine learners when
detecting operational state. This approach, known as fea-
ture level fusion, has been investigated in many other do-
mains such as image fusion (Samadzadegan 2004) (Sharma
& Davis 2006), protein classification (Zhang et al. 2006),
land mine detection (Gunatilaka & Baertlein 2001), and bio-
metrics (Kong, Zhang, & Kamel 2006). To the author’s
knowledge, this is the first study related to feature level fu-
sion for vibration analysis of ocean turbines.

A case study discussed in this paper shows how feature
level fusion can be used for more reliable state detection
from vibration data gathered from rotating machinery, and
demonstrates the use of data mining and machine learning
techniques for classifying operational state. It includes re-
sults of analyses performed on experimental data gathered
from a box fan, whose rotating blades produce vibration sig-
natures which can be mined to determine its state as would
be possible from an ocean turbine.

Related Work

The increase in world energy consumption over the past
years, and the growing concerns for waning fossil fuel re-
serves and the environmental concerns associated with them,
sparked a worldwide initiative for finding clean, renewable
alternative energy sources. One such alternative involves us-
ing turbines to extract energy from the steady unidirectional
flow of ocean currents such as the Gulf Stream. It is esti-
mated, for example, that if only 0.1% of the potential en-
ergy in the Gulf Stream is captured, it would be able to sat-
isfy 35% of the energy demand in Florida, U.S.A. (Minerals
Management Service 2006).

Research into harvesting ocean current energy from the
Gulf Stream is underway by the Southeast National Marine
Renewable Energy Center at the Florida Atlantic University
where a 20-kilowatt tidal turbine prototype is being devel-
oped for that purpose (Beaujean et al. 2009). In this pro-
totype, the turbine is housed within a pressurized enclosure
called a nacelle which is connected to a pressure buoy (to
control its pitch, yaw and roll) and a three blade propeller.
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This structure, shown in Figure 1 and depicted as component
(e) in Figure 2, is connected via cabling to a monitoring and
control buoy (b), and a barge for keeping the system upright
(c), and is tethered to the ocean floor (d). The northbound
flow of the Gulf Stream is shown as (a) in Figure 2.

Figure 1: Closeup of nacelle

Figure 2: Turbine and its moorings

To harness underwater ocean currents, ocean turbines op-
erate unattended below the ocean’s surface, which in itself
creates unique reliability concerns (Beaujean et al. 2009).
Reliability is a particularly important issue due to the high
costs associated with accessing, retrieving and maintaining
the turbine. Some of the reliability issues related to devel-
opment, maintenance and deployment of an ocean turbine
are:

1. Bio-Fouling - While submerged, the ocean turbine is sus-
ceptible to biological fouling, or bio-fouling, which is
the gradual but undesired accumulation of animals and
plants on the turbine. Sensors on a buoyancy-driven un-
derwater glider developed in 2003 as a part of the UCSD
Spray Project to observe oceanographic features stopped
functioning within a mere four weeks of deployment in
the Monterey Canyon due to bio-fouling (Sherman et al.
2001).

2. Corrosion - The salinity of the ocean water behaves as a
corrosive agent for parts of the turbine, with cabling being
an easy target. Destruction of cabling leads to a loss of
communication between the turbine and any components
on the ocean surface, while corrosion of the nacelle could
eventually cause a breach.

3. Turbidity - Oceanic wildlife or debris could impact or ob-

struct the turbine. Also, larger objects could tilt the tur-
bine or cause it to lean on its mooring line.
To increase the reliability of ocean turbines and other

complex machinery, machine condition monitoring (MCM)
systems are used to perform continuous, automated self-
checking. They record, manage, process and interpret read-
ings from a suite of sensors to offer intelligent problem de-
tection capabilities (i.e. automated fault localization, de-
tection and classification). By providing information about
the type and location of a fault, an operator can determine
whether a maintenance expedition is necessary and exactly
which tools or parts are required to correct the problem.
Also, detecting faults as soon as they occur allows for quick
remediation (such as adjustment or shutdown) which pre-
vents damage to the turbine. Overall, MCM systems can
minimize operation and repair-related costs, while maximiz-
ing the output and life of the turbine.

An MCM system for an ocean turbine could include sen-
sors to measure oil level and quality, temperature, turbidity,
electrical output, rotational velocity, and vibration. Some
sensors such as oil and temperature sensors produce a sin-
gle reading at predetermined intervals. Others, like the vi-
bration sensor, are capable of continuously emitting wave-
form measurements in a data stream. All the data gathered
from these sensors must be combined or fused and then in-
terpreted to provide accurate information about the turbine’s
environment, current state and future health.

In the case study discussed in the next section, a com-
bination of data mining and sensor fusion is used to iden-
tify problem states as they occur. Data mining and machine
learning, which collectively refer to techniques for inferring
knowledge from raw data by analyzing patterns, provides an
avenue for automated interpretation of the sensor data and
problem classification, while sensor fusion techniques are
needed to combine data from multiple sources to get a com-
plete, more accurate picture. These techniques would work
collaboratively within the health assessment process of an
MCM system to allow for complete, tested and automatic
interpretation of the raw data.

Approaches to sensor fusion can be divided into cate-
gories based on the level at which they are performed. These
levels are:

1. Data level fusion: Data level fusion (sometimes called
pixel-level fusion in image fusion) involves combining
raw sensor signals prior to performing any data transfor-
mations, feature extraction or data manipulation. In order
to combine sensor signals at the data level, the signals
must originate from sources which produce the same type
of signal.

2. Feature level fusion: Feature level fusion, which is the
focus of this paper, involves first extracting features or at-
tributes which describe the data, and then combining the
features from each signal to produce a fused signal. Un-
like data level fusion, feature level fusion can be applied
to data from both homogeneous and heterogeneous sensor
types.

3. Decision level fusion: Decision level fusion (Chen,
Wang, & Chi 1997) involves making a local decision from
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each signal and then combining the decisions to get the
final output. Another approach to decision level fusion
(Veeramachaneni et al. 2008) is to apply a mining algo-
rithm that determines the probability of each possible out-
come from each signal, and then combine the probability
of class membership for each class using summing or vot-
ing. The final decision is made by selecting the outcome
with the highest probability.

A comparison of the different fusion levels on vibration
data remains for future work. Previous studies performing
this type of comparison were specific to different application
domains (Samadzadegan 2004).

In some domains, the real challenge behind feature level
fusion is the extraction or determination of appropriate fea-
tures which best describe the object. For our applica-
tion, features are derived from a wavelet transformation
which, given a time series of amplitudes, produces out-
put which tells the frequency at which an oscillation is de-
tected. Wavelet analysis provides distinct advantages over
other preprocessing methods such as Cepstrum analysis and
Fourier transforms: it works over multiple scales, and is
highly efficient on streaming data (Peng & Chu 2004).
The wavelet transform used was a discrete Haar wavelet,
which we implemented by applying the same methodology
as (Wald et al. 2010). Due to space limitations, additional
details about the transform have been omitted.

To fuse the sensor data at the feature level, a set union of
the features produced by the wavelet transform from both
channels was performed, which, intuitively, should improve
a classifier’s ability to perform state detection since all the
available data is being taken into account during the data
mining process.

Our case study investigates feature level fusion of wavelet
transformed vibration data. It is meant to show how feature
level fusion could improve the ability of machine learning
algorithms to detect the orientation of a turbine based on
data from its vibration sensors, known as accelerometers.
As the researchers did not yet have access to vibration data
from the ocean turbine at the time this study was conducted,
two accelerometers were mounted on a box fan and readings
were taken while the fan was running in three different ori-
entations. Although a fan runs at a much higher speed than
a turbine, the rotation of its blades produces different vibra-
tion signatures depending on varying operating conditions,
as would a turbine.

Experimental Setup

Vibration readings of rotating machinery contain distinct
signatures which can be used to determine the state of a
machine. In this experiment, feature level fusion and data
mining are applied to vibration data acquired from multiple
sensors installed on a box fan. Like a turbine, the rotation
of the blades in a box fan result in vibration patterns that
are representative of the state of the fan. The motivation
behind this experiment is to show, using experimental data,
how feature level fusion enhances problem detection in ro-
tating machinery by reducing misclassification rates, i.e. the
amount of incorrect state predictions. The lower the mis-

classification rate, the more confidence one can have in the
classification. Although this experiment does not represent
a complete MCM system, it demonstrates how intelligent
problem detection occurs within such a system using sensor
fusion and data mining.

For this case study, measurements were recorded from the
fan while it was operating at the same speed (1010 RPMs) in
four different setups: standing upright (baseline), tilted on a
soft surface like a hand (TOH), tilted on a hard surface such
as a wall (TOW), and slowed with an object like a pencil
(SWO). These four experiments correlate to four scenarios
possible while an ocean turbine is submerged – running nor-
mally, tilted on its mooring line, tilted on a submerged object
like a piling and obstructed by debris. The baseline state is
considered the normal class, while TOH, TOW and SWO
are the faults or problem scenarios that the data mining clas-
sifiers will try to detect.

The data used in this case study were acquired from two
identical accelerometers (model AC136-1A) installed on the
outer casing of a typical 50cm 120V AC box fan by an IO-
Tech Wavebook/516-E Data Acquisition Unit (DAQ). Time
synchronous averaging (Lebold et al. 2000) of the vibra-
tion signals is also performed by the DAQ. This process
segments the data into equal length blocks related to the dif-
ferent rotational phases and averages the blocks to reduce
noise.

Data from the accelerometers were sampled at 1000 Hz
for 3 seconds for each experiment, producing a total of 3000
readings per burst. These accelerometers are denoted as
channels 1 and 2 (CH1 and CH2) throughout this case study.
Each experiment was repeated a total of six (6) times, result-
ing in 18,000 measurements per experiment. The raw data
consisted of 48 files = 2 channels x 6 runs x 4 setups. The
six runs of each experiment were combined to form 8 files =
2 channels x 4 setups.

The measurements recorded from both accelerometers
during these experiments were already synchronized and
complete with no data points missing. Also, the number
of baseline data points was the same as the number of data
points in each scenario of interest. For fusion of vibra-
tion data from a live turbine, sensor synchronization may
be necessary to align measurements taken at the same in-
stance in time since readings may arrive late or out of order
due to problems during transmission. Data imputation tech-
niques (Van Hulse & Khoshgoftaar 2008) may also be uti-
lized to fill in missing data values, which is possible due to
packet loss during transmission and/or sensor malfunction.

The data in each of the 8 files were passed through a dis-
crete Haar wavelet transform process similar to the one used
in (Wald et al. 2010) which converts the time series of raw
amplitude readings to a time-frequency representation of the
signal. The output of the wavelet transform are 10 nominal
features, whose value can be either 0 or 1. A value of 0 in-
dicates that no wave was detected at a given scale and time,
and a 1 means that a wave was detected at the given scale
and time.

In this study, feature level fusion is done by performing
a union of the features across both sensor channels for each
setup. The 10 wavelet features from channel 1 were com-
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bined with the 10 wavelet features from channel 2 for each
setup, producing 4 new files, each containing 20 features.
Counting the 8 files from the individual channels and the 4
files with the combined features, there are now 12 data files
= (2 channels x 4 setups) + (4 setups with 20 features).

A sliding window (Lee, Lin, & Chen 2001) of size 100
(i.e. there are 100 instances in each window) was then ap-
plied to the transformed data in each of the 12 data files by
taking the arithmetic sum of the 1s for each feature over the
length of the window. The window size was selected based
on experimentation with other window sizes; due to space
limitations, the results of the window size experiment were
not included.

For this experiment, twelve (12) machine learning tech-
niques were trained to detect the underlying patterns in the
vibration signatures and to predict the state of the machine.
This problem was reduced to a binary classification prob-
lem by combining the data from each of the three faults
(TOH, TOW and SWO) with the data from the baseline
setup for each channel. In other words, the decision a clas-
sifier needed to make in each case was between the nor-
mal class (baseline) and a single fault (either SWO, TOH
or TOW). Three models were built for each machine learner
(or classifier) and fault type by training the classifier on data
from each accelerometer independently and from the fused
data. The classifiers used in this case study are all available
in WEKA 1 data mining software package (Witten & Frank
2005). These models were built in WEKA by performing
five-fold cross-validation. The twelve classifiers are listed
on page 6 (Table 1) and the results for all twelve learners are
presented in the next section. Default parameter values were
used unless otherwise noted. Non-default parameter values
were used only where experimentation indicated an overall
improvement in classification performance for all channels.
Details and results of individual experiments were excluded
due to space limitations.

In a binary classification problem, the overall perfor-
mance of the classifier is summarized in terms of a confu-
sion matrix – a 2 x 2 matrix showing the number of data
points correctly labeled as either faulty or baseline, as well
as the number of items misclassified. The number of faulty
instances correctly identified is called the True Positive Rate
(TPR), and the number of instances that were actually nor-
mal but were labeled as faulty by the classifier is the False
Positive Rate (FPR).

The performance measure used for this study was the
AUC, or area under the Receiver Operating Characteristic
(ROC) curve. The ROC curve is the graph of the FPR on
the x-axis versus the TPR on the y-axis. The AUC summa-
rizes the information provided by the ROC curve as a single
numeric value between 0 and 1, with larger values being bet-
ter, allowing for quicker analysis and a concise representa-
tion of classification performance. In addition, the AUC cor-
rectly expresses classification performance regardless of the
class distribution, and is independent of the decision thresh-
old (Huang & Ling 2005).

1Available for download from http://www.cs.waikato.
ac.nz/ml/weka

Figure 3: Results

Results

The results of the SWO, TOH and TOW experiments are
shown in the three clustered bar graphs in that order in Fig-
ure 3. In the graphs for each fault, the performance of the
twelve classifiers on distinguishing that fault from data from
independent channels (CH1 and CH2) and the fused channel
(denoted FF) is presented. Each classifier is represented as
a separate cluster of three vertical bars on the x-axis where
the height of the bar is the AUC value; so, the higher the
bar, the better that classifier was at detecting that fault. The
three vertical bars comprising the cluster for each classifier
represent the values obtained from CH1, CH2 and FF data
respectively.

For the SWO fault, classifier performance from CH2 and
FF data was almost perfect but dipped as low as 0.97 AUC
for some learners on CH1 data. So, for SWO, the results
CH1 and FF data yielded similar classification performance
for detecting the TOH fault, and results for CH2 data were
a little worst for some learners. Classifier performance were
lowest on TOW, where CH1 data produced the worst perfor-
mances. Although classifiers performed better on CH2 for
detecting the TOW fault, the best results were obtained from
the FF data. The degradation of classifier performances from
TOW data across all channels may be due to increased noise
levels from wall resonance.

18



While its effect on classifier performance was less appar-
ent for the SWO and TOH faults, the feature level fused
channel FF showed the highest AUCs of the three channels
(CH1, CH2, FF) across all setups. In addition, results for
TOW were best on the FF channel than on any individual
channel. So, by applying feature level fusion, classifiers
were able to distinguish faults with greater confidence and
lower misclassification rates.

Conclusion
Feature level fusion can be applied within an MCM system
to improve problem detection from vibration data. This was
confirmed by experimental results from a case study which
showed that for each of three faults to be detected, feature
level fusion provided either similar results as the better ac-
celerometer channel or better results than both individual
channels. Future work includes comparing feature level fu-
sion against data level and decision level fusion approaches,
and further application of feature level fusion to vibration
data from other rotating machinery including an ocean tur-
bine.
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Learner Label Description
Tuned C4.5 Decision Tree C4.5 This algorithm (Witten & Frank 2005) derives a set of classifica-

tion rules from the training data and uses these rules to classify
or label new instances. J48, the WEKA implementation of the
C4.5 decision tree algorithm, was constructed with pruning dis-
abled, Laplace smoothing enabled, and default values for remain-
ing parameters.

Naive Bayes NB A simplified form of a Bayesian network, the Naive Bayes learner
(Frank et al. 2000) predicts the probability of each outcome based
on the naive assumption of independence among the predictive fea-
tures and selects the outcome with the highest probability as its
prediction.

Multi-Layer Perceptron MLP The Multi-Layer Perceptron (MLP) Neural Network (Charalam-
pidis & Muldrey 2009) is a form of feed-forward neural network
which maps input values to an output. This learner was built in
WEKA using default values for all parameters except for the ’hid-
denLayers’ and ’validationSetSize’ parameters which were set to
’3’ and ’10’ respectively.

RIPPER RIPPER RIPPER, or Repeated Incremental Pruning to Produce Error Re-
duction, (Cohen 1995) is a rule based learner which generates a
decision on new instances based on a set of rules built from a train-
ing dataset. For this case study, the default parameters for the JRip
algorithm – the WEKA implementation of RIPPER – was used.

k-Nearest Neighbor with k=5 5-NN The k-Nearest Neighbor algorithm (Fraiman, Justel, & Svarc 2010)
classifies a new instance by doing a majority vote of the classes
of k instances in the training dataset that are closest to the new
instance within the feature space. Default values were selected for
all parameters of the IBk algorithm, the WEKA implementation of
the k-Nearest Neighbor algorithm, with the exception of the value
of k which was set to 5.

Support Vector Machine SVM The simplest form of the Support Vector Machine (SVM) is a hy-
perplane which divides a set of instances into two classes with
maximum margin. The SVM in WEKA is implemented as John
Platt’s SMO algorithm (Platt 1998). Default values were used for
all parameters.

Random Forest with 100 trees RF100 Random Forest (Breiman 2001) is an ensemble learner composed
of multiple decision trees. This is the WEKA implementation of
the Random Forest learner with the number of trees parameter
value set to 100.

Radial Basis Function Neural Network RBF The WEKA implementation of the Radial Basis Function Network
(Buhmann & Buhmann 2003) is a normalized Gaussian form of
the neural network. No changes were made to the default WEKA
parameter values for this learner.

Logistic Regression LR The Logistic Regression learner (Witten & Frank 2005) is imple-
mented in WEKA with a multinomial regression model for min-
imizing error. No parameter values were changed for this case
study.

C4.5 Decision Tree C4.5O This is the WEKA implementation of the J48 algorithm with de-
fault parameters.

k-Nearest Neighbor with k=2 2-NN The WEKA implementation of the k-NN algorithm with k=2.
Random Forest with 10 trees RF10 The WEKA implementation of the Random Forest learner with the

number of trees parameter set to 10.

Table 1: Machine Learners
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