

Mapping Syntactic to Semantic
Generalizations of Linguistic Parse Trees

Boris Galitsky1, Josep Lluis de la Rosa1 & Gábor Dobrocsi2

1 Univ. Girona Spain
bgalitsky@hotmail.com

2 Univ Miskolc Miskolc Hungary
gadomail@gmail.com

Abstract
We define sentence generalization and generalization
diagrams via a special case of least general generalization
(LGG) as applied to linguistic parse trees. Similarity
measure between linguistic parse trees is developed as LGG
operation on the lists of sub-trees of these trees. The
diagrams introduced are representation of mapping between
the syntactic generalization level and semantic
generalization level. Generalization diagrams are intended
as a framework to compute semantic similarity between
texts relying on linguistic parse tree data. Such structured
approach significantly improves text relevance assessment
in a horizontal domain, where ontologies are not available.

 Introduction
It is hard to overestimate an importance of building
semantic representation from syntactic level for natural
language understanding. This task has immediate
applications in tasks such as information extraction and
question answering (Allen 1987, Cardie and Mooney 1999,
Ravichandran and Hovy 2002). In the last ten years there
has been a dramatic shift in computational linguistics from
manually constructing grammars and knowledge bases to
partially or totally automating this process by using
statistical learning methods trained on large annotated or
unannotated natural language corpora. In this study we
consider a possibility of proceeding from syntactic parse
tree to such level of semantic representation as a specific
kind of conceptual graph.
 Most current learning research in NLP employs
particular statistical techniques inspired by research in
speech recognition, such as hidden Markov models
(HMMs) and probabilistic context-free grammars

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(PCFGs). A variety of learning methods including decision
tree and rule induction, neural networks, instance-based
methods, Bayesian network learning, inductive logic
programming, explanation-based learning, and genetic
algorithms can also be applied to natural language
problems and can have significant advantages in particular
applications (Moreda et al. 2007). In addition to specific
learning algorithms, a variety of general ideas from
traditional machine learning such as active learning,
boosting, reinforcement learning, constructive induction,
learning with background knowledge, theory refinement,
experimental evaluation methods, PAC learnability, etc.,
may also be usefully applied to natural language problems
(Cardie & Mooney 1999). In this study we focus our
investigation on how expressive can similarity between
syntactic structures be to detect weak semantic signals in a
domain-independent manner (Galitsky 2003).
 We also attempt to approach conceptual graph level
(Sowa 1984, Polovina & Heaton 1992) using pure
syntactic information such as syntactic parse trees and
applying learning to it to increase reliability and
consistency of resultant semantic representation. The
purpose of such automated procedure is to tackle
information extraction and knowledge integration
problems usually requiring deep natural language
understanding (Dzikovska et al. 2005, Galitsky et al 2010,
Banko et al 2007) and cannot be solved at syntactic level.
Among such problems are text relevance, and semantic
similarity between queries and answers under question
answering. Also, having defined semantic similarity, one
can perform classification into semantic classes. The
purpose of generalization diagrams is to support such
classification tasks. We demonstrate how generalization
diagrams are constructed in Section 4.

168

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Search and similarity of syntactic parse trees
We apply parse tree generalization technique to solving the
problem of classifying search results in respect to being
relevant and irrelevant to search query. Our evaluation of
matching mechanism is associated with improvement of
search relevance by checking syntactic similarity between
query and sentences in search hits. Such syntactic
similarity is important when a search query contains
keywords which form a phrase, domain-specific
expression, or an idiom, such as “shot to shot time”, “high
number of shots in a short amount of time”. Usually, a
search engine is unable to store all of these expressions
because they are not necessarily sufficiently frequent,
however make sense only if occur within a certain natural
language expression.

 In terms of search implementation, this can be done in
two steps:

1) Keywords are formed from query in a
conventional manner, and search hits are obtained
taking into account statistical parameters of
occurrences these words in documents, popularity
of hits, page rank and others.

2) Above hits are filtered with respect to syntactic
and semantic similarity of the snapshots of search
hits with search query. Generalization diagram is
used to compute such similarity at both levels:
scoring is based on the size of common maximal
sub-tree et respective levels. Hence we obtain the
results of the conventional search and calculate the
score of the generalization results for the query
and each sentence and each search hit snapshot.
Search results are then re-sorted and only the ones
syntactically close to search query are assumes to
be relevant and returned to a user.

Generalizing natural language sentences
To measure of similarity of abstract entities expressed

by logic formulas, a least-general generalization was
proposed for a number of machine learning approaches,
including explanation based learning and inductive logic
programming. Least general generalization was originally
introduced by (Plotkin 1970). It is the opposite of most
general unification (Robinson 1965) therefore it is also
called anti-unification.

In this study, to measure similarity between natural
language (NL) expressions, we extend the notion of
generalization from logic formulas to syntactic parse trees
of these expressions. If it were possible to define similarity
between natural language expressions at pure semantic

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

level, least general generalization would be sufficient.
However, in horizontal search domains where construction
of full ontologies for complete translation from NL to logic
language is not plausible, therefore extension of the
abstract operation of generalization to syntactic level is
required. Rather than extracting common keywords,
generalization operation produces a syntactic expression
that can be semantically interpreted as a common meaning
shared by two sentences.

 Let us represent a meaning of two NL expressions by
logic formulas and then construct unification and anti-
unification of these formulas. How to express a
commonality between the expressions?

• camera with digital zoom
• camera with zoom for beginners

To express the meanings we use predicates
camera(name_of_feature, type_of_users) (in real life we
would hive much higher number of arguments), and
zoom(type_of_zoom). The above NL expressions will be
represented as:

 camera(zoom(digital), AnyUser)
 camera(zoom(AnyZoom), beginner),
where variables (uninstantiated values, not specified in

NL expressions) are capitalized. Given the above pair of
formulas, unification computes their most general
specialization camera(zoom(digital), beginner), and anti-
unification computes their most special generalization,
camera(zoom(AnyZoom), AnyUser).

The purpose of an abstract generalization is to find
commonality between portions of text at various semantic
levels. Generalization operation occurs on the following
levels:

• Text
• Paragraph
• Sentence
• Phrases (noun, verb and others)
• Individual Word

At each level except the word one, result of
generalization of two expressions is a set of expressions. In
such set, expressions for which there exist less general
expressions are eliminated. Generalization of two sets of
expressions is a set of sets which are the results of pair-
wise generalization. We first outline the algorithm for two
sentences and then proceed to the specifics for particular
levels.

 Being a formal operation on abstract trees,
generalization operation nevertheless yields semantic
information about commonalities between sentences. The
algorithm is as follows:

1) Obtain parsing tree for each sentence. For each
word (tree node) we have lemma, part of speech
and form of word information. This information is
contained in the node label. We also have an arc
to the other node.

169

2) Split sentences into sub-trees which are phrases
for each type: verb, noun, prepositional and
others; these sub-trees are overlapping. The sub-
trees are coded so that information about
occurrence in the full tree is retained.

3) All sub-trees are grouped by phrase types.
4) Extending the list of phrases by adding

equivalence transformations.
5) Generalize each pair of sub-trees for both

sentences for each phrase type.
6) For each pair of sub-trees yield an alignment, and

then generalize each node for this alignment. For
the obtained set of trees (generalization results),
calculate the score.

7) For each pair of sub-trees for phrases, select the
set of generalizations with highest score (least
general).

8) Form the sets of generalizations for each phrase
types whose elements are sets of generalizations
for this type.

9) Filtering the list of generalization results: for the
list of generalization for each phrase type, exclude
more general elements from lists of generalization
for given pair of phrases.

 For a given pair of words, only a single generalization
exists: if words are the same in the same form, the result is
a node with this word in this form. We refer to
generalization of words occurring in syntactic tree as word
node. If word forms are different (e.g. one is single and
other is plural), then only the lemma of word stays. If the
words are different but only parts of speech are the same,
the resultant node contains part of speech information only
and no lemma. If parts of speech are different,
generalization node is empty.

 For a pair of phrases, generalization includes all
maximum ordered sets of generalization nodes for words in
phrases so that the order of words is retained. In the
following example

To buy digital camera today, on Monday
Digital camera was a good buy today, first Monday of

the month
Generalization contains {digital - camera , today –

Monday} , where part of speech information is not shown.
buy is excluded from both generalizations because it occurs
in a different order in the above phrases. Buy - digital -
camera is not a generalization because buy occurs in
different sequence with the other generalization nodes.

As one can see, multiple maximum generalizations
occur depending how correspondence between words is
established, multiple generalizations are possible. In
general, totality of generalizations forms a lattice. To obey
the condition of maximum we introduce a score on
generalization. Scoring weights of generalizations are

decreasing, roughly, in following order: nouns and verbs,
other parts of speech, and nodes with no lemma but part of
speech only. In its style generalization operation follows
along the lines of the notion of ‘least general
generalization’, or anti-unification if a node is a formula in
a language of logic. Hence we can refer to the syntactic
tree generalization as the operation of anti-unification of
syntactic trees.

Result of generalization can be further generalized with
other parse trees or generalization. For a set of sentences,
totality of generalizations forms a lattice: order on
generalizations is set by the subsumption relation and
generalization score. Generalization of parse trees obeys
the associativity by means of computation: it has to be
verified and resultant list extended each time new sentence
is added. Notice that such associativity is not implied by
our definition of generalization.

Constructing generalization diagrams

 We now demonstrate how the generalization

framework yields generalization diagrams for semantic
classification. These diagrams are intended as
representation of correspondence between generalizations
on syntactic and semantic levels. We use notes from a
number of customers of a bank. The dataset of five
paragraphs is introduced and then illustrated a step-by-step
learning procedure.

1p. A friend transferred funds from a checking to a savings
account. He then used the saving funds to pay for his mortgage.

2p. Premier account customers decided to transfer their funds
from premier to regular savings account. The couple then used
their premier account for automated mortgage payment.

3p. A mortgagee customer transferred the mortgage account
from fixed to adjustable. She then decided to use the remaining
funds as a last payment of mortgage for her second home.

1n. A broker transferred his title from corporate brokerage to
individual accounts. He used to deposit significant personal funds
to the brokerage account.

2n. A manager transferred rent from rent collection corporate
to investment accounts. In the past he used to deposit rent in his
investment brokerage account directly.

To demonstrate a deep level understanding of meanings
of these paragraphs, let us introduce two classes of
“individual bank users” and “corporate bank users” and
demonstrate how these classes can be formed from our
data and classification performed. Notice that there is no
explicit indication of belonging to one of this classes, it has
to be inferred from text. There could be other classes
where semantic information has to be inferred such as
‘obtained funds are used for something’ and ‘no such
statement is made’, ‘account type transfer’ and

170

‘refinancing’, and many more. We use the denotation {1p,
2p, 3p} for the set of positive examples and {1n, 2n} for
the set of negative examples. For each example, we
enumerate sentences in paragraphs as {a, b, …}.

We intend to express commonalities between the
elements of training set to ‘explain’ belonging to a class,
following the classical methodology of induction (Mill
1843). We hypothesize that common linguistic features of
a training set cause the target feature (the class). In this
section we form these features on both syntactic level by
means of generalization and on semantic level by means of
logical anti-unification. To do that, we will first proceed on
syntactic level, and then show how it can be done on
semantic level of logic forms. Then we finally show how
the syntactic level can be mapped into semantic one.

 We build a lattice of generalizations separately for
positive and negative sets of paragraphs. The order of
generalization is selected such that it results in the maximal
lattice in the sense that the total score of all expressions for
nodes is the highest. For example, for three paragraphs, it
is always higher score to generalize two paragraphs with
higher similarity with each other first. Machine learning
procedure is then relating a new paragraph to a lattice of
training set examples of either class. The learning
procedure occurs on both syntactic and semantic levels as
well, since either properties may lead to belonging to a
class.

 The lattice for three paragraphs of the positive set is
shown at Fig. 1a. For each lemma in generalization result
we use a simplified denotation: either lemma itself (if
available) or POS. Single lines depict generalizations for
the first sentence of each paragraph (a), double line – for
the second sentence (b). There are multiple sentences
appearing in different order in a general case. The lattice
depicts the relation of “being more general’ between
generalization results.

Mapping into logic forms
To define mapping into logic forms, we need to form

logical predicates and specify semantic types of their
arguments. We don’t believe that semantic types can be
adequately define at text processing time: we would have
to keep adding new semantic types as we encounter new
co-occurrences of words for predicates and instances for
their arguments which has been selected. For the selected
domain of financial services, we form the logical

predicates enumerated below to represent meanings of
entities in our sample paragraphs. These definitions would
follow semantic role labeling style (like for ‘transfer’),
with additional domain-specific constraints on arguments.
Additionally, nouns can form logical predicates if they
express entities important for the current domain, like
account. Here we use square brackets for comments:

transfer(who [agent], what [from-what], to-what
[result]).

use(who, what [e.g. funds], for-what [for certain
purpose]).

account(type [standard account type like
checking/saving], attribute [all other account parameters
together]).

deposit(who, what [which funds], to-what[account]).
All other logical predicates in this domain just have a

single argument for an attribute mortgage(attribute),
customer(attribute), rent(attribute[action with rent),
title(attribute[what kind of title]).

Unlike generalization operation, synonyms are used for
building logic forms. Synonyms are very domain specific,
for example account = fund in expression [VBX-deposit
PRP-to]. In other cases (domains), like ‘software user
accounts’, account and fund cannot be synonyms.

Fig 1a: Generalization diagram for three paragraphs from
positive set.

Commonalities between paragraphs of positive class at

the semantic level are depicted in Fig. 1b. A lattice shows
the order (in terms of generality) between logic forms for
original sentences and paragraphs, and also between anti-
unifications results for logic forms.

Analogously to the syntactic level, single lines
correspond to the first sentence and double line – to the
second sentence.

transfer NN from JJ to JJ use ... mortgage

transfer PRP fund from JJ to JJ account

1a 1b 2a 2b 3a 3b

then use … mortgage payment

171

Fig. 1b: Semantic generalization diagram for three paragraphs.

Fig.1c: Generalization diagram showing the mapping between
syntactic and semantic

We show the mapping between the syntactic level of

Fig. 1a and semantic level of Fig. 1b at Fig. 1c. For a pair
sentences, we can first generalize them and then translate
result into a logic form. Alternatively, we can translate
each sentence into logic form first and then anti-unify these
logic forms. Obviously, for simple cases the results are
identical, however in general case it is not true. Both
operations lead to loss of information of various sorts.

 Fig. 1c shows multiple paths to the results of
operations of generalization and anti-unification. There is a
criterion for optimal path: the resultant score of expression.
For a logic form, the score is a number of terms in the
expression; this fits well the score of generalization. We
define an optimal path to the logic form of a set of samples

as the one leading to the resultant logic form with the
highest score.

Optimality of paths for finding syntactic and semantic
commonalities between text paragraphs is grounded in
linguistic features. For example, if anti-unification
precedes generalization, using such semantic operation as
synonym substitution and anaphora resolution makes
resultant expressions more complete. If we build logic
form from two sentences,

predicate1(customer, …) [from the first sentence] and
predicate2(he, …) [from the second sentence], we can

apply the obtained fact that ‘he’ = ‘customer’ into resultant
form

predicate1(customer,…) & predicate2(customer,…).
Otherwise, if we apply generalization first, we would not
be able to apply that fact and the resultant logic form will
miss the value ‘customer’. The reader can see that when
generalization results are mapped into ‘richer’ logic form
representation, one of the above semantic operations
occurs.

Evaluation
Using generalization, we attempted to improve

relevancy of Yahoo! Search, using Boss search API. We
used the score of generalization between a query and each
hit snapshot, and sorted the hits by this score only. We than
evaluated whether search results were improved for
complex queries (more than 5 words) with indication of
relationships between entities, such as “How to get visa to
China in San Francisco”.

 We use Yahoo! search results as a baseline and
evaluated how relevant are first 10 results in Yahoo! search
and the results of re-sorting based on generalization
presented in this paper. For a set of search results, we
measure a portion of those confirmed to be relevant by a
selected expert. For initial evaluation, presented in this
paper, we used 10 searches for each category. Evaluation
environment is publicly available at
http://box.cs.rpi.edu:8080/wise/compare.jsp

Where generalization-based re-sorting of search results
is implemented and Yahoo! search result order is shown at
the end of snapshot with a number (#). Generalization is
also designed to handle multi-sentence query (Table 1, last
two rows).

We observe that the more complex query is, the higher is
the impact of generalization search. Obviously, one cannot
expect any improvement by a typical search query of 2-3
keywords. For 5-7 keywords one observes some accuracy
decline, which is reversed when a query is a whole
sentence or more, up to three sentences. Overall
improvement of search relevancy (as defined above) for 50
queries (above 3 keywords) is 4.0%, which is noticeable

transfer NN from JJ to JJ use ... mortgage

transfer PRP fund from JJ to JJ account

1a 1b 2a 2b 3a 3b

then use … mortgage payment

use (friend,
account(saving,_),
pay(friend, mortgage())

transfer (friend,
account(checking,_),
account(saving,_))

use (customer(),
account(_,premier),
pay(customer(),
 mortgage(automated)))

transfer (customer(),
account(_, premier),
account(saving,
regular))

use (customer(mortgagee),
account(_,remain)),
pay(customer(mortgagee),
 mortgage(home)))

transfer (customer(mortgagee),
account(mortgage, fixed),
account(mortgage, adjustable))

transfer (_,
account(_,_), account(saving,_))

transfer (_,
account(_,_), account(saving,_)
)

use (customer, account(_,_),
pay(customer(_),
 mortgage(_)))

use (_, account(_,_),
pay(_, mortgage(_))

transfer NN from JJ to JJ use ... mortgage

transfer PRP fund from JJ to JJ account

1a 1b 2a 2b 3a 3b

then use … mortgage payment

use (friend,
account(saving,_),
pay(friend, mortgage())

transfer (friend,
account(checking,_),
account(saving,_))

1b

use (customer(),
account(_,premier),
pay(customer(),
 mortgage(automated)))

transfer (customer(),
account(_, premier),
account(saving,
regular))

use (customer(mortgagee),
account(_,remain)),
pay(customer(mortgagee),
 mortgage(home)))

transfer (customer(mortgagee),
account(mortgage, fixed),
account(mortgage, adjustable))

transfer (_,
account(_,_), account(saving,_))

transfer (_,
account(_,_), account(saving,_)
)

use (customer, account(_,_),
pay(customer(_),
 mortgage(_)))

use (_, account(_,_),
pay(_, mortgage(_))

1a 2a 2b 3a 3b

172

for a user (although not a reason to switch away from a
favorite search engine).

T
yp

e
of

se

ar
ch

 q
ue

ry

R
el

ev
an

cy

of

Y
ah

oo
 s

ea
rc

h,

%
,

av
er

ag
in

g
ov

er
 1

0

R
el

ev
an

cy

of

re
-s

or
ti

ng

by

ge
ne

ra
li

za
ti

on
, %

, a
ve

ra
gi

ng

ov
er

 1
0

im
pr

ov
em

en
t

of

re
le

va
nc

y,

%

3-4 word phrases 77 77 100.0%
5-7 word phrases 79 78 98.7%
8-10 word single
sentences

77 80
103.9%

2 sentences, >8
words total

77 83
107.8%

3sentences,>12
words total

75 82
109.3%

Table1: Evaluation of improvement of search accuracy using
syntactic generalization.

Results and conclusions
In this study we defined sentence generalization and

generalization diagrams which can be constructed
automatically from syntactic parse trees and support
semantic classification task. Similarity measure between
syntactic parse trees is developed as a generalization
operation on the lists of sub-trees of these trees. This
operation is defined as extension of anti-unification of
logic formulas towards such language structures as
syntactic parse trees.

 The diagrams are representation of mapping between
the level of syntactic generalization and semantic one
(unti-unification of logic forms). Generalization diagrams
are intended to be more accurate than conceptual graphs
for individual sentences, because only syntactic
commonalities are represented at semantic level. Use of
commonalities for reliable construction of meaning
representation follows along the line of the canons of
induction. It states that if two or more instances of a
phenomenon under investigation have only one
circumstance in common, then this circumstance is the
cause or effect of the given phenomenon. Generalization
diagrams are then used for semantic classification, where
classes are characterized by this phenomenon. Hence
proposed generalization diagrams are expected to be well
suited for text learning tasks. In this study we demonstrated
that use of generalization diagrams indeed improves the
search relevancy.

 In this study we showed how mapping the syntactic
generalization into semantic generalization allowed to treat
text relevance in a systematic way. Having evaluated the
relevance in industrial setting (allvoices.com and
zvents.com) by providing content to more than 20 million

users monthly, we conclude the proposed approach is
robust and scalable to a wide majority of text analysis and
search applications

References
Allen, J.F. Natural Language Understanding, Benjamin
Cummings, 1987.

Cardie, C., Mooney R.J. Machine Learning and Natural
Language. Machine Learning 1(5) 1999.

Ravichandran, D and Hovy E. 2002. Learning surface text
patterns for a Question Answering system. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL 2002), Philadelphia, PA.

Polovina S. and John Heaton, "An Introduction to
Conceptual Graphs," AI Expert, pp. 36-43, 1992.

Sowa JF, Information Processing in Mind and Machine.
Reading, MA: Addison-Wesley Publ., 1984.

Dzikovska, M., M. Swift, Allen, J., William de Beaumont,
W. (2005). Generic parsing for multi-domain semantic
interpretation. International Workshop on Parsing
Technologies (Iwpt05), Vancouver BC.

Banko, Michael J. Cafarella, Stephen Soderland,Matt
Broadhead, and Oren Etzioni. 2007 Open information
extraction from the web. In Proceedingsof the Twentieth
International Joint Conference on Artificial Intelligence,
pages 2670–2676, Hyderabad, India. AAAI Press.

Galitsky, B. Natural Language Question Answering
System: Technique of Semantic Headers. Advanced
Knowledge International, Australia 2003.

B.Galitsky, G. Dobrocsi, J.L. de la Rosa, S.O. Kuznetsov:
From Generalization of Syntactic Parse Trees to
Conceptual Graphs, in M. Croitoru, S. Ferré, D. Lukose
(Eds.): Conceptual Structures: From Information to
Intelligence, 18th International Conference on Conceptual
Structures, ICCS 2010, Lecture Notes in Artificial
Intelligence, vol. 6208, pp. 185-190.

Plotkin. GD A note on inductive generalization. In B.
Meltzer and D. Michie, editors, Machine Intelligence,
volume 5, pages 153-163. Elsevier North-Holland, New
York, 1970.

Robinson JA. A machine-oriented logic based on the
resolution principle. Journal of the Association for
Computing Machinery, 12:23-41, 1965

173

