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Abstract 
We define sentence generalization and generalization 
diagrams via a special case of least general generalization 
(LGG) as applied to linguistic parse trees. Similarity 
measure between linguistic parse trees is developed as LGG 
operation on the lists of sub-trees of these trees. The 
diagrams introduced are representation of mapping between 
the syntactic generalization level and semantic 
generalization level. Generalization diagrams are intended 
as a framework to compute semantic similarity between 
texts relying on linguistic parse tree data. Such structured 
approach significantly improves text relevance assessment 
in a horizontal domain, where ontologies are not available.  

 Introduction   
It is hard to overestimate an importance of building 
semantic representation from syntactic level for natural 
language understanding. This task has immediate 
applications in tasks such as information extraction and 
question answering (Allen 1987, Cardie and Mooney 1999, 
Ravichandran and Hovy 2002). In the last ten years there 
has been a dramatic shift in computational linguistics from 
manually constructing grammars and knowledge bases to 
partially or totally automating this process by using 
statistical learning methods trained on large annotated or 
unannotated natural language corpora. In this study we 
consider a possibility of proceeding from syntactic parse 
tree to such level of semantic representation as a specific 
kind of conceptual graph.  
    Most current learning research in NLP employs 
particular statistical techniques inspired by research in 
speech recognition, such as hidden Markov models 
(HMMs) and probabilistic context-free grammars 

                                                
Copyright © 2011, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

(PCFGs). A variety of learning methods including decision 
tree and rule induction, neural networks, instance-based 
methods, Bayesian network learning, inductive logic 
programming, explanation-based learning, and genetic 
algorithms can also be applied to natural language 
problems and can have significant advantages in particular 
applications (Moreda et al. 2007). In addition to specific 
learning algorithms, a variety of general ideas from 
traditional machine learning such as active learning, 
boosting, reinforcement learning, constructive induction, 
learning with background knowledge, theory refinement, 
experimental evaluation methods, PAC learnability, etc., 
may also be usefully applied to natural language problems 
(Cardie & Mooney 1999). In this study we focus our 
investigation on how expressive can similarity between 
syntactic structures be to detect weak semantic signals in a 
domain-independent manner (Galitsky 2003).  
      We also attempt to approach conceptual graph level 
(Sowa 1984, Polovina & Heaton 1992) using pure 
syntactic information such as syntactic parse trees and 
applying learning to it to increase reliability and 
consistency of resultant semantic representation. The 
purpose of such automated procedure is to tackle 
information extraction and knowledge integration 
problems usually requiring deep natural language 
understanding (Dzikovska et al. 2005, Galitsky et al 2010, 
Banko et al 2007) and cannot be solved at syntactic level. 
Among such problems are text relevance, and semantic 
similarity between queries and answers under question 
answering. Also, having defined semantic similarity, one 
can perform classification into semantic classes. The 
purpose of generalization diagrams is to support such 
classification tasks. We demonstrate how generalization 
diagrams are constructed in Section 4. 
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Search and similarity of syntactic parse trees 
We apply parse tree generalization technique to solving the 
problem of classifying search results in respect to being 
relevant and irrelevant to search query. Our evaluation of 
matching mechanism is associated with improvement of 
search relevance by checking syntactic similarity between 
query and sentences in search hits. Such syntactic 
similarity is important when a search query contains 
keywords which form a phrase, domain-specific 
expression, or an idiom, such as “shot to shot time”, “high 
number of shots in a short amount of time”. Usually, a 
search engine is unable to store all of these expressions 
because they are not necessarily sufficiently frequent, 
however make sense only if occur within a certain natural 
language expression.  

 In terms of search implementation, this can be done in 
two steps: 

1) Keywords are formed from query in a 
conventional manner, and search hits are obtained 
taking into account statistical parameters of 
occurrences these words in documents, popularity 
of hits, page rank and others.  

2) Above hits are filtered with respect to syntactic 
and semantic similarity of the snapshots of search 
hits with search query. Generalization diagram is 
used to compute such similarity at both levels: 
scoring is based on the size of common maximal 
sub-tree et respective levels. Hence we obtain the 
results of the conventional search and calculate the 
score of the generalization results for the query 
and each sentence and each search hit snapshot. 
Search results are then re-sorted and only the ones 
syntactically close to search query are assumes to 
be relevant and returned to a user.  

Generalizing natural language sentences   
To measure of similarity of abstract entities expressed 

by logic formulas, a least-general generalization was 
proposed for a number of machine learning approaches, 
including explanation based learning and inductive logic 
programming. Least general generalization was originally 
introduced by (Plotkin 1970). It is the opposite of most 
general unification (Robinson 1965) therefore it is also 
called anti-unification.  

In this study, to measure similarity between natural 
language (NL) expressions, we extend the notion of 
generalization from logic formulas to syntactic parse trees 
of these expressions. If it were possible to define similarity 
between natural language expressions at pure semantic 
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level, least general generalization would be sufficient. 
However, in horizontal search domains where construction 
of full ontologies for complete translation from NL to logic 
language is not plausible, therefore extension of the 
abstract operation of generalization to syntactic level is 
required. Rather than extracting common keywords, 
generalization operation produces a syntactic expression 
that can be semantically interpreted as a common meaning 
shared by two sentences. 

 Let us represent a meaning of two NL expressions by 
logic formulas and then construct unification and anti-
unification of these formulas. How to express a 
commonality between the expressions? 

• camera with digital zoom  
• camera with zoom for beginners 

To express the meanings we use predicates 
camera(name_of_feature, type_of_users) (in real life we 
would hive much higher number of arguments), and 
zoom(type_of_zoom). The above NL expressions will be 
represented as: 

 camera(zoom(digital), AnyUser) 
 camera(zoom(AnyZoom), beginner), 
where variables (uninstantiated values, not specified in 

NL expressions) are capitalized. Given the above pair of 
formulas, unification computes their most general 
specialization camera(zoom(digital), beginner), and anti-
unification computes their most special generalization, 
camera(zoom(AnyZoom), AnyUser). 

The purpose of an abstract generalization is to find 
commonality between portions of text at various semantic 
levels. Generalization operation occurs on the following 
levels: 

• Text 
• Paragraph 
• Sentence 
• Phrases (noun, verb and others) 
• Individual Word 

At each level except the word one, result of 
generalization of two expressions is a set of expressions. In 
such set, expressions for which there exist less general 
expressions are eliminated. Generalization of two sets of 
expressions is a set of sets which are the results of pair-
wise generalization. We first outline the algorithm for two 
sentences and then proceed to the specifics for particular 
levels.  

       Being a formal operation on abstract trees, 
generalization operation nevertheless yields semantic 
information about commonalities between sentences. The 
algorithm is as follows: 

1) Obtain parsing tree for each sentence. For each 
word (tree node) we have lemma, part of speech 
and form of word information. This information is 
contained in the node label.  We also have an arc 
to the other node.   
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2) Split sentences into sub-trees which are phrases 
for each type: verb, noun, prepositional and 
others; these sub-trees are overlapping. The sub-
trees are coded so that information about 
occurrence in the full tree is retained. 

3) All sub-trees are grouped by phrase types.  
4) Extending the list of phrases by adding 

equivalence transformations. 
5) Generalize each pair of sub-trees for both 

sentences for each phrase type. 
6) For each pair of sub-trees yield an alignment, and 

then generalize each node for this alignment. For 
the obtained set of trees (generalization results), 
calculate the score.  

7) For each pair of sub-trees for phrases, select the 
set of generalizations with highest score (least 
general). 

8) Form the sets of generalizations for each phrase 
types whose elements are sets of generalizations 
for this type. 

9) Filtering the list of generalization results: for the 
list of generalization for each phrase type, exclude 
more general elements from lists of generalization 
for given pair of phrases. 

 For a given pair of words, only a single generalization 
exists: if words are the same in the same form, the result is 
a node with this word in this form. We refer to 
generalization of words occurring in syntactic tree as word 
node. If word forms are different (e.g. one is single and 
other is plural), then only the lemma of word stays. If the 
words are different but only parts of speech are the same, 
the resultant node contains part of speech information only 
and no lemma.  If parts of speech are different, 
generalization node is empty.  

  For a pair of phrases, generalization includes all 
maximum ordered sets of generalization nodes for words in 
phrases so that the order of words is retained. In the 
following example  

To buy digital camera today, on Monday  
Digital camera was a good buy today, first Monday of 

the month 
Generalization contains {digital -  camera , today – 

Monday} , where part of speech information is not shown.  
buy is excluded from both generalizations because it occurs 
in a different order in the above phrases. Buy - digital - 
camera is not a generalization because buy occurs in 
different sequence with the other generalization nodes. 

As one can see, multiple maximum generalizations 
occur depending how correspondence between words is 
established, multiple generalizations are possible. In 
general, totality of generalizations forms a lattice. To obey 
the condition of maximum we introduce a score on 
generalization. Scoring weights of generalizations are 

decreasing, roughly, in following order: nouns and verbs, 
other parts of speech, and nodes with no lemma but  part of 
speech only. In its style generalization operation follows 
along the lines of the notion of ‘least general 
generalization’, or anti-unification if a node is a formula in 
a language of logic. Hence we can refer to the syntactic 
tree generalization as  the operation of anti-unification of 
syntactic trees. 

Result of generalization can be further generalized with 
other parse trees or generalization. For a set of sentences, 
totality of generalizations forms a lattice: order on 
generalizations is set by the subsumption relation and 
generalization score. Generalization of parse trees obeys 
the associativity by means of computation: it has to be 
verified and resultant list extended each time new sentence 
is added. Notice that such associativity is not implied by 
our definition of generalization.   

Constructing generalization diagrams 
 
 We now demonstrate how the generalization 

framework yields generalization diagrams for semantic 
classification. These diagrams are intended as 
representation of correspondence between generalizations 
on syntactic and semantic levels. We use notes from a 
number of customers of a bank. The dataset of five 
paragraphs is introduced and then illustrated a step-by-step 
learning procedure.  

1p. A friend transferred funds from a checking to a savings 
account. He then used the saving funds to pay for his mortgage. 

2p. Premier account customers decided to transfer their funds 
from premier to regular savings account. The couple then used 
their premier account for automated mortgage payment. 

3p. A mortgagee customer transferred the mortgage account 
from fixed to adjustable. She then decided to use the remaining 
funds as a last payment of mortgage for her second home. 

1n. A broker transferred his title from corporate brokerage to 
individual accounts. He used to deposit significant personal funds 
to the brokerage account. 

2n. A manager transferred rent from rent collection corporate 
to investment accounts. In the past he used to deposit rent in his 
investment brokerage account directly.  

To demonstrate a deep level understanding of meanings 
of these paragraphs, let us introduce two classes of 
“individual bank users” and “corporate bank users” and 
demonstrate how these classes can be formed from our 
data and classification performed. Notice that there is no 
explicit indication of belonging to one of this classes, it has 
to be inferred from text. There could be other classes 
where semantic information has to be inferred such as 
‘obtained funds are used for something’ and ‘no such 
statement is made’, ‘account type transfer’ and 
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‘refinancing’, and many more. We use the denotation {1p, 
2p, 3p} for the set of positive examples and {1n, 2n} for 
the set of negative examples. For each example, we 
enumerate sentences in paragraphs as {a, b, …}. 

We intend to express commonalities between the 
elements of training set to ‘explain’ belonging to a class, 
following the classical methodology of induction (Mill 
1843). We hypothesize that common linguistic features of 
a training set cause the target feature (the class). In this 
section we form these features on both syntactic level by 
means of generalization and on semantic level by means of 
logical anti-unification. To do that, we will first proceed on 
syntactic level, and then show how it can be done on 
semantic level of logic forms. Then we finally show how 
the syntactic level can be mapped into semantic one.  

 We build a lattice of generalizations separately for 
positive and negative sets of paragraphs. The order of 
generalization is selected such that it results in the maximal 
lattice in the sense that the total score of all expressions for 
nodes is the highest. For example, for three paragraphs, it 
is always higher score to generalize two paragraphs with 
higher similarity with each other first. Machine learning 
procedure is then relating a new paragraph to a lattice of 
training set examples of either class. The learning 
procedure occurs on both syntactic and semantic levels as 
well, since either properties may lead to belonging to a 
class. 

 The lattice for three paragraphs of the positive set is 
shown at Fig. 1a. For each lemma in generalization result 
we use a simplified denotation: either lemma itself (if 
available) or POS. Single lines depict generalizations for 
the first sentence of each paragraph (a), double line – for 
the second sentence (b). There are multiple sentences 
appearing in different order in a general case. The lattice 
depicts the relation of “being more general’ between 
generalization results. 

 

Mapping into logic forms  
To define mapping into logic forms, we need to form 

logical predicates and specify semantic types of their 
arguments. We don’t believe that semantic types can be 
adequately define at text processing time: we would have 
to keep adding new semantic types as we encounter new 
co-occurrences of words for predicates and instances for 
their arguments which has been selected. For the selected 
domain of financial services, we form the logical 

predicates enumerated below to represent meanings of 
entities in our sample paragraphs. These definitions would 
follow semantic role labeling style (like for ‘transfer’), 
with additional domain-specific constraints on arguments. 
Additionally, nouns can form logical predicates if they 
express entities important for the current domain, like 
account. Here we use square brackets for comments: 

transfer(who [agent], what [from-what], to-what 
[result]). 

use(who, what [e.g. funds], for-what [for certain 
purpose]). 

account(type [standard account type like 
checking/saving], attribute [ all other account parameters 
together]). 

deposit(who, what [which funds], to-what[account]). 
All other logical predicates in this domain just have a 

single argument for an attribute mortgage(attribute), 
customer(attribute), rent(attribute[action with rent), 
title(attribute[what kind of title]). 

Unlike generalization operation, synonyms are used for 
building logic forms. Synonyms are very domain specific, 
for example account = fund in expression [VBX-deposit 
PRP-to]. In other cases (domains), like ‘software user 
accounts’,  account and fund cannot be synonyms.  

Fig 1a: Generalization diagram for three paragraphs from 
positive set. 

 
Commonalities between paragraphs of positive class at 

the semantic level are depicted in Fig. 1b. A lattice shows 
the order (in terms of generality) between logic forms for 
original sentences and paragraphs, and also between anti-
unifications results for logic forms.  

Analogously to the syntactic level, single lines 
correspond to the first sentence and double line – to the 
second sentence. 

 
  

transfer NN from JJ to JJ use ... mortgage  

transfer PRP fund from JJ to JJ account  

1a 1b 2a 2b 3a 3b 

then use … mortgage payment 
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Fig. 1b: Semantic generalization diagram for three paragraphs. 

 

Fig.1c: Generalization diagram showing the mapping between 
syntactic and semantic 

 
We show the mapping between the syntactic level of 

Fig. 1a and semantic level of Fig. 1b at Fig. 1c. For a pair 
sentences, we can first generalize them and then translate 
result into a logic form. Alternatively, we can translate 
each sentence into logic form first and then anti-unify these 
logic forms. Obviously, for simple cases the results are 
identical, however in general case it is not true. Both 
operations lead to loss of information of various sorts.  

   Fig. 1c shows multiple paths to the results of 
operations of generalization and anti-unification. There is a 
criterion for optimal path: the resultant score of expression. 
For a logic form, the score is a number of terms in the 
expression; this fits well the score of generalization. We 
define an optimal path to the logic form of a set of samples 

as the one leading to the resultant logic form with the 
highest score.  

Optimality of paths for finding syntactic and semantic 
commonalities between text paragraphs is grounded in 
linguistic features. For example, if anti-unification 
precedes generalization, using such semantic operation as 
synonym substitution and anaphora resolution makes 
resultant expressions more complete. If we build logic 
form from two sentences,  

predicate1(customer, …) [from the first sentence] and  
predicate2(he, …) [from the second sentence], we can 

apply the obtained fact that ‘he’ = ‘customer’ into resultant 
form  

predicate1(customer,…) &  predicate2(customer,…). 
Otherwise, if we apply generalization first, we would not 
be able to apply that fact and the resultant logic form will 
miss the value ‘customer’. The reader can see that when 
generalization results are mapped into ‘richer’ logic form 
representation, one of the above semantic operations 
occurs. 

Evaluation 
Using generalization, we attempted to improve 

relevancy of Yahoo! Search, using Boss search API. We 
used the score of generalization between a query and each 
hit snapshot, and sorted the hits by this score only. We than 
evaluated whether search results were improved for 
complex queries (more than 5 words) with indication of 
relationships between entities, such as “How to get visa to 
China in San Francisco”. 

    We use Yahoo! search results as a baseline and 
evaluated how relevant are first 10 results in Yahoo! search 
and the results of re-sorting based on generalization 
presented in this paper. For a set of search results, we 
measure a portion of those confirmed to be relevant by a 
selected expert. For initial evaluation, presented in this 
paper, we used 10 searches for each category. Evaluation 
environment is publicly available at  
http://box.cs.rpi.edu:8080/wise/compare.jsp 

Where generalization-based re-sorting of search results 
is implemented and Yahoo! search result order is shown at 
the end of snapshot with a number (#). Generalization is 
also designed to handle multi-sentence query (Table 1, last 
two rows). 

We observe that the more complex query is, the higher is 
the impact of generalization search. Obviously, one cannot 
expect any improvement by a typical search query of 2-3 
keywords. For 5-7 keywords one observes some accuracy 
decline, which is reversed when a query is a whole 
sentence or more, up to three sentences. Overall 
improvement of search relevancy (as defined above) for 50 
queries (above 3 keywords) is 4.0%, which is noticeable 

 

transfer NN from JJ to JJ use ... mortgage  

transfer PRP fund from JJ to JJ account  

1a 1b 2a 2b 3a 3b 
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use (friend, 
account(saving,_), 
pay(friend, mortgage())  

transfer (friend,  
account(checking,_), 
account(saving,_) ) 

use (customer(), 
account(_,premier), 
pay(customer(),  
        mortgage(automated)))  

transfer (customer(),  
account(_, premier), 
account(saving, 
regular)) 

use (customer(mortgagee), 
account(_,remain)), 
pay(customer(mortgagee), 
        mortgage(home)) ) 

transfer (customer(mortgagee),  
account(mortgage, fixed), 
account(mortgage, adjustable)) 

transfer (_,  
account(_,_), account(saving,_) ) 

transfer (_,  
account(_,_), account(saving,_) 
) 

use (customer, account(_,_), 
pay(customer(_),  
        mortgage(_)))  

use (_, account(_,_), 
pay(_, mortgage(_))  

 

 

transfer NN from JJ to JJ use ... mortgage  

transfer PRP fund from JJ to JJ account  

1a 1b 2a 2b 3a 3b 

then use … mortgage payment 

use (friend, 
account(saving,_), 
pay(friend, mortgage())  

transfer (friend,  
account(checking,_), 
account(saving,_) ) 

1b 

use (customer(), 
account(_,premier), 
pay(customer(),  
        mortgage(automated)))  

transfer (customer(),  
account(_, premier), 
account(saving, 
regular)) 

use (customer(mortgagee), 
account(_,remain)), 
pay(customer(mortgagee), 
        mortgage(home)) ) 

transfer (customer(mortgagee),  
account(mortgage, fixed), 
account(mortgage, adjustable)) 

transfer (_,  
account(_,_), account(saving,_) ) 

transfer (_,  
account(_,_), account(saving,_) 
) 

use (customer, account(_,_), 
pay(customer(_),  
        mortgage(_)))  

use (_, account(_,_), 
pay(_, mortgage(_))  

1a 2a 2b 3a 3b 
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for a user (although not a reason to switch away from a 
favorite search engine). 
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3-4 word phrases 77 77 100.0% 
5-7 word phrases 79 78 98.7% 
8-10 word single 
sentences 

77 80 
103.9% 

2 sentences, >8 
words total 

77 83 
107.8% 

3sentences,>12 
words total 

75 82 
109.3% 

Table1: Evaluation of improvement of search accuracy using 
syntactic generalization. 

 

Results and conclusions 
In this study we defined sentence generalization and 

generalization diagrams which can be constructed 
automatically from syntactic parse trees and support 
semantic classification task. Similarity measure between 
syntactic parse trees is developed as a generalization 
operation on the lists of sub-trees of these trees. This 
operation is defined as extension of anti-unification of 
logic formulas towards such language structures as 
syntactic parse trees. 

   The diagrams are representation of mapping between 
the level of syntactic generalization and semantic one 
(unti-unification of logic forms). Generalization diagrams 
are intended to be more accurate than conceptual graphs 
for individual sentences, because only syntactic 
commonalities are represented at semantic level. Use of 
commonalities for reliable construction of meaning 
representation follows along the line of the canons of 
induction. It states that if two or more instances of a 
phenomenon under investigation have only one 
circumstance in common, then this circumstance is the 
cause or effect of the given phenomenon. Generalization 
diagrams are then used for semantic classification, where 
classes are characterized by this phenomenon. Hence 
proposed generalization diagrams are expected to be well 
suited for text learning tasks. In this study we demonstrated 
that use of generalization diagrams indeed improves the 
search relevancy. 

 In this study we showed how mapping the syntactic 
generalization into semantic generalization allowed to treat 
text relevance in a systematic way. Having evaluated the 
relevance in industrial setting (allvoices.com and 
zvents.com) by providing content to more than 20 million 

users monthly, we conclude the proposed approach is 
robust and scalable to a wide majority of text analysis and 
search applications  
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