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Students 

The Summer Academy for Mathematics and Science 
(SAMS) is a rigorous summer enrichment program for 
students from underrepresented groups, designed to 
“encourage good students to become excellent students” 
(Carnegie Mellon University, 2010) and thereby improve 
their chances for admission to selective colleges. Students 
take essay writing and mathematics refresher courses, 
participate in several mock standardized national exams, 
and work on two engineering or science projects for three 
weeks each. Students who selected the Robotics II activity 
participated in a three week course (2 hours a day, 5 days a 
week) introducing them to the Chiara and Tekkotsu 
programming. We taught two sections of Robotics II 
during the summer of 2010. The first had 2 boys and 4 
girls; the second had 4 boys and 2 girls. Only 4 of these 
students reported any prior programming experience. 

Course Syllabus 

We designed a curriculum to give students an introduction 
to robot control structure, vision, and locomotion. The 
course had two weeks of hands-on instruction followed by 
one week of project work. 
 Since two weeks was not enough time to teach students 
C++ programming, we focused on Tekkotsu’s extensible 
state machine language, which uses a concise notation for 
defining node classes and creating instances of nodes and 
transitions. The notation is automatically translated into 
C++ code by a state machine compiler. 
 Each instructional day followed the same general 
pattern: students were introduced to a new concept, given a 
few lines of novel code in the state machine language, and 
instructed to solve a task that required altering the code in 
meaningful ways. In their solution attempts, they made use 
of several debugging methods taught to them: 
diagramming out their ideas with their partners (Figure 2), 
observing robot behavior to see if it matched expectations, 
drawing graphical representations of their actual state 
machine code using a tool called the Storyboard, and using 
the storyboard to create a graphical execution trace as their 
robot ran their program. 

Week 1 Instruction 
Monday: Introduction, Teleoperation, Creating postures 
The first day of the course introduced students to the robots 
and the laboratory setup, reviewed safety procedures for 
preventing damage to the robots, and concluded with a 
crash course in Linux shell commands. The majority of the 
students had never worked with robots, let alone robots of 
such complexity. Many of them were apprehensive or 
intimidated, and at least two students considered dropping 
the course after first observing the robots move. One 
student actually screamed and had to leave the room to 
adjust to seeing what she had considered unnatural.  

After repeating basic power up/power down processes a 
few times students were shown how to teleoperate the 
robots on their own. They used a tool called the 
ControllerGUI, which allowed them to “see the world 
through the robot’s eyes” by displaying its camera image, 
and also explore the Chiara’s walking behavior. Students 
were then shown how to record their own robot postures in 
posture files; these files would later be used in constructing 
complex behaviors. After experiencing the robot’s 
behavior on their own and under their own control, those 
students who were originally concerned about the 
unnaturalness of the robots began to reinterpret them as 
machines that only followed their commands. They were 
willing to continue with the course, and in fact went on to 
be very successful in their exercises and projects. 

Tuesday: State Machines, Basic Code, Run first program 
The second day began with an introduction to the concept 
of state machines. Students were asked to translate a daily 
task, such as brushing their teeth, into a logical flow that 
might be used in a computer program. They were then 
taught to express their ideas in the form of a state machine. 
Next they were introduced to some of the state node and 
transition classes Tekkotsu provides for the Chiara, and 
given the opportunity to run their first robot behavior. 

Wednesday: Additional state nodes and transitions 
The third day expanded on the state machine coding 
students had learned the previous day, adding new node 
classes for speech generation, playing sounds, lighting 
LEDs on the robot, and making head movements. Random 
transitions as well as transitions from button press events 
added new ways to alter the program flow. With these 
concepts, students created state machines that mimicked 
unlocking a safe by entering a secret password in the form 
of a specific sequence of button presses (Figure 2). 

Figure 2 – Student diagram of the secret password game. 
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Thursday: Storyboard, Loops, Parallel Processing 
The fourth day introduced the Storyboard tool as a way for 
students to visualize the structure of their state machine on 
the computer and generate a trace of its execution to see 
their code running in real time. To fully utilize the tool’s 
capabilities, students were taught how to use fork and join 
operations, which allowed for concurrent state node 
actions. The project for the day was to create a metronome. 
Students used parallelism to have the robot light an LED 
and say ‘tic’ when its arm moved to the right, and light 
another LED and say ‘toc’ when the arm moved to the left. 

Friday: Mini Project – Robot Dance Competition 
The final day of the first week was a robot dance 
competition that required students to make use of all the 
concepts learned up to then. Students viewed a YouTube 
video of an international hexapod robot dance competition 
for inspiration, and were asked to similarly choreograph 
their dances. Each group successfully combined robot 
postures with lights, sound, and voice to create an 
elaborate dance routine set to a piece of popular music. 

Week 2 Instruction 
Monday: Image segmentation, Simple visual search 
The sixth day of instruction introduced robot vision by 
showing students how Tekkotsu uses color image 
segmentation to simplify the visual world. Students were 
given code that used a Tekkotu MapBuilder node that 
instructed the robot to locate a green ellipse in its visual 
field. Students were then asked to create new nodes that 
looked for other shapes (lines, blobs) or ellipses of other 
colors. They then experimented and created nodes that 
could locate many of these colored shapes at once. 

Tuesday: Egocentric and Allocentric frames of reference 
The seventh day delved into the differences between 
Tekkotsu’s camera, local, and world maps. Using various 
images in each, students were correctly able to deduce that 
the camera map gave a first person view, while the local 
map created an overhead view of the environment centered 
on the robot’s body. Where objects appeared in the local 
map was a function of the robot’s position but independent 
of its head direction. Students were then challenged to fool 
the robot’s vision system as they currently understood it. 
After uncovering certain weaknesses, such as the problems 
posed by occluding objects, methods were given to correct 
for these errors. 

Wednesday: Basic locomotion, Environment interaction 
The eighth day focused on locomotion and the Pilot node 
class. Using Pilot nodes, students learned how to instruct 
the Chiara to move forward, backward, or turn to any 
angle. Students were encouraged to combine this with their 
previous knowledge to have their robots locate an object in 
the world, approach it, and knock it over.  

Thursday: Experimenting with virtual environments 
The ninth day gave students a way to view robot behavior 
without using physical hardware. Mirage is a virtual 
environment simulator for Tekkotsu that provides 3D 

rendering of the robot and its surroundings, along with 
realistic physics. Using Mirage, students gained an 
understanding of how to teleoperate a robot in a virtual 
world. The second half of the day was spent learning how 
to use the WorldBuilder tool to create new virtual worlds 
for the robot to explore. 

Friday: Project Planning and Proposal 
The tenth day was devoted to brainstorming in groups to 
design course projects for the final week.  

Course Projects 
Each group was required to complete a one week project 
that made use of three key features of higher level robotics. 
The requirements for the project were: 

Vision: The robot must use camera images to do 
calculations with shapes in the environment and use that 
data for meaningful behavior. 
Locomotion: The robot must move within its environment, 
using the data from its visual system. 
Interaction: The robot must interact with its environment, 
either with objects, other robots, or with the roboticist. 

 One example project had a Chiara robot navigating to 
positions in the world that matched button press inputs. 
After a group member pressed one of the three colored 
buttons on the back of the Chiara, the robot would scan its 
immediate environment for a similarly colored ellipse on 
the floor, walk to that spot, and then turn around for the 
next round (Figure 3). One of the group members 
explained their architecture in this way: “It does this by 
using MapBuilders, which help the robot to see what color 
and what shape it’s looking for, and the Pilot nodes will get 
the robot to actually walk to that color and shape.” 

 

Another successful project featured two Chiara robots 
interacting, one of which wandered the environment and 
another that went looking for the first (Figure 4). The first 
robot wandered around by scanning its environment and 
walking to the nearest blue object. Upon reaching it, it 

Figure 3 – Chiara robot navigating to a colored ellipse. 
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would repeat the process and head towards a new blue 
object, as the previous one had become hidden underneath 
its body. The seeking robot would also scan the 
environment, but responded to a different set of colors. If 
the seeker saw a yellow patch in its environment, which 
was the color of the paper marker taped to the wandering 
robot, it would state “I found you,” and head towards the 
hiding robot’s position. If yellow was not seen, it would 
walk toward the nearest green object and begin its search 
again. While the locations of the green and blue objects 
were predetermined, the dynamics between the robots and 
the environment were never known prior to running the 
programs, and this led to rich, complex behaviors. 

Novices working with complex systems are less likely to 
comprehend how complex behaviors can result from 
simple rules (Jacobson 2000). While most students in our 
program immediately understood linear programs, these 
group projects clearly indicated that students, after only 
two weeks of instruction, could develop nonlinear projects 
that employed loops and parallel processing. 

Forms of Feedback 

Robot Behavior 
Using robotics as an introduction to computer science has 
been a popular way to attract new students to the field. A 
major reason for its success is that it provides an integrated 
approach that exposes students to problems that involve 
action in the physical world, and that require critical 
thinking skills and oftentimes teamwork (Beer, Chiel, and 
Drushel 1999). The use of robotics allows students to see 
the implementation of their code in a way that is not 
usually apparent in a traditional programming assignment. 
By observing the robot’s behavior, students can compare 
their predictions against actual outcomes to gain feedback 
about possible avenues of error correction. Students 
understood that incorrect behavior indicated poorly de-
signed or improperly implemented code, and consequently 
returned to the drawing board. In establishing this loop 
between coding, observation, and debugging, students 

were able to gain more insight into the programming 
process.  

State Machine Visualization 
Observing a robot’s actions is sometimes not enough to 
understand what went wrong. In visualizing the robot’s 
state machine structure, students could often gain insights 
that were previously hidden. Students were instructed in 
the use of the Storyboard tool, which generated a graphical 
view of their state machine and allowed them to inspect the 
structural layout. Additionally, the Storyboard tool could 
be used to trace the execution of the program to ascertain if 
the state machine was sequencing correctly. This tool often 
provided students a way to discover inconsistencies in 
structure and function of their state machines that were not 
diagnosable using the robot behavior alone. 

Instructor Course Correction: A key feature of Tekkotsu 
not found in LEGO Mindstorms is the ability to create new 
classes of nodes and transitions using the full power of 
C++.  Mindstorms users can create macro-like 
combinations of system-supplied block types (the 
MyBlocks feature), but they cannot add new functionality 
beyond what those blocks provide. Because Tekkotsu 
programs are semantically much richer, they may require 
complex logic, e.g., determine whether there is a pink blob 
that is closer than the nearest blue blob. Tekkotsu 
instructors can implement these bits of logic as new node 
classes, thus allowing students who are not yet ready to 
tackle C++ to still solve the bulk of a problem using just 
the state machine notation.  In some cases the need for a 
new primitive is suggested by the students themselves.  
 The distinction between node classes and instances is a 
subtle point that unexpectedly caused problems for 
students. Several times during the first three week course, 
we noticed students referring to a node class as if it were 
an instance. This would fragment the state machine; the 
compiler would create a new instance each time the class 
was referenced, so there would be several streams of 
program flow that did not connect together (Figure 5).  

Figure 4 – The Chiara at the bottom of the photo is looking for 
the wandering Chiara, above. 

Figure 5 – A straight line program became fragmented due to
students’ failure to reference previously-created instances of the
GoToShape and WalkNode classes. For example, gotoshape1 and
gotoshape2 should be the same instance. Instead, separate
instances were created. 
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A second common error that occurred frequently in the 
first session was that students who had instantiated a node 
of a particular class assumed that they could use this same 
instance in multiple places. For instance, if they 
instantiated a Pilot node that turned the robot 90 degrees to 
the right and named it ‘right’, they might refer to this node 
in multiple places in their code: 

right: RightTurn =PILOT=> node1 
node1 =T(5000)=> right =PILOT=> node2 

 The code above, written in the state machine shorthand 
notation, indicates that the student wished to turn the robot 
twice. Every occurrence of a class name (RightTurn) 
creates an instance of that class, in this case the sole 
instance is assigned the label “right”. The PILOT transition 
fires when the Pilot has completed the right turn, and the 
T(5000) denotes a five second timeout transition between 
node1 and what should be the second right turn. But the 
code was written in a way that creates a loop between the 
right node and node1, and therefore the program never 
reaches the final node, node2. Unfortunately, students also 
had difficulties understanding that they could solve this 
problem by creating two different instances of the 
RightTurn class inside their state machine: 

right1: RightTurn =PILOT=> node1 
node1 =T(5000)=> right2: RightTurn 
                    =PILOT=> node2 

 Since we had the rare opportunity of participating in two 
sessions of SAMS, we took the lessons learned in the first 
session to inform the second. We switched to an approach 
that encouraged students to instantiate each new node on 
its own line before any references to that node: 

right1: RightTurn 
 right2: RightTurn 
 right1 =PILOT=> node1 
 node1 =T(5000)=> right2 =PILOT=> node2 

 While this process might seem unnecessarily verbose to 
an expert, it eliminated two issues for novices: confusing a 
node class with an instance of that class, and using an 
instance of a class as some kind of universal symbol that 
could appear throughout the state machine. Understanding 
these common errors in the first SAMS session proved to 
be informative for the next, as students using the new 
coding convention were less prone to errors and better able 
to comprehend the distinction. 

Pair Programming 
While graphical displays and simulation aid learning, 
inexperienced students can benefit greatly from the 
addition of verbal explanations (Mayer and Sims 1994). 
Pair programming allows for multiple individuals to 
communicate and work in collaboration, which provides 
additional levels of intellectual support. It has been 
observed that “students who pair produce higher quality 
programs, are more confident in their work, and enjoy it 
more” (McDowell et al. 2003). 

 

Figure 6 – Analysis of video data. Top: Two students discussing 
their state machine using gestures (left hand) and written notes 
(right hand). The student on the left curls her fingers to equate a 
fixed local 3D space with an imagined state node. Middle: 
Student’s finger trajectory introduces imagined motion through 
the air as a transition. Bottom: Student combines gestures to 
explain to a partner a more complicated setup. The three fingers 
on the left hand are associated with three distinct state nodes and 
the movements of the right hand with transitions. 
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 A less commonly considered but important feature of 
pair programming which we considered in our course was 
the ability of group members to provide their partners with 
an embodied understanding of difficult and hard to grasp 
concepts through gestures. We did this by asking students 
to diagram out their solutions and discuss them with their 
partners. For example, when one student was not 
comprehending a concept, either on paper or the computer 
screen, another could explain the concept by equating 
states with imagined physical structure in space and 
transitions as embodied feelings of motion throughout that 
space. Adding these motions together, students could 
communicate more complicated systems, such as random 
transitions coming away from three state nodes, as shown 
in the bottom frame of Figure 6.  
 Not all novices come to computer science thinking in 
terms of symbols, states, and variables. By providing 
physical bodily simulations in addition to Storyboard 
visualization, students gain two routes to understanding the 
processes underlying state machine programming (Goldin-
Meadow, Kim, and Singer 1999). Furthermore, students 
who produce a mismatch in their speech and gesture are 
often in a better position to learn a concept, and instructors 
can gain insights into a students’ readiness by observing 
them explain their problems (Goldin-Meadow and Singer 
2003). By requiring students to work together and 
communicate their understanding through diagrams, 
words, and gestures, we can hope to improve the quality of 
understanding in novices attempting to learn challenging 
concepts in robot control, such as parallelism. 

Subjective Measures of the Course 

Pre- and post- surveys were given to students to measure 
the effects of the course.  Statistically significant changes 
in attitudes demonstrated that students held positive views 
about robotics after the completion of the course, as 
indicated with their agreement with the following 
statements: “I am already very familiar with the key ideas 
in robotics” (paired samples t-test, t(10)=2.52, p<0.05) and 
“I feel prepared to work independently on a robotics 
project” (paired samples t-test, t(10)=3.03, p<0.05). 

Conclusions 

Our novel course curriculum differs from current 
approaches in high school robotics and was designed with 
an emphasis on sophisticated robotics with primitives for 
vision and navigation. Robots like the Chiara, which 
include color cameras and on-board computational power 
equivalent to a laptop, are likely to supplant simple robot 
kits at the high school level once they can be efficiently 
mass produced (Touretzky, 2010). Tekkotsu’s extensible 
state machine formalism allows non-programmers to take 
advantage of the Chiara’s advanced capabilities and create 
interesting robot behaviors that include vision and 
navigation primitives. 

 By placing students in a rich environment designed to 
provide multiple levels of feedback and error correction, 
novices can more quickly and correctly learn aspects of 
computer science and robotics. Additionally, by observing 
the behavior of the students’ robots, the graphical layouts 
of the state machines they design, and the gestures they use 
to describe their understanding, instructors can more 
efficiently address concerns and resolve issues with their 
courses in real time. Students in both sections of SAMS 
finished the course with high praise for the experience, and 
their performances indicated an increased understanding of 
higher level robotics concepts. By further developing our 
current structure and methods, we can hope to instill 
enthusiasm and confidence in a new generation of 
roboticists, and as one student put it, give them the “belief 
that anything is possible.” 

Acknowledgments 

This work was supported in part by National Science 
Foundation award DUE-0717705. 

References 

Beer, R., Chiel, H., & Drushel, R. 1999. Using autonomous robotics to 
teach science and engineering. Communications of the ACM vol. 42 no. 6, 
85-92. 

Carnegie Mellon University. 2010. SAMS: The Summer Academy for 
Mathematics + Science. [online]. Retrieved November 21, 2010 from 
http://www.cmu.edu/enrollment/summerprogramsfordiversity/sams.html 

Goldin-Meadow, S., & Singer, M. 2003. From Children’s Hands to 
Adults’ Ears: Gesture’s Role in the Learning Process. Developmental 
Psychology vol. 39 no. 3, 509-520. 

Goldin-Meadow, S., Kim, S., & Singer, M. 1999. What the Teacher’s 
Hands Tell the Student’s Mind About Math. Journal of Educational 
Psychology vol. 91 no. 4, 720-730. 

Jacobson, M.J. 2000. Problem Solving About Complex Systems: 
Differences Between Experts and Novices. In B. Fishman & S. 
O’Connor-Divelbiss (Eds.), Fourth International Conference of the 
Learning Sciences, Mahwah, NJ: Erlbaum, pp. 14-21. 

Mayer, R., Sims, V. 1994. For Whom is a Picture Worth a Thousand 
Words? Extensions of a Dual-Coding Theory of Multimedia Learning. 
Journal of Educational Psychology vol. 83 no. 3, 389-401. 

McDowell, C., Werner, L., Bullock, H., & Fernald, J. 2003. The impact of 
pair programming on student performance, perception and persistence, 
Proceedings of the 25th International Conference on Software 
Engineering 

Tira-Thompson, E. J., & Touretzky, D. S. (in press). The Tekkotsu 
robotics development environment. Proceedings of the IEEE 
International Conference on Robotics and Automation (ICRA-2011), 
Shanghai, China 

Touretzky, D. S. 2010. Preparing computer science students for the 
robotics revolution. Communications of the ACM vol. 53 no. 8, 27-29. 

375




