
A New Set of Eyes a

Environment

Jeremy

1Department o
95

2Compute
500

Abstract
Tekkotsu (see Tekkotsu.org) is an open sour
development framework for intelligent m
Originally designed for undergraduate com
majors, recent refinements to the framework
explore its use with high school students. W
pilot course curriculum to introduce high le
students with little or no programming exper
that provides improved feedback and error
multiple levels. The use of visualization t
programming techniques scaffolds the learnin
provides a systematic way to introduce roboti
worthwhile endeavor to novices, and hel
efficiently address students’ concerns in a real

 Platform

Tekkotsu was created as an open so
framework for developing intelligent
applications (Tira-Thompson and Touretzky
available for free at Tekkotsu.org. The fram
based on C++, with GUI tools for tel
monitoring written in Java for portabilit
primarily used for teaching comp
undergraduates, and for graduate level rob
But recent refinements to the framework
could be used to introduce high school stu
sophisticated form of robot programming t
with the currently popular LEGO Mindsto
platforms, which suffer from impoverishe
limited processing power. Tekkotsu-base
color cameras and can see the world.
provides primitives for locomotion, navigat
generation. Using Tekkotsu, students can
robot programming where individual m

Copyright © 2011, Association for the Advancement o
Intelligence (www.aaai.org). All rights reserved.

nd a New Pair of Legs: A Robust L

for Advanced High School Robot

y Karnowski1 and David S. Touretzky2

of Cognitive Science, University of California, San Diego
500 Gilman Drive, La Jolla, CA 92093-0515

jkarnows@cogsci.ucsd.edu
er Science Department, Carnegie Mellon University

00 Forbes Avenue, Pittsburgh, PA 15213-3891
dst@cs.cmu.edu

rce application
mobile robots.
mputer science

have led us to
We developed a

vel robotics to
rience in a way
r detection on
tools and pair
ng process and
ics as a fun and
lps instructors
l-time manner.

ource software
mobile robot

y, in press). It is
mework itself is
leoperation and
ty. Tekkotsu is
puter science
botics research.
suggest that it

dents to a more
than is possible
orms and VEX
ed sensors and
ed robots have

Tekkotsu also
tion, and speech
avoid low-level

motors must be

of Artificial

turned on and off, and focus i
perception, navigation, and control
 Tekkotsu was originally imp
AIBO robot dog, but has since
independent and supports a va
including the Chiara hexapod cre
(Figure 1; see also Chiara-Robot.o
a 1 GHz processor running Ubunt
an 80GB hard drive, WiFi and Eth
Logitech QuickCam Pro 9000
version of the Chiara with a speci
in the Small Scale Manipulation C
Atlanta, playing chess against ot
were available for our course.

Figure 1 – Chiara hex

Learning

ics

instead on problems of
l.
lemented on the Sony
e been made platform-

ariety of robot designs,
eated at Carnegie Mellon
org). The Chiara features
tu Linux, 1 GB of RAM,
hernet connectivity, and a

webcam. An updated
ialized gripper competed
Challenge at AAAI-10 in
ther robots. Six Chiaras

xapod robot.

370

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Students

The Summer Academy for Mathematics and Science
(SAMS) is a rigorous summer enrichment program for
students from underrepresented groups, designed to
“encourage good students to become excellent students”
(Carnegie Mellon University, 2010) and thereby improve
their chances for admission to selective colleges. Students
take essay writing and mathematics refresher courses,
participate in several mock standardized national exams,
and work on two engineering or science projects for three
weeks each. Students who selected the Robotics II activity
participated in a three week course (2 hours a day, 5 days a
week) introducing them to the Chiara and Tekkotsu
programming. We taught two sections of Robotics II
during the summer of 2010. The first had 2 boys and 4
girls; the second had 4 boys and 2 girls. Only 4 of these
students reported any prior programming experience.

Course Syllabus

We designed a curriculum to give students an introduction
to robot control structure, vision, and locomotion. The
course had two weeks of hands-on instruction followed by
one week of project work.
 Since two weeks was not enough time to teach students
C++ programming, we focused on Tekkotsu’s extensible
state machine language, which uses a concise notation for
defining node classes and creating instances of nodes and
transitions. The notation is automatically translated into
C++ code by a state machine compiler.
 Each instructional day followed the same general
pattern: students were introduced to a new concept, given a
few lines of novel code in the state machine language, and
instructed to solve a task that required altering the code in
meaningful ways. In their solution attempts, they made use
of several debugging methods taught to them:
diagramming out their ideas with their partners (Figure 2),
observing robot behavior to see if it matched expectations,
drawing graphical representations of their actual state
machine code using a tool called the Storyboard, and using
the storyboard to create a graphical execution trace as their
robot ran their program.

Week 1 Instruction
Monday: Introduction, Teleoperation, Creating postures
The first day of the course introduced students to the robots
and the laboratory setup, reviewed safety procedures for
preventing damage to the robots, and concluded with a
crash course in Linux shell commands. The majority of the
students had never worked with robots, let alone robots of
such complexity. Many of them were apprehensive or
intimidated, and at least two students considered dropping
the course after first observing the robots move. One
student actually screamed and had to leave the room to
adjust to seeing what she had considered unnatural.

After repeating basic power up/power down processes a
few times students were shown how to teleoperate the
robots on their own. They used a tool called the
ControllerGUI, which allowed them to “see the world
through the robot’s eyes” by displaying its camera image,
and also explore the Chiara’s walking behavior. Students
were then shown how to record their own robot postures in
posture files; these files would later be used in constructing
complex behaviors. After experiencing the robot’s
behavior on their own and under their own control, those
students who were originally concerned about the
unnaturalness of the robots began to reinterpret them as
machines that only followed their commands. They were
willing to continue with the course, and in fact went on to
be very successful in their exercises and projects.

Tuesday: State Machines, Basic Code, Run first program
The second day began with an introduction to the concept
of state machines. Students were asked to translate a daily
task, such as brushing their teeth, into a logical flow that
might be used in a computer program. They were then
taught to express their ideas in the form of a state machine.
Next they were introduced to some of the state node and
transition classes Tekkotsu provides for the Chiara, and
given the opportunity to run their first robot behavior.

Wednesday: Additional state nodes and transitions
The third day expanded on the state machine coding
students had learned the previous day, adding new node
classes for speech generation, playing sounds, lighting
LEDs on the robot, and making head movements. Random
transitions as well as transitions from button press events
added new ways to alter the program flow. With these
concepts, students created state machines that mimicked
unlocking a safe by entering a secret password in the form
of a specific sequence of button presses (Figure 2).

Figure 2 – Student diagram of the secret password game.

371

Thursday: Storyboard, Loops, Parallel Processing
The fourth day introduced the Storyboard tool as a way for
students to visualize the structure of their state machine on
the computer and generate a trace of its execution to see
their code running in real time. To fully utilize the tool’s
capabilities, students were taught how to use fork and join
operations, which allowed for concurrent state node
actions. The project for the day was to create a metronome.
Students used parallelism to have the robot light an LED
and say ‘tic’ when its arm moved to the right, and light
another LED and say ‘toc’ when the arm moved to the left.

Friday: Mini Project – Robot Dance Competition
The final day of the first week was a robot dance
competition that required students to make use of all the
concepts learned up to then. Students viewed a YouTube
video of an international hexapod robot dance competition
for inspiration, and were asked to similarly choreograph
their dances. Each group successfully combined robot
postures with lights, sound, and voice to create an
elaborate dance routine set to a piece of popular music.

Week 2 Instruction
Monday: Image segmentation, Simple visual search
The sixth day of instruction introduced robot vision by
showing students how Tekkotsu uses color image
segmentation to simplify the visual world. Students were
given code that used a Tekkotu MapBuilder node that
instructed the robot to locate a green ellipse in its visual
field. Students were then asked to create new nodes that
looked for other shapes (lines, blobs) or ellipses of other
colors. They then experimented and created nodes that
could locate many of these colored shapes at once.

Tuesday: Egocentric and Allocentric frames of reference
The seventh day delved into the differences between
Tekkotsu’s camera, local, and world maps. Using various
images in each, students were correctly able to deduce that
the camera map gave a first person view, while the local
map created an overhead view of the environment centered
on the robot’s body. Where objects appeared in the local
map was a function of the robot’s position but independent
of its head direction. Students were then challenged to fool
the robot’s vision system as they currently understood it.
After uncovering certain weaknesses, such as the problems
posed by occluding objects, methods were given to correct
for these errors.

Wednesday: Basic locomotion, Environment interaction
The eighth day focused on locomotion and the Pilot node
class. Using Pilot nodes, students learned how to instruct
the Chiara to move forward, backward, or turn to any
angle. Students were encouraged to combine this with their
previous knowledge to have their robots locate an object in
the world, approach it, and knock it over.

Thursday: Experimenting with virtual environments
The ninth day gave students a way to view robot behavior
without using physical hardware. Mirage is a virtual
environment simulator for Tekkotsu that provides 3D

rendering of the robot and its surroundings, along with
realistic physics. Using Mirage, students gained an
understanding of how to teleoperate a robot in a virtual
world. The second half of the day was spent learning how
to use the WorldBuilder tool to create new virtual worlds
for the robot to explore.

Friday: Project Planning and Proposal
The tenth day was devoted to brainstorming in groups to
design course projects for the final week.

Course Projects
Each group was required to complete a one week project
that made use of three key features of higher level robotics.
The requirements for the project were:

Vision: The robot must use camera images to do
calculations with shapes in the environment and use that
data for meaningful behavior.
Locomotion: The robot must move within its environment,
using the data from its visual system.
Interaction: The robot must interact with its environment,
either with objects, other robots, or with the roboticist.

 One example project had a Chiara robot navigating to
positions in the world that matched button press inputs.
After a group member pressed one of the three colored
buttons on the back of the Chiara, the robot would scan its
immediate environment for a similarly colored ellipse on
the floor, walk to that spot, and then turn around for the
next round (Figure 3). One of the group members
explained their architecture in this way: “It does this by
using MapBuilders, which help the robot to see what color
and what shape it’s looking for, and the Pilot nodes will get
the robot to actually walk to that color and shape.”

Another successful project featured two Chiara robots
interacting, one of which wandered the environment and
another that went looking for the first (Figure 4). The first
robot wandered around by scanning its environment and
walking to the nearest blue object. Upon reaching it, it

Figure 3 – Chiara robot navigating to a colored ellipse.

372

would repeat the process and head towards a new blue
object, as the previous one had become hidden underneath
its body. The seeking robot would also scan the
environment, but responded to a different set of colors. If
the seeker saw a yellow patch in its environment, which
was the color of the paper marker taped to the wandering
robot, it would state “I found you,” and head towards the
hiding robot’s position. If yellow was not seen, it would
walk toward the nearest green object and begin its search
again. While the locations of the green and blue objects
were predetermined, the dynamics between the robots and
the environment were never known prior to running the
programs, and this led to rich, complex behaviors.

Novices working with complex systems are less likely to
comprehend how complex behaviors can result from
simple rules (Jacobson 2000). While most students in our
program immediately understood linear programs, these
group projects clearly indicated that students, after only
two weeks of instruction, could develop nonlinear projects
that employed loops and parallel processing.

Forms of Feedback

Robot Behavior
Using robotics as an introduction to computer science has
been a popular way to attract new students to the field. A
major reason for its success is that it provides an integrated
approach that exposes students to problems that involve
action in the physical world, and that require critical
thinking skills and oftentimes teamwork (Beer, Chiel, and
Drushel 1999). The use of robotics allows students to see
the implementation of their code in a way that is not
usually apparent in a traditional programming assignment.
By observing the robot’s behavior, students can compare
their predictions against actual outcomes to gain feedback
about possible avenues of error correction. Students
understood that incorrect behavior indicated poorly de-
signed or improperly implemented code, and consequently
returned to the drawing board. In establishing this loop
between coding, observation, and debugging, students

were able to gain more insight into the programming
process.

State Machine Visualization
Observing a robot’s actions is sometimes not enough to
understand what went wrong. In visualizing the robot’s
state machine structure, students could often gain insights
that were previously hidden. Students were instructed in
the use of the Storyboard tool, which generated a graphical
view of their state machine and allowed them to inspect the
structural layout. Additionally, the Storyboard tool could
be used to trace the execution of the program to ascertain if
the state machine was sequencing correctly. This tool often
provided students a way to discover inconsistencies in
structure and function of their state machines that were not
diagnosable using the robot behavior alone.

Instructor Course Correction: A key feature of Tekkotsu
not found in LEGO Mindstorms is the ability to create new
classes of nodes and transitions using the full power of
C++. Mindstorms users can create macro-like
combinations of system-supplied block types (the
MyBlocks feature), but they cannot add new functionality
beyond what those blocks provide. Because Tekkotsu
programs are semantically much richer, they may require
complex logic, e.g., determine whether there is a pink blob
that is closer than the nearest blue blob. Tekkotsu
instructors can implement these bits of logic as new node
classes, thus allowing students who are not yet ready to
tackle C++ to still solve the bulk of a problem using just
the state machine notation. In some cases the need for a
new primitive is suggested by the students themselves.
 The distinction between node classes and instances is a
subtle point that unexpectedly caused problems for
students. Several times during the first three week course,
we noticed students referring to a node class as if it were
an instance. This would fragment the state machine; the
compiler would create a new instance each time the class
was referenced, so there would be several streams of
program flow that did not connect together (Figure 5).

Figure 4 – The Chiara at the bottom of the photo is looking for
the wandering Chiara, above.

Figure 5 – A straight line program became fragmented due to
students’ failure to reference previously-created instances of the
GoToShape and WalkNode classes. For example, gotoshape1 and
gotoshape2 should be the same instance. Instead, separate
instances were created.

373

A second common error that occurred frequently in the
first session was that students who had instantiated a node
of a particular class assumed that they could use this same
instance in multiple places. For instance, if they
instantiated a Pilot node that turned the robot 90 degrees to
the right and named it ‘right’, they might refer to this node
in multiple places in their code:

right: RightTurn =PILOT=> node1
node1 =T(5000)=> right =PILOT=> node2

 The code above, written in the state machine shorthand
notation, indicates that the student wished to turn the robot
twice. Every occurrence of a class name (RightTurn)
creates an instance of that class, in this case the sole
instance is assigned the label “right”. The PILOT transition
fires when the Pilot has completed the right turn, and the
T(5000) denotes a five second timeout transition between
node1 and what should be the second right turn. But the
code was written in a way that creates a loop between the
right node and node1, and therefore the program never
reaches the final node, node2. Unfortunately, students also
had difficulties understanding that they could solve this
problem by creating two different instances of the
RightTurn class inside their state machine:

right1: RightTurn =PILOT=> node1
node1 =T(5000)=> right2: RightTurn
 =PILOT=> node2

 Since we had the rare opportunity of participating in two
sessions of SAMS, we took the lessons learned in the first
session to inform the second. We switched to an approach
that encouraged students to instantiate each new node on
its own line before any references to that node:

right1: RightTurn
 right2: RightTurn
 right1 =PILOT=> node1
 node1 =T(5000)=> right2 =PILOT=> node2

 While this process might seem unnecessarily verbose to
an expert, it eliminated two issues for novices: confusing a
node class with an instance of that class, and using an
instance of a class as some kind of universal symbol that
could appear throughout the state machine. Understanding
these common errors in the first SAMS session proved to
be informative for the next, as students using the new
coding convention were less prone to errors and better able
to comprehend the distinction.

Pair Programming
While graphical displays and simulation aid learning,
inexperienced students can benefit greatly from the
addition of verbal explanations (Mayer and Sims 1994).
Pair programming allows for multiple individuals to
communicate and work in collaboration, which provides
additional levels of intellectual support. It has been
observed that “students who pair produce higher quality
programs, are more confident in their work, and enjoy it
more” (McDowell et al. 2003).

Figure 6 – Analysis of video data. Top: Two students discussing
their state machine using gestures (left hand) and written notes
(right hand). The student on the left curls her fingers to equate a
fixed local 3D space with an imagined state node. Middle:
Student’s finger trajectory introduces imagined motion through
the air as a transition. Bottom: Student combines gestures to
explain to a partner a more complicated setup. The three fingers
on the left hand are associated with three distinct state nodes and
the movements of the right hand with transitions.

374

 A less commonly considered but important feature of
pair programming which we considered in our course was
the ability of group members to provide their partners with
an embodied understanding of difficult and hard to grasp
concepts through gestures. We did this by asking students
to diagram out their solutions and discuss them with their
partners. For example, when one student was not
comprehending a concept, either on paper or the computer
screen, another could explain the concept by equating
states with imagined physical structure in space and
transitions as embodied feelings of motion throughout that
space. Adding these motions together, students could
communicate more complicated systems, such as random
transitions coming away from three state nodes, as shown
in the bottom frame of Figure 6.
 Not all novices come to computer science thinking in
terms of symbols, states, and variables. By providing
physical bodily simulations in addition to Storyboard
visualization, students gain two routes to understanding the
processes underlying state machine programming (Goldin-
Meadow, Kim, and Singer 1999). Furthermore, students
who produce a mismatch in their speech and gesture are
often in a better position to learn a concept, and instructors
can gain insights into a students’ readiness by observing
them explain their problems (Goldin-Meadow and Singer
2003). By requiring students to work together and
communicate their understanding through diagrams,
words, and gestures, we can hope to improve the quality of
understanding in novices attempting to learn challenging
concepts in robot control, such as parallelism.

Subjective Measures of the Course

Pre- and post- surveys were given to students to measure
the effects of the course. Statistically significant changes
in attitudes demonstrated that students held positive views
about robotics after the completion of the course, as
indicated with their agreement with the following
statements: “I am already very familiar with the key ideas
in robotics” (paired samples t-test, t(10)=2.52, p<0.05) and
“I feel prepared to work independently on a robotics
project” (paired samples t-test, t(10)=3.03, p<0.05).

Conclusions

Our novel course curriculum differs from current
approaches in high school robotics and was designed with
an emphasis on sophisticated robotics with primitives for
vision and navigation. Robots like the Chiara, which
include color cameras and on-board computational power
equivalent to a laptop, are likely to supplant simple robot
kits at the high school level once they can be efficiently
mass produced (Touretzky, 2010). Tekkotsu’s extensible
state machine formalism allows non-programmers to take
advantage of the Chiara’s advanced capabilities and create
interesting robot behaviors that include vision and
navigation primitives.

 By placing students in a rich environment designed to
provide multiple levels of feedback and error correction,
novices can more quickly and correctly learn aspects of
computer science and robotics. Additionally, by observing
the behavior of the students’ robots, the graphical layouts
of the state machines they design, and the gestures they use
to describe their understanding, instructors can more
efficiently address concerns and resolve issues with their
courses in real time. Students in both sections of SAMS
finished the course with high praise for the experience, and
their performances indicated an increased understanding of
higher level robotics concepts. By further developing our
current structure and methods, we can hope to instill
enthusiasm and confidence in a new generation of
roboticists, and as one student put it, give them the “belief
that anything is possible.”

Acknowledgments

This work was supported in part by National Science
Foundation award DUE-0717705.

References

Beer, R., Chiel, H., & Drushel, R. 1999. Using autonomous robotics to
teach science and engineering. Communications of the ACM vol. 42 no. 6,
85-92.

Carnegie Mellon University. 2010. SAMS: The Summer Academy for
Mathematics + Science. [online]. Retrieved November 21, 2010 from
http://www.cmu.edu/enrollment/summerprogramsfordiversity/sams.html

Goldin-Meadow, S., & Singer, M. 2003. From Children’s Hands to
Adults’ Ears: Gesture’s Role in the Learning Process. Developmental
Psychology vol. 39 no. 3, 509-520.

Goldin-Meadow, S., Kim, S., & Singer, M. 1999. What the Teacher’s
Hands Tell the Student’s Mind About Math. Journal of Educational
Psychology vol. 91 no. 4, 720-730.

Jacobson, M.J. 2000. Problem Solving About Complex Systems:
Differences Between Experts and Novices. In B. Fishman & S.
O’Connor-Divelbiss (Eds.), Fourth International Conference of the
Learning Sciences, Mahwah, NJ: Erlbaum, pp. 14-21.

Mayer, R., Sims, V. 1994. For Whom is a Picture Worth a Thousand
Words? Extensions of a Dual-Coding Theory of Multimedia Learning.
Journal of Educational Psychology vol. 83 no. 3, 389-401.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. 2003. The impact of
pair programming on student performance, perception and persistence,
Proceedings of the 25th International Conference on Software
Engineering

Tira-Thompson, E. J., & Touretzky, D. S. (in press). The Tekkotsu
robotics development environment. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA-2011),
Shanghai, China

Touretzky, D. S. 2010. Preparing computer science students for the
robotics revolution. Communications of the ACM vol. 53 no. 8, 27-29.

375

