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Abstract

Causality plays an important role in our comprehension of
the world. It amounts to determine what truly causes what
and what it matters. Interventions allow the identification of
elements in a sequence of events that are related in a causal
way. In this paper, we introduce belief causation and we pro-
pose a method for handling interventions in graphical model
under an uncertain environment where the uncertainty is rep-
resented by belief masses, so-called belief causal networks.
More specifically, we propose a generalization of the “DO”
operator and explain the needed changes on the structure of
the graph to model a belief causal network on which inter-
ventions are proceeded.

Introduction

Though at first glance, it seems obvious what causation is,
there are difficulties to define which event truly causes an-
other. In fact, it should be well distinguished from the sta-
tistical correlation where the occurrence of both events is
observed at the same time, but an action on one of them will
not affect the other event (Sprites, Glymour, and Scheines
2001), (Pearl 2000) (e.g. smoking causes lung cancer while
it is statistically correlated with alcoholism). Researchers in
artificial intelligence (AI) use the concept of causality in sev-
eral applications as for the diagnosis of the potential causes
from observed effects, to induce causal laws from observa-
tions as well as for causal ascription (e.g. see (Benferhat et
al. 2008), (Bonnefon et al. 2008) for an overview descrip-
tion). In fact, it is important to provide the systems of infer-
ence or decision-making with explanations capacity for an
operator or human user.
Deterministic approaches consider that all events can be pre-
dicted with certainty. However, these approaches seem to be
incompatible with human reasoning and its perception for
its environment (Hume 1910) since an event may be present
in the absence of its causes or absent in its presence.
For this purpose, Bayesian causal models treated in (Pearl
2000) as well as in (Sprites, Glymour, and Scheines 2001)
are used where cause-effect relationships are modeled using
probabilistic tools. A distinction between observations and
interventions is made. In fact, while an observation is a new
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information about the value of a variable in a static world, an
intervention, (Pearl 2000), (Halpern and Pearl 2005), is the
effect of an external action that forces a variable to have a
specific value in a dynamic world. This distinction is some-
what similar to the one between belief revision (Gänderfors
1992) and update (Katsuno and Mendelzon 1991) used for
modeling belief change.
The main issue of Bayesian causal networks in real world
applications, is the necessity to gather enough data to de-
termine all required a priori knowledge including condi-
tional ones. An alternative causal model under a possibilistic
framework was also proposed showing its efficiency espe-
cially when cases require pure qualitative and ordinal han-
dling (Benferhat and Smaoui 2007).
Belief function theory (Shafer 1976) is a general framework
for reasoning with uncertainty. It has connections to other
frameworks such as probability, possibility and imprecise
probability theories. Belief function networks are important
tools to represent and reason under uncertainty. Networks
with conditional dependencies were explored with (Shenoy
1993) in valuation based systems (VBS), called valuation
networks. In (Xu and Smets 1994), (Ben Yaghlene, Smets,
and Mellouli 2003) the network has the same structure as a
Bayesien network, since it is a directed acyclic graph. How-
ever, the manner in which the conditional beliefs are defined
is different from that one in which the conditional proba-
bilities are traditionally defined in Bayesien networks: each
edge in the graph represents a conditional relation between
the two nodes it connects. Since those networks use the fu-
sion principle, when focal elements are singletons, the belief
function network does not collapse into a Bayesien one. In
(Simon, Weber, and Evsukoff 2008), conditional dependen-
cies are defined given all the parents like for Bayesien net-
works (Darwiche 2009).
After an observation, the system changes from a state to an-
other. A belief network allows the prediction of this evolu-
tion. Those observations happen by themselves without any
manipulation on the system.
Since external actions affect differently the system, the rea-
soning process requires different modeling tools. Its is im-
portant to note that no models handling interventions are
provided in the belief function framework. Existing works
in belief function framework only consider observations.
This paper presents a causal model under a belief function
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framework namely belief causal networks which is an alter-
native and an extension to Bayesien causal networks, that
offer interesting tools to handle interventions. The main ad-
vantage of belief causal networks is that they solve the prob-
lem of ill-known or ill-defined prior probability required in
Bayesien causal networks to compute a posteriori distribu-
tions. In such cases using arbitrary information under a prob-
abilistic framework is dangerous because it may lead to the
application of inappropriate important decisions.
The rest of the paper is organized as follows: In Section 2,
we introduce the belief function theory and belief function
networks. In Section 3, we propose a definition of causa-
tion under a belief function framework. Then, we expose
our model in Section 4 based on belief causal networks and
explain the changes on the graphs toward handling interven-
tions. Section 5 concludes the paper.

Belief Function Theory

Basics of Belief Function Theory

Belief function theory (Shafer 1976) deals with imperfect
data. The set of elementary events is referred to the frame
of discernment and is denoted by Θ. These events are ex-
haustive and mutually exclusive. Beliefs are expressed on
propositions belonging to the powerset of Θ denoted 2Θ.
The mapping m: 2Θ → [0,1] is the basic belief assignment
(bba) such that :

∑
A⊆Θ m(A) = 1. m(A) is a basic belief

mass (bbm) assigned to A. It represents the part of belief ex-
actly committed to the event A of Θ. A bba is normalized,
if m(∅)=0. Two bba’s provided by two independent sources
m1 and m2 may be combined to give one resulting mass
m12. The Dempster rule of combination is used, when both
sources are reliable.

m1 ⊕m2(A) = K.
∑

B∩C=A

m1(B).m2(C), ∀ B,C ⊆ Θ

(1)
where K−1 = 1−m1 ⊕m2(∅) is the normalization factor.
Conditioning allows to change the knowledge we had, up-
date masses originally defined on A, following the disposal
of a new more precise information saying that the proposi-
tion B is certain, i.e. m(B)=1. The mass initially allocated to
A will be transferred to A ∩ B. In the case, where A∩B = ∅,
several methods exist for transferring the remaining evi-
dence (Smets 1991). m[B](A) denotes the degree of belief of
A in the context where B holds with A,B ⊆ Θ. The Demp-
ster rule of conditioning is computed by:

m[B](A) =

{
K.

∑
C⊆B m(A ∪ C) if A ⊆ B,A 	= ∅

0 otherwise
(2)

where K−1 = 1−m[B](∅).
Operations on the Product Space

Let U = {X,Y, Z, . . .} be a set of variables, where each
variable has its frame of discernment. Let X and Y be two
disjoint subsets of U. Their frames are the product space of
the frames of the variables they include. The joint relation
ΘX ×ΘY is denoted X× Y for short.
Marginalization: Given a bba defined on the product space

X × Y, a bba defined on one of the subset of the product
space is obtained by dropping the extra coordinates. It is de-
noted by:

mXY ↓Y (B) =
∑

C↓Y =B

mXY (C) (3)

where C↓Y = B is called the projection of C on Y; C∩ (B×X) �= 0.

Example 1 Given the bba defined on A×B
m({{a1,b1},{a1,b2}})= 0.7, m({{a2,b1},{a2,b2}})=0.1,
m({a1,b1})=0.2. Marginalizing m on B will lead to the fol-
lowing distribution: m({a1})=0.7+0.2=0.9, m({a2})=0.1

Vacuous extension: Given a bba defined on X, its vacuous
extension on X × Y denoted mX↑XY is given by:

mX↑XY (A) =

{
mX(A′) if A = A′ × Y,A′ ⊆ X

0 otherwise
(4)

Example 2 Given the following bba defined on A as:
m({a1})=0.5, m({a2})=0.2, m({a1,a2})=0.3. Its corre-
sponding vacuous extension to the product space is
given by taking into consideration all the value of
B for a given value of A. m({{a1,b1},{a1,b2}})=0.5,
m({{a2,b1},{a2,b2}})=0.2, m({A,B})=0.3.

Ballooning extension: Let mX′
be a bba defined on a frame

of discernment X’. We would like to build a bba on a larger
frame X ⊇ X’. The least committed bba (Smets 1998) on X
is given by the so called “ballooning”. It is defined as:

mX′

�X(A) =

{
mX′

(A′) ifA′ ⊆ X ′, A = A′ ∪X ′

0 otherwise.
(5)

Example 3 Let X’={x1,x2} such that mX′
({x1})=0.6 and

mX′
({x1,x2})=0.4. Let X ={x1,x2,x3,x4}, the ballooning

extension to X gives the following bba: mX ({x1,x3,x4})=0.6
and mX ({x1,x2,x3,x4})=0.4.

Let mX [y](x) defined on X for y ∈ Y , its ballooning exten-
sion is defined on X × Y in such a way that its conditioning
on X is mX ,

m
X �XY
yi (θ) =

{
mX [yi](x) if θ = (x, yi) ∪ (X, yi)

0 otherwise.
(6)

Example 4 Given a bba defined on A, its definition on A×B
in such way that its conditioning on B gives m(A) is ob-
tained by the application of the ballooning extension. Let
us consider the following conditional basic belief mass:
m[b1](a1)=0.7. Its corresponding basic belief mass on A×
B is obtained by taking into consideration ({a1,b1}) and
all the instances of A for the complement of b1 (here b2).
Thus the mass initially allocated to a1 will be allocated to
m({a1,b1},{a1,b2},{a2,b2}) given that B=b1 is certain.

Belief Function Networks

Belief function networks are important tools to model and
reason with uncertainty. Since focal elements are subsets in-
stead of singletons, partial and total ignorance are well han-
dled. A belief network is a graphical model, denoted G de-
fined on two levels:
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• Qualitative level: represented by a directed acyclic graph
(DAG), G=(V,E) where V is the set of variables and E the
set of edges encoding the dependencies among variables.
A variable Vj is called a parent of a variable Vi if there
is an edge from Vj to Vi. Thus the set Vj parents of Vi is
denoted Pa(Vi).

• Quantitative level: represented by the set of bba’s associ-
ated to each node in the graph. For each root node Vi (i.e.
node without parent nodes) having a frame of discern-
ment Θ, an a priori mass m(Vi) is defined on the powerset
2Θ. For other nodes, a conditional bba’s m[Pa(Vi)](Vi)
is specified for each value of Vi knowing the value Pa(Vi).

With belief function networks, it is possible to deal with
ill-known or ill-defined a priori knowledge including condi-
tional ones to compute a posteriori distribution and therefore
solving the problem of choosing an appropriate a priori.
The definition of the joint distribution under a belief func-
tion framework is different from the construction made in
Bayesien networks. In fact, it is obtained by combining the
joint distribution of each node. This is done in three steps as
following:

1. For a conditional variable Vi defined given its parents
Pa(Vi):

1.1 For each instance of the parents denoted Paj(Vi) com-
pute the ballooning extension of mV

i [Paj(Vi)] for the
deconditionalization process: mVi [Paj(Vi)] �Vi×Pa(Vi).

1.2 Combine the ballooning extensions using Dempster’s
rule of combination: ⊕jm

Vi [Paj(Vi)] �Vi×Pa(Vi).
2. Extend each node (root node and child node) to the uni-

verse of all variables in the network by applying the vac-
uous extension: (⊕mVi [Paj(Vi)] �Vi×Pa(Vi))↑V1,...,Vn .

3. Combine local joint distributions using Dempster’s rule of
combination and thus get the following chain rule:

mV1,...,Vn = ⊕i=1,...,n(⊕mVi [Paj(Vi)] �Vi×Pa(Vi))↑V1,...,Vn

(7)

Belief Causation: Observations vs

Interventions
In this paper, we define causal relations under a normalized
belief function framework. Unlike deterministic approaches
where causes are necessary to the occurrence of their effects,
a belief causal link defines a higher belief of effects when a
cause takes place and accordingly if a cause does not arise
then the belief of the effect will decrease. External actions
on the system disturb the relationships between variables
and thus should have a different impact on the other events.
It seems obvious that the application of belief conditioning
is appropriate when an event occurs spontaneously (obser-
vation) and will lead to erroneous results when something
forces the event to happen (intervention). For example, one
should reason differently when he observes that the harvest
is not good and when he knows that someone intervenes by
lighting a fire and so the entire crop will be lost. In the fol-
lowing, we present the difference between an intervention
and an observation in a belief function framework.

Observation

Observation is seeing. It can provide some information
about the statistical relations amongst events. When we
have passively observed an event, we can reason backwards
diagnostically to infer the causes of this event, or we can
reason forward and predict future effects. For example, if
you travel to Russia and you notice that the harvest is not
good, you will change your beliefs about the rainfall (even if
it usually rains enough m(rain={yes}) > m(rain={yes,no})
> m(rain={no})). The bba on the variable ”Rain” is revised
according to the observation and thus a new bba m1 is
obtained:

m1(rain={no})>m1(rain={yes,no})> m1(rain={yes}).
Intervention

Intervention is the act of manipulating. Unlike observation,
it is the effect of an external action to the system that forces
a variable to have a specific value in a dynamic world. It
means that the natural behavior of an object is voluntary
changed without being sure of the outcome.
Interventions allow the identification of elements in a se-
quence of events that are related in a causal way and thus
make possible to explain especially the negative influence
of the occurrence of an event. Assume, that you know that
someone has lit a fire. It is obvious that this action has an
impact on the harvest and it forces it to take the value ”low”.
Your initial beliefs about the rainfall remain unchanged.

m2(rain = {yes}) = m(rain = {yes}) >
m2(rain = {yes, no}) = m(rain = {yes, no}) >
m2(rain = {no}) = m(rain = {no})

Interventional beliefs allow the reasoning in a causal way
by the mean of the ”DO” operator, originally introduced
by (Goldszmidt and Pearl 1992) for the ordinal conditional
functions of Spohn (Spohn 1988) and proposed after that in
(Pearl 2000) under a probabilistic framework.

An intervention on a variable Vi pushes it to take the value
vi is denoted do(Vi = vi) or do(vi) without modifying our
beliefs over direct causes of vi. While a conditional belief
representing the effect of an observation is computed by
m(.|vi), we propose to adapt the DO operator to the belief
function framework and therefore the interventional belief
modeling the effect of an external action will be given by
m(.|do(vi)).

Belief Causal Networks for Handling

Intervention
Causality and interventional actions can be intuitively and
formally described with graphs (Pearl 2000), (Benferhat
and Smaoui 2007). It was shown that it provides interesting
tools to predict the effects of external actions on the system.
A belief network represents an efficient way to model
dependency between variables and to predict the effect
of observations on the joint distribution of the variables.
In order to predict the effects of external actions on the
system, the construction of the belief causal network must
be different from belief network.
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Belief Causal Network

A belief causal network (BfCN) is a DAG in which nodes
represent variables and arcs describe cause-effect relations.
The causal process follows the direction of the edges. Thus,
an event is a cause of its child node and an effect of its parent
node. For each root node an a priori bba is defined. For each
child node, a conditional bba given the value of its parents
are defined. Like for belief function networks, variables in
BfCN are defined on 2Θ.

Example 5 The graph in the left side of Figure 1 is a belief
causal network.

Figure 1: Belief causal network

Nodes are described as follows: L means that the type
of the land reacts with fertilizers (l1:yes, l2 no), F means
that fertilizers has an effect (f1:yes, f2:no), R means the
rain falls (r1:yes, r2:no), H means that the harvest is good
(h1:yes, h2:no), For sake of simplicity, we focus our atten-
tion on the belief causal network shown in the right side of
Figure 1.
The joint distribution is computed using Equation 7.
The first step consists in computing the ballooning
extension of each conditional. For example the bbm
mF [l1](f1), will be transferred to {f1, l1} ∪ {F, l1}, i.e. to
{{l1, f1}, {l2, f1}, {l2, f2}} as shown in Table 1.

Table 1: Ballooning extension of conditional bba’s
mF [li] �F×L

l1
{{l1,f1},{l2,f1},{l2,f2}} 0.4
{{l1,f2},{l2,f1},{l2,f2}} 0.5
{L×F} 0.1

l2
{{l2,f1},{l1,f1},{l1,f2}} 0.6
{{l2,f2},{l1,f1},{l1,f2}} 0.1
{L×F} 0.3

Its corresponding joint distribution obtained by the
combination of the ballooning extensions of each condi-
tional in shown in Table 2. For example the combination of
mF [l1](f1) with mF [l2](f1), is obtained by the combination
of their ballooning extension as exposed in Table 1:
{{l1,f1},{l2,f1},{l2,f2}}=0.8∩{{l2,f1},{l1,f1},{l1,f2}}
=0.1. It is equal to {{l1,f1},{l2,f1}}=0.08.

Table 2: Joint form of the conditional bba’s MF [L]
{{l1,f1},
{l2,f1}
,{l2,f2}}
=0.8

{{l1,f2},{l2,f1},
{l2,f2}}=0.1

{L×F}
=0.1

{{l2,f1},
{l1,f1}
,{l1,f2}}
=0.1

{{l1,f1},{l2,f1}}
=0.08

{{l1,f2},{l2,f1}}
=0.01

{{l1,f1},
{l2,f1},
{l1,f2}}
=0.01

{{l2,f2},
{l1,f1},
{l1,f2}}
=0.7

{{l1,f1},{l2,f2}}
=0.56

{{l1,f2},{l2,f2}}
=0.07

{{l1,f1},
{l2,f2},
{l1,f2}}
=0.07

{L×F}
=0.2

{{l1,f1},{l2,f2}
,{l2,f1}}=0.16

{{l1,f2},{l2,f2}
,{l2,f1}} =0.02

{L×F}
=0.02

As explained before, at the second step all variables will
be extended to the product space. In this example, L should
be vacuously extended to F× L (see Table 3).

Table 3: Vacuous Extension: mL↑F×L

{l1,F}=0.2
{l2,F}=0.7
{L,F}=0.1

Finally, as exposed in Table 4, the global joint distribu-
tion is computed by combining the bba’s obtained by vacu-
ous extension of L with the bba’s presented in Table 2. The
resulting joint bba’s is summarized in Table 5.

Table 4: Joint distribution (elements represent the intersec-
tion of subsets)

{{l1, f1},
{l1, f2}}=0.2

{{l2, f1},
{l2, f2}}=0.7 {L,F}=0.1

{{l1, f1},
{l2, f1}}=0.08

{l1, f1}
=0.016

{l2, f1}
=0.056

{{l1, f1}
,{l2, f1}}=0.008

{{l1, f2},
{l2, f1}}=0.01

{l1, f2}
=0.002

{l2, f1}
=0.007

{{l1, f2},
{l2, f1}}=0.001

{{l1, f1},
{l2, f1},
{l1, f2}}
=0.01

{l, F}
=0.002

{l2, f1}
=0.007

{{l1, f1},
{l2, f1},
{l1, f2}}=0.001

{{l1, f1},
{l2, f2}}=0.56

{l1, f1}
=0.112

{l2, f2}
=0.392

{{l1, f1},
{l2, f2}}=0.056

{{l1, f2},
{l2, f2}}=0.07

{l1, f2}
=0.014

{l2, f2}
=0.049

{{l1, f2},
{l2, f2}}=0.007

{{l1, f1},
{l2, f2},
{l1, f2}}=0.07

{l1, F}
=0.014

{l2, f2}
=0.049

{{l1, f1},
{l2, f2},
{l1, f2}}=0.007

{{l1, f1},
{l2, f2},
{l2, f1}}=0.16

{l1, f1}
=0.032

{l2, F}
=0.112

{{l1, f1},
{l2, f2},
{l2, f1}}=0.016

{{l1, f2},
{l2, f2},
{l2, f1}}=0.02

{l1, f2}
=0.004

{l2, F}
=0.014

{{l1, f2},
{l2, f2},
{l2, f1}}=0.002

{L×F}=0.02 {l1, F}
=0.004

{l2, F}
=0.014 {L×F}=0.002
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Table 5: Global joint distribution mLF

{l1, f1} 0.16
{l1, f2} 0.02
{l1, F} 0.02
{l2, f1} 0.07
{l2, f2} 0.49
{l2, F} 0.14

{{l1, f1},{l2, f1}} 0.008
{{l1, f2},{l2, f1}} 0.001

{{l1, f1},{l2, f1},{l1, f2}} 0.001
{{l1, f1},{l2, f2}} 0.056
{{l1, f2},{l2, f2}} 0.007

{{l1, f1},{l2, f2},{l1, f2}} 0.007
{{l1, f1},{l2, f2},{l2, f1}} 0.016
{{l1, f2},{l2, f2},{l2, f1}} 0.002

{L × F} 0.002

Intervention by Graph Mutilation

An external action will alter the system. Those effects should
be studied especially if they have a negative influence on the
remaining events. They have to be predicted. A manipulation
on a variable makes its direct causes (parents) not more re-
sponsible of its state. Thus, all the edges directed to the node
concerned by the action will be deleted. No changes affect
other nodes. Pearl considers it as a surgery (a mutilation) by
which all the other causes than the one of the intervention
will be excluded.
The graph mutilated is denoted Gm and its associated belief
distribution is denoted mGmut. Its corresponding joint dis-
tribution is given by mGmut(.|vi) = m(.|do(vi)). Thus, in
order to compute the effect of a manipulation on Vi (do(vi)),
the joint distribution m is transformed to m(.|do(vi)). After
a manipulation on Vi, its corresponding bba becomes:

mVi(v) =

{
1 if v = vi
0 otherwise

(8)

The impact of this intervention on the system is obtained by
the computation of the global joint distribution given that an
external action is made on the variable Vi setting its value to
vi:

m(.|do(vi)) =
{
⊕j �=i(m

Vj [PaVj
] �Vj×PaVj )↑V1,...,Vn if Vi=vi

0 otherwise
(9)

Example 6 Lighting a fire in a meadow will affect the har-
vest. It is considered as an external intervention on the vari-
able H that forces it to take the value low. On the network
shown in Figure 1, an action on the variable H, that obliged
it to take the value H=h1, will lead to the disconnection of
H from its original causes, here Rainfall R and the use of
Fertilizers F.
Figure 2 illustrates the new graph, the mutilated one. By this
way, parents of the manipulated variable become indepen-
dent from it and thus the belief about their occurrence re-
mains unchanged.

Figure 2: Graph mutilation

After a mutilation on the graph presented in Figure 1, the
joint bba’s is then computed using (10b) instead of (10a).

mL,F = mL ⊕mF [L] (10a)

mL,F
Gmut = mL ⊕mF (10b)

with:

mF (f) =

{
1 if f = f1
0 otherwise

Proposition 1 Let Vi be a manipulated variable set to a
value vi and let PaVi its directed causes.
If U is a set of variable distinct from Vi ∪ PaVi

then after
a marginalization on PaVi

of Equation 9, we get a counter-
part and a generalization of Pearl proposition (Pearl 2000)
for the belief function theory framework:

mU (|do(vi)) = (mU (.|vi, PaVi)⊕m(PaVi))
↓PaVi (11)

It amounts to make a conditioning on the mutilated graph.

Intervention by Graph Augmentation

Another interpretation of interventions on a causal network,
is to add a parent node called “DO” to the node on which an
intervention is made (Pearl 1993). This node is considered
as an extra node in the system.
The augmented graph with those nodes is denoted Gaug .
Thus, the set of parents Pa(Vi) becomes Pa’=Pa(Vi)∪ DO.
This alternative to model interventions is also studied in this
paper under a belief function framework.
This variable can take the values in DO(Vi=vi), donothing .
Nothing means that there are no actions on the variable Vi,
it represents the state of the system when no interventions
are made. DO(Vi=vi) means that the variable Vi is forced to
take the value vi.
Notice that in this paper, we only consider simple form of
intervention where only one instance is forced to be true.
Hence conditioning on the “DO” variable only concerns sin-
gletons. The new distribution is then:

m[Pa(Vi), DO(vi)](vi) =

⎧⎪⎨
⎪⎩
1 if Vi=do(vi)
0 if Vi �= do(vi)
m[Pa(Vi)](vi) if DO=donothing

(12)
It remains to specify what is the bba assigned to the added

node (i.e. DO). As said previously we only consider simple
form of interventions, two cases are considered:
• If there is no intervention then bba’s of the DO node is

defined by:

mDO =

{
1 if DO = donothing

0 otherwise
(13)

In this case, we can show that:
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Proposition 2 An augmented belief causal graph where
the DO node is set to the value nothing encodes the same
joint distribution that an original belief causal graph.

mVi=1,...,n = mGaug(.|DO = donothing) (14)

• If there is an intervention that pushes the variable Vi to
take the value vi, then the DO bba’s is defined by:

mDO =

{
1 if DO = do(vi)

0 otherwise
(15)

In this situation, we have:

Proposition 3 As for probability and possibility theory,
dealing with interventions using the mutilation of the
graph or its augmentation gives the same results.

mVi=1,...,n(.|do(vi)) =
mGmut(.|Vi = vi) =

mGaug(.|DO = donothing)

(16)

We note that even though there is a difference in the con-
struction of the global joint distribution between the initial,
the mutilated and the augmented graph the result remains
the same.
Example 7 Let us continue with the network in Figure 1. Its
corresponding augmented graph is shown in Figure 3. The
parents of the manipulated variable H (H=h1), are not only
its direct causes (R,F) but also the added variable “DO”. A
new distribution mGaug have to be taken into consideration,
it is defined on L×F×R×H×DO.

Figure 3: Graph Augmentation

The local distribution on the node H is obtained us-
ing Equation 12. For example: m[r1,f1,DOnothing](h1)=
m[r1,f1](h1); m[r1,f2,Doh1](h1)=1; m[r2,f1,Doh2](h1)=0.

Conclusion
This paper provides a graphical model to deal with inter-
ventions under a normalized belief framework. We have
first presented a definition of a belief causation and a belief
causal network. We have shown that in order to correctly
represent causal relations and reason in a causal way, the
structure of the network has to be modified and the condi-
tioning on observation should be distinguished from a con-
ditioning on an external action. A generalization of the do
operator under the belief function framework was therefore
proposed, mutilated and augmented belief graphs were pre-
sented even if the joint distribution is not defined as for prob-
ability distribution for instance.
As future works, we plan to define properties of belief

causality and to profit from the allocation of a non-zero
belief mass on the empty set, this allows an extension of
the causality ascription model proposed in (Bonnefon et al.
2008) to the belief function framework.
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