
An Evolutionary Algorithm for Assigning Students to Courses

Christine Shannon and Drew McKinney
Centre College, 600 W. Walnut, Danville, KY 40422

christine.shannon@centre.edu

Abstract
In this paper we describe an evolutionary algorithm for
assigning students to courses in a situation where each
student specifies a set of courses in order of preference,
each course has a limited enrollment, and the object is to
maximize the overall student satisfaction by assigning each
student to a course as high on his or her preference list as
possible. Results of using the algorithm on historical data
are compared to the success of a human in making the
assignments. This work was done as part of a summer
undergraduate research project while the second author was
still a student. We also report preliminary results for using
this problem as the basis for an assignment in a course in
Artificial Intelligence.

Introduction
Like many liberal arts colleges, Centre College offers a
short, intensive term between its more traditional long
terms. During this time, first year students must enroll in
specially designed First Year Seminars. The class size is
limited to fifteen and courses are offered across a broad
spectrum of disciplines on a wide variety of topics. During
the registration process students are required to list four
courses that they would like to take in their order of
preference. The registrar attempts to satisfy these requests
as equitably as possible with the hope of granting as many
students as possible their first or second choice. Clearly,
the problem does not always admit a solution. In the
extreme case, all students could request exactly the same
four courses with the result that only sixty of them could
be accommodated under the stated rules. Fortunately,
nothing close to this has occurred but in a year where
nearly all classes had to be completely full, it was
necessary to raise the limit on a few courses to insure that
each student received one of the listed choices. Normally,
the assignments are made by the registrar using a variety of

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristics which eventually produce good results. While
not initially interested in an alternate solution, the registrar
was willing to share historical data so that we could
empirically compare the results of the assignments he
made by hand with those produced by various evolutionary
algorithms arising from our study. The recent growth in
the size of the first year class has increased his interest in
these results.

 Problem Description
The problem at hand can be viewed as an instance of the
Generalized Assignment Problem in which each agent in
one set is matched to a single task in another set.
Furthermore, each task has a limited capacity for agents
and the goal is to maximize some objective function.
Formally, the problem can be stated as an integer
programming problem.
Maximize

1 1

n m

ij ij
i j

S s d
1 1j1

n m

ij ijdjijsij (0.1)

given the constraints

1

1 for 1...
n

ij
i

d j m
1

m1...
n

ijdij j1 for (0.2)

and
1

15 for 1...
m

ij
j

d i n
1

...n1...
m

ijdij o i15 for (0.3)

where m is the number of students, n is the number of
courses, ijs is a measure of the preference of student j for
course i and

1 if student is assigned to class

0 otherwise
ij

j i
d

1 if student1 if studeent1 if stude

00
(0.4)

The requirement (0.2) insures that no student will be
assigned to more than one course. Similarly (0.3)
addresses the need for class sizes to be capped at 15.

388

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

There are many ways in which to define the preferences sij.
For example ijs might equal 5 if class i is the first choice
of student j and a correspondingly lower weight if it is a
lower choice. Alternate values assigned to the weights will
reflect a desire to reach certain goals. For example, one
could significantly raise the weights for first and second
choices and significantly penalize (with a negative weight)
any placement which was not one of the student’s original
choices. In any event, attempting to maximize S will
encourage assignments which match these preferences.

Previous Work
The Generalized Assignment Problem is a well studied
domain and there are numerous ways to construct solutions
to this problem including many which employ genetic
algorithms. We mention only a few of many works
dealing with this and related problems. Because this was
an undergraduate research project, the existence of these
solutions did not detract from the opportunity to develop,
test and assess a potentially novel approach to the problem.
 One interesting and related application of the
Generalized Assignment Problem is found in a paper on
the Sailor Assignment Problem (Garrett et al. 2005).
Because the United States Navy requires that each sailor in
the Navy change jobs every two years, there is a need to
find a mapping between the sailors, all having their own
particular skills and desires, and the available jobs with
their particular requirements. This must be accomplished in
a way that somehow maximizes the satisfaction of the
sailors and their potential commanders while conforming
to budgets and so on. In this case the constraints in (0.3)
would have the right hand sides equal to one since each job
can be taken by at most one sailor.

(Feltl and Raidl 2004) has background information and
bibliography on the Generalized Assignment Problem. In
this paper the authors describe several exact and heuristic
approaches to this problem including a hybrid genetic
algorithm from Chu and Beasley.

Exact methods such as integer programming are
frequently based on some version of branch and bound.
Often designers employ some sort of heuristic to guide the
order in which they explore the solution space during the
branching process. This sort of approach is not practical
for the problem at hand because, for example, if there were
300 students and 21 courses, there would be 6300 variables
and 321 constraints in addition to the requirement that the
solutions be binary.

We turned our attention to developing a genetic
algorithm not only because an exact solution seemed
infeasible but also because the genetic approach offered the
opportunity for experimentation and creativity in the
context of an undergraduate research project and the

opportunity to apply a classroom topic to an actual
problem.

An Evolutionary Algorithm
Evolutionary algorithms work with a population of
potential solutions, often called chromosomes. At each
step of the process, members of the population are
evaluated by a fitness function. Those chromosomes with
the highest value of the fitness function are most likely to
survive to the next generation and/or produce additional
offspring by some methods which mimic the processes of
natural selection and mutation in the natural world. This
process continues for many generations until at some point
the chromosome with the maximum fitness in the current
population is selected as an approximation to the true
maximum.

There are many techniques which have been used for the
selection and mutation operators. This paper motivates
and describes one such set of variation operators and the
results of the experiments that compared the values of (0.1)
for the registrar’s assignment of students to that for various
versions of an evolutionary algorithm.

Representation
Typically, a chromosome is represented by a string of
zeros and ones. The crossover operation which produces
the offspring is frequently accomplished by splicing
together a copy of an initial segment of one string with a
terminal segment of another. If, as is frequently the case,
the length of the chromosomes is fixed at some value t then
the crossover can occur by concatenating the first k bits
from one chromosome with the last t – k bits from the other
for some k with 0 k tk t Mutations occur by randomly
flipping a bit. The particular algorithm must determine
how a solution can be mapped to such a string of bits, the
protocol under which the operations occur, and an
assortment of probabilities, counts, and frequencies.

Given that there are n different classes and m students,
initially it seemed appropriate to represent a chromosome
which is a potential solution to the problem as a vector of
m* k bits where k = ceiling (log2 (n + 1)). The binary
representation of the class to which the solution assigns
student i would then be located in bits k*(i-1)…k*i-1.
While this would make it easy to execute the usual
crossover and mutation operations, it is obvious that these
operations could regularly result in an infeasible solution.
Even if we split the chromosomes at a multiple of k, there
is no reason to believe the resulting chromosome would
observe the constraint in (0.3). Eventually, we decided on
an alternative. A chromosome would be represented by a
permutation of the digits 1..m and this permutation would

389

represent the order in which the students would select a
class. Each student would of course select the class
highest on his or her priority list which still had not
reached capacity. If it should happen that all four courses
which the student had selected were already filled when it
was that student’s turn to select a course, then that
particular student would remain unassigned.

The Operators
Unfortunately, the typical crossover operator which takes
two chromosomes from the population and creates a new
chromosome for the next generation by splicing together
parts of each will still not work. Given the selected
representation, such an operation would almost certainly
create a sequence which is not a permutation of 1..m and
hence is not an admissible chromosome. Bearing in mind
that the purpose of generating new chromosomes by
crossover is to produce a better candidate solution from
two pretty good ones, we opted to forsake the two parent
analogy. Instead, the offspring come from a single parent
by the process of randomly selecting two integers, a and b
between 1 and m and randomly permuting the contents of
the chromosome between index a and index b. This
guarantees that the resulting chromosome will be a
permutation of the numbers 1 to m and has the effect of
changing the order in which a subset of the students make
their selections. Just as in the case of the two parent
operation, this operation does not guarantee that the
offspring will have better fitness than the parent. It might
be better to call this operation reproduce.

The mutation operator randomly selects two indices i
and j between 1 and m and interchanges the contents of the
chromosome at those two points. Again, this operator
preserves the requirement that each chromosome must be a
permutation of the numbers 1 to m. It has the effect of
selecting two students and switching the order in which
they select their classes. If originally the first student was
the ith one to make a selection and the second was the jth
one to do so, now the second student will be the ith one to
make a choice and the first will be making a choice in the
jth position.

Finally, there is an improve function. This is an effort
to locally repair a chromosome which results in unassigned
students. When student i is unassigned, the algorithm
looks up the first choice c1 of that student, randomly selects
a student j who was assigned to class c1 and then swaps the
positions in the chromosome of students i and j. Since
course c1 must have been available at the time student j
made a choice, this guarantees that student i will be
assigned and at worst it may mean that student j is
unassigned. More likely, student j will simply get a lower
priority choice which would still improve the value of the
fitness function described below for the new chromosome.

The Fitness Function
The fitness function must be selected in such a way as to
generate a solution which meets the objectives of the
problem. In this case, it was desirable to assign students to
their highest choices while attempting to assign all students
to some class and no student to a class which did not
appear on his or her priority list. As pointed out earlier, it
is possible that such a solution does not exist and the
algorithm may terminate with some students unassigned.
In this case human intervention would be required to
perhaps increase the limit on a few classes to make certain
that all students could be accommodated in one of their
desired courses. This is much more likely to occur when
there is very little slack in the total number of available
course slots when compared to the number of students who
must be assigned or when there are a small number of
courses which are ranked highly by a large portion of
students.

In view of these considerations, one fitness function that
was used awarded four points for each assignment that
gave a student his or her first choice, three points for a
second choice, two points for a third and one point for a
fourth choice. Ten points were subtracted for every
unassigned student. This particular function did not
differentiate greatly among any of the choices listed by a
student, but placed a great penalty on unassigned students.

An alternate fitness function which placed greater value
on students getting one of their first two choices could
award 8 points for every first choice, 4 for a second, 2 for a
third choice, 1 for a fourth choice and -10 for no
placement. This should produce a much larger number of
students receiving their first or second choice. This
function is used in many of the experiments reported below
since it matches the registrar’s desire to give students their
first or second choice.

Obviously, one can experiment with a wide collection of
potential fitness functions and observe the results. Sample
outcomes are given below.

Generating a Solution
A variety of experiments were performed with different
population sizes. However, in each case, for a population
of size p, the initial population was created by randomly
generating 2*p chromosomes, sorting by their fitness
values, and then selecting the p chromosomes with the
highest fitness. This starts the process with a population
possessing above average fitness.

To get the subsequent population, p offspring are created
from the current population by randomly selecting
chromosomes (with replacement) and with a probability
proportional to their fitness using roulette wheel selection
(Goldberg 1989) which is described below. Chromosomes
with a higher fitness are more likely to be chosen but even

390

those with a very low fitness have a positive, though
possibly very small, probability of being selected.

The reproduce operation is then applied to each selected
chromosome. In order to insure that no good solutions are
lost between generations, the current population is merged
with its offspring, yielding 2*p chromosomes. Mutation is
applied to a fraction of the population, followed by the
improve function and then the p chromosomes with the
highest fitness are selected for the next generation.

After a fixed number of generations the largest value of
the fitness function for members of the population is
determined. If there are multiple chromosomes in the
population with that fitness, one with a minimum number
of unassigned elements is selected at random.

Implementation
The algorithm was implemented in Python and the
following remarks will point out a few of the ways that we
employed language features to increase the efficiency of
the operations. The population of chromosomes was
maintained as a dictionary indexed by the fitness. If D is
the dictionary and f is a fitness value, then D[f] is the list of
all chromosomes with fitness f. Since Python offers very
good support for dictionary operations, this organization
facilitates the process of producing the next generation by
selecting chromosomes for creating offspring by their
fitness and then keeping those in the union of the current
population and their offspring with the greatest fitness.

Specifically, given the set of fitness values fi for i = 1..k
and their frequencies ni = length(D[fi]) construct the
intervals: [b0, b1], [b1, b2]… [bk-1, bk] where b0 = 0, b1=
n1f1,and for t > 1, bt = bt-1 + nt ft. These intervals are
proportional in length both to the fitness value and the
frequency with which it appears. Select a random number
r in the interval [0, bk], determine the subinterval [bt-1, bt]
containing r and then randomly select a chromosome from
D[ft]. This procedure will select a chromosome randomly
but with a probability proportional to its fitness.

To select the new population from the union of the
previous generation and its offspring, the new
chromosomes are added to the dictionary for the previous
generation and the fitness values of the dictionary are
sorted in decreasing order. The next generation is created
by the following process:

1. Let f* be the greatest fitness in the dictionary
2. If adding all the elements in D[f*] to the next

generation would not exceed the desired
population size add all of them to the next
generation. Otherwise, randomly select the
desired number of chromosomes from D[f*]
to add to the next generation and exit

3. While the number of elements in the next
generation is less than the desired number let
f* be the next largest fitness value in the
dictionary and go to step 2.

Maintaining lists of all students assigned to each course
makes the improve operation efficient. When student j has
a chance to make a selection and all four choices on his or
her priority list are full, j is added to an unassigned list.
The improve function then processes this list as described
above. Similarly, when the specified number of
generations has been computed selecting the final
candidate chromosome merely requires identifying the
largest key in the dictionary and processing the list of
chromosomes with that fitness to select one with the
smallest number of unassigned students. This is usually a
very short list. Thus the ease and efficiency with which
Python allows the programmer to make dictionaries and
lists facilitates a speedier solution at the usual cost of extra
space.

Experimentation and Results
This is actually an excellent problem for student
experimentation. Even when all these choices are made,
there are still a great number of parameters which must be
decided such as the size of the population, the frequency of
mutation, and of course the stopping condition which in
this case is simply a fixed number of generations. Because
we had six years of historical results we could also
compare the results produced by the algorithm with those
of the assignments the registrar made by hand.

For all the results shown below, the population size is
set at 200, and one percent of the population experiences a
mutation. The populations are processed through 1000
generations. We begin with a fitness function in which the
number of first choices assigned is multiplied by 8, second
choices by six, third choices by two and fourth choices by
one. Ten points are subtracted for each student who is not
assigned to a course. This is consistent with the desire to
give as many first and second choices as possible.

The first table gives the results for three runs of the data
for 2002. There were 291 students and 22 courses which
could hold 330 students. There was quite a bit of extra
room and hence it was easier to satisfy the requests. The
column labeled “Registrar” gives the number of first place,
second place, etc assignments that were made by the
registrar when this was done by hand. The last three
columns give the results for three runs of the evolutionary
algorithm.

391

Registrar Run 1 Run 2 Run 3
First choice 209 220 221 213
Second
choice

71 67 66 69

Third choice 2 3 4 3
Fourth
choice

9 1 0 0

Unassigned 0 0 0 0
Table 1: Data for 2002

The algorithm performed very well in these cases. Because
everything is done at random each run gives different
results and there can frequently be very different results for
individual students. However, the fact that we iterate
through 1000 generations means that the fitness of the
solutions will be fairly close. Similar results can be seen
for the following year when there are 286 students and 23
courses.

Registrar Run 1 Run 2 Run 3
First choice 182 188 190 190
Second
choice

86 81 79 79

Third choice 18 14 14 14
Fourth
choice

0 3 3 3

Unassigned 0 0 0 0
Table 2: Data for 2003

Again, the algorithm performs very well when compared to
the assignments made by the registrar. Note that the last
two runs of the algorithm given identical distributions as
far as the number of first place choices, second place
choices, etc. However, if you examine the particular
assignment of student to course there are many differences
because of the random selection process.

Where we would expect the evolutionary algorithm to
have more difficulty is the situation where the number of
available places and the number of students is very close.
Of course this also poses problems for hand calculation.
The data for the year 2004 gives us an opportunity to test
this. In fact, there were only 18 courses offered that year
and there were 274 students – four more than could be
accommodated with only 15 per course. Furthermore,
there were several courses which were very highly ranked
by a large fraction of the students. In order to satisfy all
the requests of the students, the registrar had to increase
the limit on six courses to 16 and on one particularly
attractive class to 17.

The algorithm was run with the usual limits but then
human intervention was used to individually place the
students who were not assigned into one of their choices by
raising the limits. Table 3 shows the data for the registrar’s
placement and the results of two runs of the algorithm.
The data for the algorithm indicate the original results as

well as the improved results after human intervention
placed the unassigned students as highly as possible
without violating the limits as extended by the registrar.

Reg Run 1
Orig Imp

Run 2
Orig Imp

First choice 148 156 158 158 161
Second
choice

86 73 77 71 73

Third choice 37 24 25 25 26
Fourth
choice

3 14 14 16 16

Unassigned 0 7 0 6 0
Table 3: Data for 2004

Again, the results are quite satisfactory except that perhaps
there are more students that end up with their fourth choice
when using the evolutionary algorithm. Observe, however,
that the totals of third and fourth choice placements are
pretty close. This could be influenced by changing the
weights in the fitness function as described elsewhere.

As a final experiment, let us change the weights in the
fitness function so they no longer put so much emphasis on
getting a first or second choice. This time we will give
weights of four, three, two, and one for first, second, third
and fourth choices respectively and subtract ten for every
unassigned student to minimize the human intervention.

For this we used the data from 2005 where there were
294 students and 20 courses. There was not much extra
space but there was a little. Under these circumstances, the
algorithm could terminate with unassigned students but
this only occurred in one of the three runs. Run 1 was
done with the usual weights that we have been using and
runs 2 and 3 with the new weights

Reg Run 1
Orig Imp

Run
2

Run
3

First choice 159 187 188 186 191
Second
choice

115 78 78 70 65

Third choice 20 17 17 25 24
Fourth
choice

0 11 11 13 14

Unassigned 0 1 0 0 0
Table 4: Data for 2005

This change in weights caused an approximately 30 per
cent increase in the number of third and fourth choices and
illustrates that one can achieve a variety of goals by
manipulating the weights appropriately. In this particular
year the registrar seemed to want to avoid fourth place
choices even though it meant fewer first place choices.
One could come closer to that goal by adjusting the fitness

392

function to place much greater distance between the
weights on the first three choices and that on the fourth.

An AI Assignment
In the past when the first author discussed genetic
algorithms in an introductory Artificial Intelligence class, it
was often in the context of a textbook example such as
maximizing the value of a function. The success of this
project provided an alternative in a problem domain with
which all the students were very familiar since they had
once selected their own list of preferences for a First Year
Seminar. Of course, in a two week assignment, students
could not be expected to achieve the same kind of results
as in a summer project. Nor could they be expected to read
research articles or consider as many alternatives. On the
other hand, they could be expected to define a reasonable
encoding, fitness function, and operations. To facilitate
things, they were provided with some utility functions and
the dictionary framework for their use. Almost all the
teams had some initial difficulty in selecting a crossover
operation with a reasonable chance of producing improved
offspring. Some began with random chromosomes without
considering how few of them would be feasible. Having
students submit a preliminary description at the halfway
point was very beneficial.

In the end, four of the five teams submitted projects on
time. Two teams had a crossover operation involving two
chromosomes and two had used a single chromosome to
create a single offspring. The programs were tested with a
new set of data which the students had not seen in the
development phase. Not surprisingly, there were some
difficulties. When the registrar had visited the class in the
role of a client, he indicated that in addition to satisfying
student requests, he was also interested in balancing class
sizes between 11 and 15. One team wrote a fitness
function which was heavily biased toward enforcing this
balance to the detriment of satisfying student course
preferences. Another weighed this so lightly that while
over 88 per cent of the students obtained one of their top
two choices, classes were somewhat unbalanced. The
other two teams opted for enforcing at least the upper
bounds and produced assignments with about 75% of
students in their top two choices, 95% in one of their four
choices and the rest unassigned, leaving the registrar to
make the final placements. This particular issue needs
additional discussion and experimentation.

Conclusions
The evolutionary algorithm which we developed in our
summer research compared very favorably with the
assignments of students to courses as done by the registrar.
Furthermore, it was easy and fast to use, generally

producing an assignment of all or nearly all students to
courses in less than eight minutes. When there were a
handful of unassigned students it was not very difficult to
assign them by hand by raising the limits on a few courses.
An additional benefit was that all placements were done at
random, freeing the registrar from any complaints about
unfairness or partiality.

Given the time constraints, the corresponding
assignment in the Artificial Intelligence class was
reasonably successful in that four of the five teams
produced working results and had the opportunity to
encounter a number of issues which they would not have
confronted otherwise. While there may be better ways to
solve this problem, the first author found it a good vehicle
to engage the students and several continued to work on it
after it was graded and discussed. Clearly, the fitness
function will get greater attention next time. This was a
good problem for both the undergraduate research project
and the class assignment.

Acknowledgements
Although the design and development of the algorithm was
collaborative, almost all of the code used in this project
was written by the second author while he was an
undergraduate at Centre College. He graduated in 2009.
In addition he developed a good user interface and manual
and provided the kind of documentation in the code which
would facilitate its use by a non-computer scientist. He
was supported by enabling funds of the Margaret V.
Haggin endowed professorship held by the first author.

References
Feltl, H. and Raidl, G. 2004. An Improved Hybrid Genetic
Algorithm for the Generalized Assignment Problem. In
Proceedings of the 2004 ACM symposium on Applied Computing
(Nicosia, Cyprus, March 14-17, 2004). SAC ’04. ACM, New
York, NY, 990-995.
Garrett, D., Vannucci, J., Silva, R., Dasgupta, D., and Simien, J.
2005. Genetic Algorithms for the Sailor Assignment Problem. In
Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation. (Washington, D.C., June 25-29, 2005), GECCO
’05. ACM, New York, NY, 1921-1928.
Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Los Altos. CA: Morgan
Kaufmann.
Kellerer, H., Pferschy, U. and Pisinger, D. 2004. Knapsack
Problems. Berlin: Springer.
Michalewicz, Z. and Fogel, D. 2002. How to Solve It: Modern
Heuristics. Berlin: Springer.

393

