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Abstract

In this paper, we present a Personalized Intelligent Tutoring
System that uses Reinforcement Learning techniques to im-
plicitly learn teaching rules and provide instructions to stu-
dents based on their needs. The system works on coarsely la-
beled data with minimum expert knowledge to ease extension
to newer domains.

Introduction

A Personalized Intelligent Tutoring System (ITS) presents
individualized inputs based on a students needs and learn-
ing behaviour. In this paper, we use Reinforcement Learn-
ing (RL) techniques to implicitly train the ITS with an adap-
tive student model that estimates the student’s learning pat-
tern. RL has the advantage of requiring no training data to
learn - it essentially bootstraps which suits us due to the un-
availability of student specific labelling of data. As a proof
of concept, we show that - using a coarsely labeled dataset
our tutoring system is able to significantly improvement stu-
dent’s learning when compared against a non-intelligent tu-
toring system.

Based on its knowledge of the topic and experience gained
during student interactions, the teaching system needs to
suggest more relevant inputs to a student. To do this, an
ITS must have a representation and understanding of the (i)
topic or subject being taught (Knowledge/Data module), (ii)
student being taught (Student Model) and (iii) methods of
instruction to present the inputs to a student in an optimal
way (Pedagogic module). The knowledge module consists
of problems with solutions (or hints) through which a stu-
dent learns, a measure of difficulty level, details of the skills
required to solve a problem, relations or dependencies be-
tween different problems and topics etc. The student model
is based on prior knowledge about students learning habits,
external environment and on what constitutes skills and pro-
ficiency in a topic. The Pedagogic module represents the
knowledge a tutor has about the methods of instructions, the
optimal way of presenting it to students - the basis on which
the ITS suggests questions to a student. It is for learning this
Pedagogic module i.e to implicitly train an ITS to teach -
that we use RL.

ITS as an RL problem

We look at the ITS as a finite horizon problem i.e. each
episode lasts for a fixed finite time. To minimize action
choices and labeling, each question in the data-set is catego-
rized into different types based on its difficulty level along
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Figure 1: Problem Overview

with a weightage (wi) for each type. The weightage defines
the importance of the question type in the final evaluation
test-paper. At each step the ITS presents a question, records
the student’s answer and then presents the solution to enable
the student to learn. The aim is to present questions such
that they maximize the student’s learning at the end of the
episode. Formulating the ITS as an RL problem allows it to
be divided into 4 logical parts as shown in figure 1.

The Teacher is an RL agent that interacts with the student
through the environment suggesting a question-type (the ac-
tion) based on the current state of the student. At the next
time step, it receives an answer from the student and a cor-
responding reward.
The Environment implements the action suggested by
choosing a question from the category selected by the agent.
The Student component represents the student being taught
which can either be a real or a simulated student.
The Student Model serves as a state description for the RL
agent - providing an estimate of the student state and also
a modified reward based on the observations from the envi-
ronment. The state of the system is estimated with the tuple
< {pi|iεquesType}, n > where pi is the probability of the
student answering a question of ith-type correctly and n is
the fraction of the number of questions left to be shown in
the episode. Note that the pis indicate the state of the student.
After every kth step, the student model provides a weighted
reward t

N

∑
wipi(t) to the agent where pi(t) is the proba-

bility of answering question of ith-type correctly at time t in
the episode. Using a weighted reward based on the objective
function, instead of just based on the outcome of the imme-
diate action, allows the agent to maximize return (long term
reward) at the cost of immediate rewards.
It would be difficult for an agent to learn its policies quickly
enough from a real student. Hence, the agent is initially
trained against a simulated student allowing it to explore dif-
ferent policies and learn; circumventing the risk of having an
adverse effect on a real student. It is with this learned policy
and the learning mechanism still in place that the agent in-
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teracts with the real student to fine-tune its performance to
fit each student better. Depending on the current state of the
student, the simulated student answers the question, views
the solutions and updates its state according to equations

pi(t+ 1) = pi(t) + c ·Xi,j (1)

pi(t+ 1) = pi(t) + w ·Xi,j (2)
where, question of type j is shown. c, w are constants and

Xi,j = αj,i

∑
k<j pk(t)∑

k<j

· (1− pi(t))

αj,i are constants. Equation 1 is used for questions’ an-
swered correctly and equation 2 for questions’ answered in-
correctly. Xi,j helps takes into account the current state of
the student while performing an update.

RL Agent

We adapt our RL Agent to use an Actor-Critic algorithm
based on (Konda and Tsitsiklis 2000) where the RL Agent
has two components -The Actor and the Critic. The Critic
follows a value function based method - learning Q(s, a)
for each state s while the actor follows a Policy Gradi-
ent approach with parameters representing the preference of
choosing actions. The critic calculates the error between the
value of state obtained in the current run and the estimated
value of the state. This error is then used by the Actor to
update its preferences and refine its policy. The algorithm
selects actions using a soft-max policy (Sutton and Barto
1998) with critic Q-values factored into it.

The student model needs to estimate the state of the stu-
dent at every step i.e. it needs to estimate the start state
and the update parameters. As relatively few interactions are
available with a real student, estimating each of these pa-
rameters individually for each student is infeasible. Instead,
we use a set of student models with different parameter val-
ues representing different types of students and following a
set of update equations with their respective parameter val-
ues. The problem now reduces to selecting one of these rep-
resentative models for the student as interaction proceeds.
The simulated student on the other hand could follow up-
date rules completely unknown to the student model.

We utilize the transformation selection mechanism used
in (Ravindran and Barto 2003) to select the student model.
A Bayesian Estimate of each model being the correct stu-
dent model is maintained. At each time-step the best model
according to the current estimate is selected moving to this
model’s estimated current state and suggesting actions based
on the selected model’s policy. To estimate the start state of
the student a set of questions of different types are presented
to the student - recording their answers without disclosing
the solutions. The student start state is estimated by the fre-
quency of questions correctly answered.

Figures 2 to 5 compare learning achieved with our RL
agent (in red) against a random agent (in green) at the end
of each lesson. Though we require atleast one lesson to
select a student model we still observe some learning at the
end of first lesson. This can be attributed to learning made
through generalizations from states observed in subsequent

lessons where a model has already been selected. We find
that the more a student interacts with the system the more
improvement is observed in his learning. Also, as the stu-
dent becomes more proficient in a topic the agent minimizes
variance such that the final reward values are mostly near
the best case reward values of a random-agent. As expected,
we find that maximum learning is observed for a Below-
Average student and least learning for an Excellent student.

(a) After Lesson 1 (a) After Lesson 1

(b) After Lesson 2 (b) After Lesson 2

(c) After Lesson 3 (c) After Lesson 3

Figure 2: Below-Avg Student Figure 3: Average Student

(a) After Lesson 1 (a) After Lesson 1

(b) After Lesson 2 (b) After Lesson 2

(c) After Lesson 3 (c) After Lesson 3

Figure 4: Above-Avg Student Figure 5: Excellent Student
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