
Hybrid Value Iteration for POMDPs

Diego Maniloff ∗

SENSEable City Laboratory
Massachusetts Institute of Technology

Piotr Gmytrasiewicz
Artificial Intelligence Laboratory
University of Illinois at Chicago

Abstract

The Partially Observable Markov Decision Process
(POMDP) provides a rich mathematical model for designing
agents that have to formulate plans under uncertainty. The
curses of dimensionality and history associated with solving
POMDPs have lead to numerous refinements of the value
iteration algorithm. Several exact methods with different
pruning strategies have been devised, yet, limited scalability
has lead research to focus on ways to approximate the
optimal value function. One set of approximations relies
on point-based value iteration, which maintains a fixed-size
value function, and is typically executed offline. Another
set of approximations relies on tree search, which explores
the implicit tree defined by the value iteration equation,
and is typically executed online. In this paper we present a
hybrid value iteration algorithm that combines the benefits
of point-based value iteration and tree search. Using our
approach, a hybrid agent executes tree search online, and
occasionally updates its offline-computed lower bound on the
optimal value function, resulting in improved lookahead and
higher obtained reward, while meeting real-time constraints.
Thus, unlike other hybrid algorithms that use an invariant
value function computed offline, our proposed scheme uses
information from the real-time tree search process to reason
whether to perform a point-based backup online. Keeping
track of partial results obtained during online planning makes
the computation of point-based backups less prohibitive. We
report preliminary results that support our approach.

1 Introduction
The Partially Observable Markov Decision Process
(POMDP) is a powerful mathematical model for designing
agents that have to plan under uncertainty. POMDPs
are inherently hard to solve using value iteration given
the curse of dimensionality (Kaelbling, Littman, and
Cassandra 1998), whereby planners must handle large
state spaces, and the curse of history (Pineau, Gordon,
and Thrun 2003), whereby the number of possible his-
tories to be considered grows exponentially with the
planning horizon. For these reasons, researchers have
explored different ways of refining the value iteration
algorithm. Numerous authors have proposed exact methods

∗Part of this work was done while the first author was at UIC.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with various pruning strategies (Cassandra et al. 1997;
Kaelbling, Littman, and Cassandra 1998). However,
given the limited scalability of these algorithms, the
focus has shifted toward approximate solutions. One
set of approximations relies on point-based value iter-
ation to build a fixed-size value function (Poon 2001;
Pineau, Gordon, and Thrun 2003; Spaan and Vlassis 2005),
and is typically executed offline. Another set of approxi-
mations relies on tree search to construct a local policy for
a single belief state (Paquet, Tobin, and Chaib-draa 2005;
Ross and Chaib-draa 2007; Ross et al. 2008), and is
typically executed online.

Offline algorithms take a POMDP problem as input and
compute a value function from which an associated policy
is extracted before the agent is deployed in the environment.
These algorithms have to face the difficulty of planning for
all possible situations a priori, only knowing the initial be-
lief state at which the agent will be deployed. On the other
hand, online algorithms take a POMDP specification and the
agent’s current belief state as input and compute a single ac-
tion while the agent is in the environment. The advantage
here is that the agent knows what belief state it is currently in
and can therefore plan for immediate contingencies. How-
ever, online planning is generally required to meet real-time
constraints and this can be difficult for large POMDPs.

Recent research has shown a creative way to combine
offline and online computation that can outperform ei-
ther technique alone (Paquet, Chaib-draa, and Ross 2006;
Ross et al. 2008). A hybrid design makes use of an offline-
computed value function as a partial result that will be im-
proved upon by an online search process. Typically, a hybrid
algorithm invests offline computation to calculate upper and
lower bounds on the optimal value function and uses these
bounds, which do not change during online computation, at
the leaves of a search tree. Once online, the tree search pro-
cess is guided by these bounds to prune suboptimal actions
and identify the belief states that contribute most to the ap-
proximation error at the current state. The search seeks to
minimize the interval defined by the bounds. Therefore, we
can improve the performance of a hybrid algorithm by sup-
plying tighter bounds.

In this paper we present a hybrid value iteration algorithm
that combines the benefits of point-based value iteration and
tree search, following up on the above idea, also suggested

632

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

by (Ross et al. 2008). Our algorithm takes as input a pair
of bounds, initially computed offline, to perform heuristic
tree search online, and occasionally utilizes a portion of the
online planning time to update one of these bounds across
the entire belief space. Two points are crucial. First, the
agent can use the information present in its tree to estimate
the benefit that such an update will provide for future on-
line tree searches. Second, by allowing a point-based up-
date to piggy-back on the online tree search we speed up the
expensive alpha vector computation without violating real-
time constrains.

2 Background
Formally, a POMDP problem instance is specified as a tuple
〈S,A,O, T, O,R〉, where S is the set of world states, A is
the set of actions, O is the set of observations, T : S ×
A × S → [0, 1] is the stochastic transition function, O :
S × A × O → [0, 1] is the stochastic observation function,
and R : S × A → R is the reward function. In a POMDP,
the agent’s task is to maximize the expected future reward,
usually discounted by a factor γ.

In the context of combining offline and online algorithms,
the following parameters will be necessary:
Offline time toff is defined as the time measured from the

moment the agent is presented with the POMDP specifi-
cation to the moment in which it is launched in the envi-
ronment;

Online time ton is defined as the time measured from the
perception of an observation until the execution of an ac-
tion, and determines the real-time constraints of the sys-
tem.

2.1 Belief state computation
Given that in a POMDP model the world is partially observ-
able, an agent has to resort to noisy observations to estimate
the state it is in. It does so by maintaining an internal be-
lief state b that summarizes its previous interaction with the
environment. Based on this estimate, the agent can output
the action that yields the highest expected reward. From this
we can describe an agent in terms of a state estimator com-
ponent and a policy component (Kaelbling, Littman, and
Cassandra 1998). If we let st, at, and ot denote the state,
action, and observation at time t, we can define b0(s) =
P (s0 = s), T (s, a, s′) = P (st+1 = s′|st = s, at = a), and
O(s′, a, o) = P (ot+1 = o|st+1 = s′, at = a). From this
we learn that the internal belief state is realized as a proba-
bility distribution over S . This belief is updated with every
observation as follows:

bao(s
′) =

O(s′, a, o)
∑

s T (s, a, s
′)b(s)

P (o|b, a)
= β O(s′, a, o)

∑
s

T (s, a, s′)b(s), (1)

where we treat 1/P (o|b, a) as a normalizing coefficient β.

2.2 Value Iteration
A POMDP is solved optimally for a particular time horizon
by means of the value iteration algorithm (Sondik 1971).

This dynamic programming approach is used to iteratively
build a value function that expresses the expected reward for
each belief state b with t steps to go. The value function for
t steps to go is obtained from the one with t− 1 steps to go
using the Bellman Update:

Vt(b) = max
a

[
R(b, a) + γ

∑
o

P (o|b, a)Vt−1(b
a
o)

]
. (2)

We now present three alternative ways of performing value
iteration.

Exact value backups Given that the value function is
piece-wise linear and convex in the belief (Smallwood and
Sondik 1973), we can represent it as a set of α-vectors
Vt = {α0, α1, ..., α|Vt|}, and the value of a belief state will
be Vt(b) = max{αi}i

[αi · b]. Thus, the Bellman Update
amounts to transforming every α-vector in Vt−1 to obtain a
new set Vt. This operation, called an exact value backup,
is implemented by generating the following sets (Monahan
1982):

Γa,∗ : αa,∗(s) = R(s, a) (3)

Γa,o : αa,o
i (s) = γ

∑
s′

O(s′, a, o)T (s, a, s′)αi(s
′) (4)

Γa = Γa,∗ ⊕ Γa,o1 ⊕ · · · ⊕ Γa,o|O| . (5)

Finally, the new value function is the union Vt =
⋃

a Γ
a.

An exact value backup amounts to considering all con-
ditional plans that result from executing an action a at
time t and receiving every possible observation. There are
|Vt−1||O| ways of continuing execution for each action a,
therefore each new value function Vt will have size |Vt| =
O(|A||Vt−1||O|).

Point-based value backups In order to avoid the expo-
nential growth of the number of α-vectors that results from
an exact value backup, an alternative is to approximate
Vt by computing point-based backups for a finite set of
beliefs B (Poon 2001; Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005). The main difference with respect
to the exact value backup is that the point-based backup op-
erator yields a single α-vector per belief point. The sets Γa,∗
and Γa,o remain the same as in the exact value backup; how-
ever, the set Γa now becomes dependent on b:

Γa
b = Γa,∗ +

∑
o

argmax
{αa,o

i }i

(αa,o
i · b), αa,o

i ∈ Γa,o, (6)

from which we define the point-based backup operator

backup(b) = argmax
{Γa

b}a

(Γa
b · b). (7)

Finally, the new value function is approximated by the union
Vt =

⋃
b∈B backup(b).

A point-based backup of point b involves finding the α-
vectors αi ∈ Vt−1 that once back-projected according to
a fixed action and every possible observation will yield the
highest dot product with b. These vectors are then summed
with Γa,∗ and the process is repeated for each action a, re-
sulting in a time complexity of O(|S|2|A||O||Vt−1|), for
each point in B.

633

Online search A third way of performing value iteration is
by exploring the implicit tree that is generated by Eq. 2. On-
line search constructs a tree of beliefs, expands its nodes by
computing reachable beliefs from the current one, and prop-
agates value estimates up from the fringe nodes. Usually,
upper and lower bound estimates are maintained per belief
in order to better guide the expansion process via heuristics:

LT (b) =

{
V L(b) b ∈ F(T)

maxa LT (b, a) otherwise
(8)

LT (b, a) = R(b, a) + γ
∑
o

P (o|b, a)LT (b
a
o) (9)

UT (b) =

{
V U (b) b ∈ F(T)

maxa UT (b, a) otherwise
(10)

UT (b, a) = R(b, a) + γ
∑
o

P (o|b, a)UT (b
a
o), (11)

where F(T) indicates the fringe of the tree, and V L, V U

are bounds typically computed offline, both of which remain
constant during the online search process.

Online search operates with the values of single beliefs,
rather than with entire α-vectors, thereby returning a lo-
cal policy. Evaluating a tree of depth dT has a cost of
O((|A||O|)dT |S|2), which highlights the importance of us-
ing heuristics to selectively expand nodes. Online algo-
rithms thus interleave planning and execution, can be espe-
cially useful in changing environments, and exhibit substan-
tially shorter policy construction times (Ross et al. 2008).

3 Hybrid value iteration
The previous section presented three general alternatives for
performing value iteration: one based on exact methods, and
two based on approximations. This section presents Hybrid
Value Iteration (HYVI), a hybrid algorithm that combines
the latter two approximate methodologies, namely point-
based value iteration and tree search. The main idea is based
on the notion of effective lookahead and how to maximize
it.

A typical hybrid algorithm goes through an offline phase
and an online phase. During the offline phase, the algo-
rithm spends toff computing an upper bound V U and a lower
bound V L on the optimal value function V ∗. During the
online phase, the algorithm interleaves instances of execu-
tion and instances of online planning. At each instance of
online planning, a hybrid algorithm spends ton operating on
a point-by-point basis, trying to reduce, for as many belief
points b as possible, the interval V U (b) − V L(b) defined
by the offline-computed bounds. The more belief points it
reduces this interval for, the better the performance of the
algorithm.
Definition 1. We define the effective lookahead of a hybrid
algorithm as the number of belief nodes b for which the in-
terval V U (b)− V L(b) has been reduced after an instance of
online planning.

In order to maximize its effective lookahead, a hybrid
agent will attempt to perform the most exhaustive explo-
ration of its tree, expanding as many belief nodes as allowed

by the real-time constrains of the system. There is, how-
ever, an alternative to performing individual node expan-
sions in the tree of beliefs, namely the possibility of per-
forming online, an update of the offline-computed bounds
via a point-based backup. This presents a hybrid POMDP
agent with the following metareasoning question: should the
effective lookahead be maximized by executing as many in-
dividual node expansions as possible during ton, or does it
make sense to sometimes allocate a portion of this time to
update the offline-computed bounds? The reason why the
second option posed by this question could make sense, is
that an update of the bounds can have an impact across the
entire belief space, and future explorations of the tree from
subsequent beliefs can make use of such improved bounds,
effectively achieving higher effective lookaheads.

Our proposed scheme takes as input a POMDP problem
specification and spends toff time to compute an upper bound
V U and a lower bound V L on the optimal value function
V ∗. Next, once the agent is launched in the environment, it
will partition its online planning time ton into two slots: texp
will be used for regular tree search exploration, and the re-
maining fraction tbak is reserved for a potential point-based
backup of a candidate node within the tree. Once texp has ex-
pired, the agent interrupts its online tree search process and
invokes a heuristic to decide whether to invest the remaining
tbak on a point-based value backup of the lower 1 bound V L,
or simply continue with further node expansions in its tree.
Our implementation is composed of the following elements:
• a pair of offline-computed value function bounds;
• an online tree search strategy;
• a heuristic method to keep track of the best candidate node

to backup;
• a decision rule to determine whether to perform a point-

based backup of V L; and
• en efficient routine to compute a point-based backup.

3.1 Offline-computed value function bounds
In order to report results comparable with previous work,
we have chosen the QMDP bound (Littman, Cassandra,
and Kaelbling 1995) for V U and the Blind policy bound
(Hauskrecht 2000) for V L. We defer to their authors for a
detailed treatment, and provide a concise description below.

QMDP The QMDP upper bound results from swapping
max and sum operators in the fully observable MDP approx-
imation (Hauskrecht 2000). Given that QMDP is equivalent
to performing a one-step lookahead on the single MDP α-
vector, it is essentially assuming that any uncertainty regard-
ing the state will disappear after taking one action.

Blind policy Just like any finite-state controller will have
an associated a lower bound on the optimal value function, a
blind policy is a particular controller that always selects the
same action, regardless of the agent’s present belief state.
The resulting value function is composed of |A| vectors,
each corresponding to one of the possible blind policies.

1In this work we focus on updating the lower bound V L only,
which is the value considered for decision making.

634

3.2 Online tree search strategy
For our tree search methodology, we have chosen the
AEMS2 heuristic, previously used by (Hansen 1998) for
policy search and by (Ross et al. 2008) for online POMDP
planning. The basic idea of AEMS is to expand the tree such
as to reduce the approximation error of the lower bound es-
timate at the root node. The choice of which node to expand
is realized by choosing the belief point b in the fringe of
the tree F(T) whose heuristic value is largest. The general
equations to keep track of the best node to expand are as
follows, where HT (b) is the basic heuristic value of fringe
node b, and HT (b, a) and HT (b, a, o) are factors that weigh
this value along the path from b to the root node:

H∗
T (b) =

{
HT (b) b ∈ F(T)

maxa HT (b, a)H
∗
T (b, a) otherwise

H∗
T (b, a) = max

o
HT (b, a, o)H

∗
T (b

a
o)

b∗T (b) =
{
b b ∈ F(T)

b∗T (b, a
T
b) otherwise

b∗T (b, a) = b∗T (b
a
oTb,a

)

where aTb = argmaxa HT (b, a)H
∗
T (b, a) and oTb,a =

argmaxo HT (b, a, o)H
∗
T (b

a
o). The AEMS2 procedure uses

the following heuristic functions and factors: HT (b) =
V U (b) − V L(b), HT (b, a) = 1 if a = argmaxa′ UT (b, a

′)
and 0 otherwise, and HT (b, a, o) = γP (o|b, a).
3.3 Keeping track of the best candidate to backup
The best candidate node to backup will be the one whose
resulting α-vector improves V L over the largest area of the
belief space, and by the largest amount. It is difficult to pre-
cisely estimate these quantities a priori, as well as whether
the new vector will even be used by the agent in its future
interactions with the environment. We can, however, use the
information present in the tree to identify the most promis-
ing belief point in terms of the potential area of impact and
the amount of improvement.

We partition the nodes in the tree into fringe nodes and
internal nodes, T = F(T) ∪ I(T). We construct a mapping
2 f(b) : I(T) → R that measures the potential benefit of
backing up belief point b. Before presenting our proposed
mapping f(b), we introduce the following concepts: I(b),
Ĥ(b), index(b), and support(αi).

I(b) Is the amount by which belief point b has improved
its lower bound value after a single expansion:

I(b) = LT (b)− V L(b), b ∈ I(T), (12)

where LT (b) is obtained after computing Eqs. 8 and 9 only
once.

Ĥ(b) Is the normalized entropy of belief point b:

Ĥ(b) =
−∑

s∈S b(s)log(b(s))

log(|S|) , b ∈ I(T). (13)

2The restriction of the domain of f to the internal nodes is jus-
tified in Section 3.5.

index(b) Is the α-vector in the current lower bound V L

that supports point b:

index(b) = argmax
{αi}i

[αi · b], αi ∈ V L, b ∈ T. (14)

support(αi) Is the support set of α-vector αi:

support(αi) = {b : index(b) = αi}, αi ∈ V L, b ∈ T.
(15)

f(b) After computing I(b), Ĥ(b), index(b), and
support(αi) during the online search procedure, we con-
struct the following mapping, where dbT is the depth of belief
node b:

f(b) = γdb
T I(b) Ĥ(b) |support(index(b))|, b ∈ I(T).

(16)

The heuristic f(b) captures how promising belief node b
is for a point-based backup, both in terms of the amount of
improvement and the area of the belief space that the new
α-vector will improve on. The amount of improvement is
estimated with I(b), the height above b at which the vector
backup(b) will pass. The area of improvement is estimated
with |support(index(b))|, the size of the support set that
b is in. Since each support set contains belief points that
are geometrically proximal to each other in the belief space,
whenever the most promising belief of a support set is cho-
sen for backup it is likely that the new alpha vector resulting
from such backup will improve the points in the set. Since
it may be that not all nodes in the support set of b will im-
prove, we affect this size by Ĥ(b). The idea here is that Ĥ(b)
is a proxy for the gradient of the new α-vector, and higher
gradients are likely to result in fewer belief nodes in the set
being improved. Finally, f(b) considers the discount factor
γ to favor rewards that are obtainable in the near future over
potential large impact beliefs that are only reachable after a
large number of time-steps.

In order to efficiently identify the best candidate node to
backup in the entire set I(T), each node b ∈ I(T) keeps
track of the quantity f∗(b) = maxb f(b), where b ranges
over all internal nodes in the subtree of b. Associated with
this quantity is a reference b∗, that points to the correspond-
ing node in the subtree of b that maximizes f(b). This way,
if bc is the current root of the tree T , then b∗c is the best can-
didate node to backup in the entire set I(T). Figure 1 shows
a schematic view of all the metrics for a simple two-state
problem.

3.4 Deciding whether to perform a backup
In order to decide whether to perform a point-based backup,
a hybrid agent should compare the gain in effective looka-
head of the node expansions that can be executed during tbak
against the gain in effective lookahead of adding a new α-
vector to V L that results from a point-based backup of b∗c ,
the best candidate node in the entire set I(T). Let
r, be the rate of belief node expansions in nodes/sec of
our implementation of online tree search;
p = r ton, the number of belief nodes that can be ex-
panded in ton sec;

635

�� �� ��

�� �� ��

�� �� ��

�� �� ��

�� �� ��

���	
������	

�
���	���	

�

� �

�
����

�	�����������	�
��	

��	�������	��
�������	��

����
���	����
�	��
��

Figure 1: Sample two-state problem. Shown is a tree after an
instance of online planning, together with the current lower
bound V L.

k = r tbak, the number of belief nodes that can be ex-
panded in tbak sec;
nb∗c , the area of the belief space over which the vector
backup(b∗c) improves the lower bound V L.

Our underlying assumption is that if the agent decides to up-
date V L, it will reduce its effective lookahead by k in the
present time-step tc, in order to increase its effective looka-
head by p nb∗c in all future time-steps t > tc, given that the
updated V L continues to be reused. Further, we estimate
nb∗c as

nb∗c =
Ĥ(b) |support(index(b∗c))|

p− k
. (17)

We later describe the caveats associated with this assump-
tion and the weaknesses of this estimation.

Formally, for the backup to make sense, we must satisfy
the following, where tc is the current time-step in the life-
time of the agent and H̄ is the average episode length, em-
pirically measured for a given POMDP problem:

γtc(p− k) +
H̄∑

t=tc+1

γt(p+ p nb∗c) >
H̄∑

t=tc

γtp

H̄∑
t=tc+1

γt(p+ p nb∗c) >
H̄∑

t=tc+1

γtp+ γtck

p nb∗c >
1− γ

γ − γH̄−tc+1
k.

(18)

This rule will execute a point-based backup of V L whenever
the effective lookahead that is lost from giving up k expan-
sions in the present time-step is offset by the effective looka-
head p nb∗c that is gained in the future. The rule analyzes this
tradeoff both in light of the discount factor γ, and the aver-
age number of time-steps left in the lifetime of the agent.

Intuitively, deeper effective lookaheads in the present are
preferred over deeper effective lookaheads in the future, and
this preference is intensified as the end of the world nears.

3.5 Efficiently computing a point-based backup
There exists a close relationship between the computations
that are part of online search and those that are part of point-
based value backups, which makes these two approaches es-
pecially suitable for hybridization. In particular, consider a
belief point b ∈ I(T) for which we have performed a single-
step expansion as described in Eqs. 8 and 9. By storing
partial results of this expansion, a potential backup(b) com-
putation can be performed more efficiently by avoiding the
argmax{αa,o

i }i
operation in Eq. 6, and the argmax{Γa

b}a

operation in Eq. 7. We first analyze the argmax{αa,o
i }i

op-
eration in Eq. 6.
Proposition 1. The index i of the back-projected α-vector,
αa,o
i , that maximizes the dot product with belief b, is the

same as the index of the unprojected α-vector, αi, that max-
imizes the dot product with the unnormalized belief bao .

Proof.

αa,o
i · b =

∑
s

b(s)αa,o
i (s)

=
∑
s

b(s)
∑
s′

O(s′, a, o)T (s, a, s′)αi(s
′) (Eq. 4)

=
∑
s′

αi(s
′)O(s′, a, o)

∑
s

T (s, a, s′)b(s)

= 1/β
∑
s′

αi(s
′)bao(s

′) (Eq. 1)

= 1/β αi · bao ,
where αi ∈ V L.

Since max{αi}i
[αi · bao] = V L(bao), saving this index

during the tree exploration in Eq. 8 avoids recomputing
argmax{αa,o

i }i
. With respect to the argmax{Γa

b}a
in Eq. 7,

we simply keep track of the action a that yields the highest
value of LT (b, a) in Eq. 9. This extra bookkeeping allows
us to piggy-back a point-based backup of an internal belief
node in the tree, now in O(|S|2|O|) time, on top of online
tree search.

4 Evaluation
In order to evaluate our approach, we compared Hybrid
Value Iteration to AEMS2, a the state-of-the-art online
planning algorithm (Ross et al. 2008). We chose prob-
lems from the scalable POMDP literature that range from
about 100 states to 100000 states: NetCycle[7] (Poupart and
Boutilier 2004), RockSample[7,8], RockSample[7,10], and
RockSample[10,10] (Smith 2007). All simulations were run
on an Intel processor at 2.2 GHz.

Table 1 reports 3 averages over multiple runs for all pos-
sible initial belief states and includes the accumulated dis-
counted reward, the number of nodes in the tree, point-based

3These results are for our implementation of AEMS2. As such
they do not correspond precisely with the ones in (Ross et al. 2008).

636

backups, and ε-optimal actions found. We observe that by
updating V L, the values that are propagated back from the
leaf nodes to the root are more precise than the ones of the
Blind policy, essentially providing the HYVI agents with
deeper effective lookaheads even with fewer belief nodes in
the tree.

Algorithm Return Belief
nodes

Reused
nodes

Backups # of ε-opt
actions

NetCycle[7] (128s, 15a, 2o)
AEMS2 54.9562 1439 269 - 0
HYVI 56.3696 794 0 47.9825 0
RockSample[7,8] (12544s, 13a, 2o)
AEMS2 20.8999 2214 977 - 2.7797
HYVI 21.4284 1855 0 16.7414 3.8379
RockSample[7,10] (50176s, 13a, 2o)
AEMS2 20.8980 1466 605 - 0.7342
HYVI 22.3899 936 0 17.5300 2.5088
RockSample[10,10] (102400s, 15a, 2o)
AEMS2 18.3734 1010 366 - 0.1551
HYVI 19.9286 821 0 18.1629 2.0320

Table 1: Simulation results. In all cases, the online plan-
ning time ton was limited to 1 second and partitioned into
texp = 0.9s and tbak = 0.1s. The latter slot is the max time it
takes to compute a point-based backup as described in Sec-
tion 3.5, and experimentally measured for our platform and
problems. ε was set to 10−3.

5 Discussion
We identify limitations and open questions that will give di-
rection to our future research. The first limitation is that the
assumption of Eq. 18 is an optimistic assessment. Even
if Eq. 17 correctly estimates the area of improvement of
the new α-vector, there is no guarantee that tree searches of
all future interactions with the environment will reuse this
vector in the same proportion. It is possible to introduce
a parameter L in Eq. 18 as a “reuse lifetime” of the new
α-vector. However, in this work we have tried to design
a general approach, and avoided parameters that need em-
pirical testing for different domains. The second limitation
is the accuracy of Eq. 17, the estimate of the area of im-
provement of the new α-vector. A more precise estimate
could be obtained by partially computing the backup oper-
ation. We could also substitute entropy with the curvature
(Smith 2007) of V L at the candidate point. These computa-
tions might be expensive to perform online, and we have yet
to explore them.

An open question is whether it pays off to allocate online
time to compute several point-based value backups rather
than just one. It would also be interesting to explore online
updates of both V L and V U .

6 Conclusion
Our approach is a first step towards designing hybrid
POMDP agents that reason about the best way to combine

online search and point-based updates for real-time plan-
ning. Preliminary empirical results indicate competitive per-
formance with respect to traditional online search, while still
meeting real-time constrains.

References
Cassandra, A.; Littman, M. L.; Zhang, N. L.; et al. 1997. Incremen-
tal pruning: A simple, fast, exact method for partially observable
markov decision processes. In Proceedings of the 13th Conference
on Uncertainty in Artificial Intelligence, 54–61.
Hansen, E. A. 1998. Solving POMDPs by searching in policy
space. Fourteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI-98) 211—219.
Hauskrecht, M. 2000. Value-function approximations for partially
observable Markov decision processes. Journal of Artificial Intel-
ligence Research.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Plan-
ning and acting in partially observable stochastic domains. Artifi-
cial Intelligence 101:99–134.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995. Learn-
ing policies for partially observable environments: Scaling up. In
Proceedings of the Twelfth International Conference on Machine
Learning (ICML-95), 362–370.
Monahan, G. E. 1982. A survey of partially observable Markov
decision processes: Theory, models, and algorithms. Management
Science 1–16.
Paquet, S.; Chaib-draa, B.; and Ross, S. 2006. Hybrid POMDP al-
gorithms. Proceedings of The Workshop on Multi-Agent Sequential
Decision Making in Uncertain Domains (MSDM-06) 133–147.
Paquet, S.; Tobin, L.; and Chaib-draa, B. 2005. An online POMDP
algorithm for complex multiagent environments. In Proceedings
of the fourth international joint conference on Autonomous agents
and multiagent systems, 970–977.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In International
Joint Conference on Artificial Intelligence, volume 18, 1025–1032.
Poon, K. M. 2001. A fast heuristic algorithm for decision-theoretic
planning. Master’s thesis, Hong-Kong University.
Poupart, P., and Boutilier, C. 2004. VDCBPI: an approximate scal-
able algorithm for large POMDPs. Advances in Neural Information
Processing Systems 17:1081–1088.
Ross, S., and Chaib-draa, B. 2007. AEMS: an anytime on-
line search algorithm for approximate policy refinement in large
POMDPs. In Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI-07), 2592–2598.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008. Online
planning algorithms for POMDPs. Journal of Artificial Intelligence
Research.
Smallwood, R. D., and Sondik, E. J. 1973. The optimal control of
partially observable Markov processes over a finite horizon. Oper-
ations Research 21(5):1071–1088.
Smith, T. 2007. Probabilistic planning for robotic exploration.
Ph.D. Dissertation, Carnegie Mellon University.
Sondik, E. J. 1971. The Optimal Control of Partially Observable
Markov Processes. Ph.D. Dissertation, Stanford University.
Spaan, M. T., and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. Journal of Artificial Intelli-
gence Research.

637

