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Abstract

Community mining is applied in order to identify groups of
users which share, e.g., common interests or expertise. This
paper presents an approach for mining descriptive patterns in
order to characterize communities in terms of their distinc-
tive features: For an efficient discovery approach, we intro-
duce optimistic estimates for obtaining an upper bound for
the community quality. We present an evaluation using data
from the real-world social bookmarking system BibSonomy.

Introduction

Community mining is a prominent approach for identify-
ing densely connected subgroups of the nodes contained in
a network. A community is intuitively defined as a set of
nodes that has more and/or better links between its members
compared to the rest of the network.

This paper proposes an approach for mining descriptive
community patterns according to standard community eval-
uation measures: The proposed method collects patterns that
describe communities by combinations of features, e.g., tags
or topics for social bookmarking systems. We can consider,
for example, groups of users interested in the topic web min-
ing, computer and java. In this way, we aim to identify
and describe interesting communities, in contrast to stan-
dard community mining approaches, e.g., (Newman 2004)
that only identify communities as subsets of users. Our con-
tribution is three-fold: We introduce the descriptive commu-
nity mining scenario, and propose an approach for mining
descriptive community patterns. Furthermore, we present
optimistic estimates for pruning the search space, discuss
their application in the context of standard community eval-
uation measures, and evaluate their impact.

Our application context is given by social and ubiquitous
applications such as social networking applications, social
bookmarking systems, and sensor-networks. Considering
the BibSonomy system as an example, the friend graph indi-
cates explicit friendship relations between users. Then, these
graphs directly indicate communities (of users) according to
the link structure. Similar interaction networks are obtained
in the context of ubiquitous applications (e. g., users which
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are using a given service at the same place and time). Com-
munities of users can then be characterized in terms of their
descriptive features. In the context of social bookmarking
systems, for example, we can consider the applied set of tags
and the different resources (i.e., bookmarks, publications).

The rest of the paper is structured as follows: We first
summarize basic notions of pattern mining, graphs, and ac-
cording measures. Next, we discuss related work. After that,
we introduce the approach for mining descriptive commu-
nity patterns and describe optimistic estimates for standard
community evaluation functions. Furthermore, we provide
evaluation results of the presented approach in the context of
the real-world BibSonomy system. Finally, we conclude the
paper with a summary and directions for future research.

Preliminaries

In the following, we briefly introduce basic notions with re-
spect to descriptive pattern mining, graphs, networks, and
community quality measures.

Pattern Mining using Subgroup Discovery

Subgroup discovery (Wrobel 1997) aims at identifying inter-
esting patterns with respect to a given target property of in-
terest according to a specific quality function. Let ΩA denote
the set of all attributes. For each attribute a ∈ ΩA a range
dom(a) of values is defined. Let DB be the database con-
taining all available data records. A data record r ∈ DB

is given by the n-tuple r = ((a1 = v1), . . . , (an = vn))
of n = |ΩA| attribute values, vi ∈ dom(ai) for each ai.
A subgroup description sd(s) of the subgroup s, sd(s) =
{e1, . . . , el}, l ≥ 0, is defined by the conjunction of a set
of selection expressions (selectors). The individual selec-
tors ei = (ai, Vi) are selections on domains of attributes,
ai ∈ ΩA, Vi ⊆ dom(ai). A subgroup s described by
the subgroup description sd(s) is defined as a subset of the
whole database DB , i.e., s ⊆ DB : It is given by all records
r ∈ DB covered by the subgroup description sd(s). We de-
note the subgroup s described by sd(s) with ext(sd(s)). A
subgroup s′ is called a refinement of s, if sd(s) ⊂ sd(s′).

A quality function q : 2DB → R assigns a numeric inter-
estingness value to the subgroup s. For many quality func-
tions an optimistic estimate of a subgroup s can be speci-
fied. This approximation describes an upper bound for the
quality, that any refinement of s can have.
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If the optimistic estimate of the current subgroup is below
the quality of the worst subgroup of the k best subgroups
obtained so far, then the current branch of the refinement tree
can be safely pruned. More formally, an optimistic estimate
oe of a quality function q is a function such that s′ ⊆ s →
oe(s) ≥ q(s′), i.e., that no refinement of subgroup s can
exceed the quality oe(s).

Graphs

A graph G = (V,E) is an ordered pair, consisting of a
finite set V which consists of the vertices/nodes, and a set
E of edges, which are two element subsets of V . A directed
graph is defined accordingly: E denotes a subset of V × V .
We write (u, v) ∈ E in both cases for an edge belonging to
E and freely use the term network as a synonym for a graph.
The degree of a node in a network measures the number of
connections it has to other nodes. For the adjacency matrix
A ∈ R

n×n of a set of nodes S with n = |S| of a graph
G = (V,E) holds Aij = 1 iff (i, j) ∈ E for any nodes i, j
in S (assuming some bijective mapping from 1, . . . , n to S).

Community Quality Measures

The concept of a community can be intuitively defined as
a group C of individuals out of a population U such that
members of C are densely “related” one to each other but
sparsely “related” to individuals in U \ C. This concept
transfers to vertex sets C ⊆ V in graphs G = (V,E)
where nodes in C are densely connected but sparsely con-
nected to nodes in V \ C. For a given graph G = (V,E)
and a community C ⊆ V we set n := |V |, m := |E|,
nC := |C|, mC := |{(u, v) ∈ E | u, v ∈ C}|, mC :=
|{(u, v) ∈ E | u ∈ C, v �∈ C}| and for a node u ∈ V its
degree is denoted by d(u). Different evaluation functions
f : P(V ) → R for modeling the intuitive community con-
cept exist, e. g., (Leskovec et al. 2008).

CON (C) =
mC

2mC +mC

= 1−
2mC∑
u∈C d(u)

(1)

In the context of this paper, we focus on maximizing local
quality functions for single communities. The conductance
CON compares the links between to the links within com-
munities and is closer to zero for communities with higher
quality: Therefore, in the following we consider the inverse
conductance COIN (C) = 1− CON (C)).

The modularity focuses on the number of edges within a
community and compares that with the expected such num-
ber given a null-model (i.e., a randomized model). The mod-
ularity MOD(S) of a set of nodes S and its assigned adja-
cency matrix A ∈ N

n×n is given by

MOD(S) =
1

2m

∑
i,j

(
Ai,j −

d(i)d(j)

2m

)
δ(Ci, Cj) , (2)

where Ci is the cluster to which node i belongs and Cj is
the cluster to which node j belongs; d(i) and d(j) denote
i and j’s degrees respectively; δ(Ci, Cj) is the Kronecker
delta symbol that equals 1 iff Ci = Cj , and 0 otherwise.

The local modularity for a single community C can be
computed as:

MODL(C) =
1

2m

∑
i∈C,j∈C

(
Ai,j −

d(i)d(j)

2m

)
.

Networks in Social Bookmarking Systems

In the following, we summarize three interaction networks
that are provided by the BibSonomy system. All of these
are typically also found in other resource sharing and social
applications.

• The Friend-Graph GF = (VF , EF ) is a directed graph
with (u, v) ∈ EF iff user u has added user v as a friend.

• The Click-Graph GC = (VC , EC) is a directed graph
with (u, v) ∈ EC iff user u has clicked on a link on the
user page of user v.

• The Visit-Graph GV = (VV , EV ) is a directed graph with
(u, v) ∈ EV iff user u navigated to v’s user page.

We refer to (Mitzlaff et al. 2010) for more details on the
networks and a discussion concerning their application for
community mining and assessment.

Related Work

Fortunato (Fortunato and Castellano 2007) discusses various
aspects connected to the concept of community structure in
graphs. A community detection method for a folksonomy is
presented in (Kashoob, Caverlee, and Kamath 2010). Using
a metric which is purely based on the structure of graphs,
Newman presents algorithms for finding communities and
assessing community structure in graphs (Newman 2004).
(Adnan, Alhajj, and Rokne 2009) present an approach for
community detection based on features identified by fre-
quent pattern mining not considering the network structure.

In contrast to the approaches mentioned above, the pro-
posed method integrates the information from both the net-
work and other descriptive information, e.g., tags or top-
ics describing the nodes contained in the network. The
presented method focuses on the characterization and de-
scription of communities; it directly searches for the top k
descriptive communities according to standard community
evaluation measures. Therefore, the method is goal-directed
by considering both the network (links) and the descriptive
information for community mining.

Optimistic estimates for efficient knowledge discovery
have been discussed, e.g., by (Wrobel 1997; Grosskreutz,
Rüping, and Wrobel 2008) in the context of subgroup dis-
covery. To the best of the authors’ knowledge, no descrip-
tive community mining approach applying such branch-and-
bound methods has been proposed so far. A first approach
for the characterization and description of communities was
introduced in (Atzmueller et al. 2009), focussing on the
description of spammers in the social bookmarking system
BibSonomy. The proposed methods extends this using op-
timistic estimates for efficiently searching the description
space while directly optimizing the community measures on
the given network structure at the same time.
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Mining Descriptive Community Patterns

In an intuitive sense, community mining is concerned with
the identification of subgroups of users that are more densely
connected internally than to other groups. Hence, subgroups
and communities are rather similar, and we will use the
terms interchangeably whenever we are referring to com-
munities (e.g., users), either represented by a set of edges or
nodes contained in a graph or dataset, respectively.

Overview

For the characterization of the communities, we consider a
database DB containing records that describes a set of users,
e.g., using topics the user is interested in, see Table 1 for
some examples. Additionally, we consider links between
the users modeled in a graph G, e.g., friendship links.

Database

Pattern Mining

Data

Integration

& Merge
Community

Pattern Set

Presentation,

Application

Graph dataset

Figure 1: Overview on the presented aproach

For pattern mining we need a consolidated data represen-
tation. Therefore, we apply a data integration and merge
step for obtaining a (flat) graph dataset, i.e., a dataset de-
scribing the nodes and edges in the graph. This dataset is
constructed in a special way as outlined below. Using this
new dataset, we apply the proposed pattern mining method
utilizing optimistic estimates (of the standard quality func-
tions) for pruning in order to provide an efficient approach.
After the set of the k best community patterns has been ob-
tained, it is ready for application, e.g., for presentation to
the user for inspection, or for automatic approaches such as
user recommendation or personalization of services. The ap-
proach is sketched in Figure 1. In the following, we discuss
the data integration and pattern mining steps in detail.

Data Integration

Our goal is to discover the k best communities described by
the attributes of the database DB , that maximize a commu-
nity evaluation function with respect to G. Considering the
DB and G, it is easy to see that both consider individual
nodes, i.e., users. However, the community evaluation mea-
sures focus on the edges, i.e., the connections between the
nodes in order to assess the community qualities

Therefore, we merge the two data sets into a single data
set containing the connecting edges between the contained
nodes that are constructed in a special way: Each data record
represents a connecting edge between two nodes of the net-
work. The attribute values of each such data record are then
given by the intersection of the (non-default) attribute values

of each node that is connected by the corresponding edge.
For example, considering tags corresponding to binary at-
tributes we only consider the true values of each attribute,
e.g., indicating that a tag or a topic was applied by both users
represented by the given nodes. The rationale behind us-
ing the intersection is based on the observation, that an edge
(and its two nodes) can only contribute to a community de-
scribed by a certain attribute value, if this respective attribute
value is contained in the data records of the two nodes.

The edge data record also stores the contributing nodes
and their respective degrees. Then, only using the number of
edges contained in the community mC , the total number of
edges, and the respective node degrees d(i) of the nodes i ∈
C of the community, the local modularity for a community
C can be directly computed as follows:

MODL(C) =
1

2m

∑
i∈C,j∈C

(
Ai,j −

d(i)d(j)

2m

)
=

=
1

2m

∑
i∈C,j∈C

Ai,j −
∑

i∈C,j∈C

d(i)d(j)

4m2
=

=
1

2m
2mC −

∑
i∈C,j∈C

d(i)d(j)

4m2
=

=
mC

m
−

∑
i∈C,j∈C

d(i)d(j)

4m2

Conductance can similarly be calculated using only the
parameters mentioned above, cf., Equation 1.

For subgroup discovery, we are interested in maximizing
the given quality function, which works well for the mod-
ularity while conductance is closer to zero for communities
with higher quality. Therefore, from now on we consider the
inverse conductance (COIN ) instead of the conductance,
for maximizing the quality values.

COIN (C) = 1− CON (C) =
2mC∑
u∈C d(u)

Optimistic Estimates for Community Mining

In the following we introduce optimistic estimates for typi-
cal community evaluation functions, i.e., for the introduced
inverse conductance and for the local modularity.

Modularity An optimistic estimate for the local modular-
ity can be derived based on the number of edges mC within
the community:

oe(MODL(C)) =

{
0.25, if mC ≥ m

2
,

mC

m
−

m2

C

m2 , otherwise.

Proof We start with a reformulation of the modularity. An
optimistic estimate can then be derived considering the num-
ber of edges mC within the community. Also, note that∑

i∈C d(i) = 2mC + mC , considering the degrees d(i) of
the nodes i contained in a community C.
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Method(s) Community description

Conductance {work, flickr, delicious}, {university, bib, surabaya}, {php, web, internet}, {internet, all, emulation}
Modularity {php, web, internet}, {innovation, business, forschung}
Conduct./Modularity {work, flickr, delicious}

Table 1: Example for descriptive community patterns: Three of the top ranked subgroups/communities according to conduc-
tance and modularity together with their respective topic description, using the friend-graph data described in the evaluation
below. The rows show the different communities, consisting of several topics as sets of tags in the rows of the table.

MODL(C) =
mC

m
−

∑
i∈C,j∈C

d(i)d(j)

4m2
=

=
mC

m
−

1

4m2

∑
i∈C

d(i)
∑
j∈C

d(j) =

=
mC

m
−

1

4m2

∑
i∈C

d(i)(2mC +mC) =

=
mC

m
−

1

4m2
(2mC +mC)

2 ≤

≤
mC

m
−

1

4m2
(2mC)

2 =
mC

m
−

m2

C

m2
=

= ôe(MODL(C)).

Note that the optimistic estimate is only dependent on
mC , i.e., the number of edges covered by the community
s. Therefore, every subgroup s∗ ⊆ s that is a refinement of
s will cover at most mC edges.

The function ôe(MODL(C)) is a concave function since
its derivative function

ôe(MODL(C))′ =
1

m
−

2mC

m2

is monotonically decreasing. Therefore, the function has one
maximum, at point m

2
, for m �= 0.

We consider two cases: If mC ≥ m
2

, then the maximal
modularity can be obtained at point m

2
. Otherwise, for all

mC < m
2

, ôe(MODL(C)) is decreasing in mC , and thus
ôe(MODL(C)) is an optimistic estimate for MODL(C).
This concludes the proof. �

Inverse Conductance For the inverse conductance, we
need to consider a minimal support threshold Tn w.r.t. the
community size (number of nodes) when computing the op-
timistic estimate:

oe(COIN (C)) = 1−

∑Tn

i=1
d(i)∑

u∈C d(u)

where d(i) are the outgoing degrees of the nodes contained
in the community C, sorted in ascending order, such that

d(i), i = 1 . . .Tn denotes the minimal Tn outgoing degrees
of connected nodes contained in the community C.

Proof

COIN (C) =
2mC∑
u∈C d(u)

=

=

∑
u∈C d(u)−mC∑

u∈C d(u)
=

= 1−
mC∑

u∈C d(u)
≤

≤ 1−

∑Tn

i=1
d(i)∑

u∈C d(u)

= oe(COIN (C)).

As shown above, for a fixed mC it follows that
oe(COIN (C)) ≥ COIN (C). Since every subset C′ ⊆ C
will cover at most mC edges and the numerator of the last

term (
∑Tn

i=1
d(i)) is the minimum considering the outgoing

edges for a minimal size of Tn , oe(COIN (C)) is an opti-
mistic estimate of COIN (C). �

The optimistic estimate can be efficiently computed by
traversing the set of nodes and collecting the outgoing node
count for each node considering the endpoints of the edges.

Algorithmic Issues

For mining community patterns, we apply the COMODO al-
gorithm. COMODO is an adaptation of the SD-Map* algo-
rithm (Atzmueller and Lemmerich 2009) and applies a spe-
cial data structure, i.e., an adapted frequent pattern tree (FP-
tree), cf., (Han, Pei, and Yin 2000), containing extended in-
formation for efficiently mining community patterns. The
FP-tree data structure can be regarded as a compressed data
representation for the set of instances. COMODO utilizes the
FP-tree structure (built in two scans of the database) to ef-
ficiently compute quality functions for all subgroups. If all
the necessary information is compiled into the tree structure,
then the community evaluation measures can be evaluated
locally at each node: Thus, we essentially need to store all
the appropriate information within the FP-nodes of the FP-
Tree. The FP-tree contains the frequent FP-nodes in a header
table, and links to all occurrences of the frequent selectors
in the FP-tree structure. In this way, the parameters (of com-
binations) of selectors can be easily retrieved. Due to the
limited space we refer to Han et al. (Han, Pei, and Yin 2000)
for more details on FP-trees.

To efficiently compute the community evaluation func-
tions together with their optimistic estimates for the commu-
nity mining context COMODO stores additional information
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in the FP-nodes of the FP-Tree, depending on the used qual-
ity function. Each FP-node of the FP-Tree captures informa-
tion about aggregated edge information concerning the data
base DB and the respective network. For each node, we
store the following information:
• The selector corresponding to the attribute value of the

FP-node. This selector describes the subgroup (given by
a set of edges) covering the FP-node.

• The edge count mC of the (partial) community repre-
sented by the FP-node, i.e., the aggregated count of all
edges EC = {(u, v) ∈ E : u, v ∈ C} that are accounted
for by the FP-node and its selector, respectively.

• The set of nodes VC = {u : (u, v) ∈ EC , u ∈ C, v ∈ C}
that are connected by the set of edges EC of the FP-node.
The presented optimistic estimates enable efficient prun-

ing strategies for determining upper bounds for the commu-
nity evaluation measures. Applying these, COMODO can re-
order, sort, and prune the current hypotheses during search
for the top k patterns. During the traversal of the tree, and
the refinement of the hypotheses (descriptions), all FP-nodes
with an optimistic estimate below the minimal quality con-
tained in the k best solutions so far can be pruned.

The result of the COMODO algorithm for mining descrip-
tive community patterns is the set of the top k patterns
according to the applied community evaluation function.
These top k patterns directly correspond to different com-
munities described by the respective patterns. Thus, the pro-
posed (exhaustive) method guarantees that the top k com-
munities are discovered, that can be represented using the
given description space.

Evaluation
In the following, we first describe the data used for the evalu-
ation. We used publicly available data from the social book-
mark and resource sharing system BibSonomy. After that,
we present the conducted experiments and discuss the ex-
perimental results.

Evaluation Data and Setting

Our primary resource is an anonymized dump of all pub-
lic bookmark and publication posts until January 27, 2010,
from which we extracted explicit and implicit relations, cf.
Table 2 for an overview.

The dump consists of 175,521 tags, 5,579 users, 467,291
resources and 2,120,322 tag assignments. The BibSonomy
dump also contains friendship relations modeled in BibSon-
omy concerning 700 users. Furthermore, we obtained data
extracted from the “click log” of BibSonomy, consisting
of entries which are generated whenever a logged-in user
clicked on a link in BibSonomy, and the Apache log entries.

Before performing the experiments, we applied latent
dirichlet allocation (LDA) (Blei, Ng, and Jordan 2003) for
data preprocessing, since using conjunctive community de-
scriptions is very difficult using the whole set of tags since
the respective data is rather sparse. Furthermore, there are
several issues when utilizing the (raw) set of tags directly,
e.g., relating to many synonyms, writing variations, and hi-
erarchical dependencies between tags that need to be han-
dled appropriately in order to get more meaningful results.

GV (Visit) GC (Click) GF (Friend)

|Vi| 3381 1151 700
|Ei| 8214 1718 1012
|Vi|/|U | 0.58 0.20 0.12

Table 2: High level statistics for all relations where U de-
notes the set of all users in BibSonomy.

LDA builds topics, as interpretable tag clusters, i.e., for ob-
taining descriptive topic consisting of associated sets of tags.

A user u is thus represented as a vector �u ∈ R
T ′

in the topic
vector space, where T ′ 	 T is the number of topics. We
applied datasets containing 100 (LDA-100) and 500 (LDA-
500) topics each for the user – tag/topic relations.

Results and Discussion

During our experiments, we could directly observe the prun-
ing potential provided by the proposed optimistic estimates.
The significant reduction of the search space using the op-
timistic estimate functions is shown in Table 3. The table
shows the reduction concerning the steps/hypotheses during
the mining process using the optimistic estimates for local
modularity and conductance. For the LDA-100 dataset the
unpruned search space contains about 7.74 ·108 steps for the
friend graph, and about 7.94 ·108 steps for the visit and click
graphs. For the LDA-500 dataset, the search space contains
about 3.6·108 steps for the friend graph and about 2.45·1010

steps for the click and visit graphs. It is easy to see, that the
optimistic estimates enable an efficient and tractable mining
approach with significant pruning options.

While the optimistic estimate for local modularity enables
a significant pruning at a very low minimal support level,
i.e., for about 1% (support count Tn = 5), the optimistic
estimate for (inverse) conductance enables the pruning at
higher support levels, e.g., Tn ≥ 10 similar to a 2% sup-
port level.

This can be explained by the fact that the local modular-
ity (and its optimistic estimate) gives more importance to
the size of the community (relating to the number of edges
that are contained in the community), while the conductance
only considers the fraction of the edges in and the edges
leaving the community. In this way, very small communities
can also obtain a high quality value according to the conduc-
tance, if the minimal support threshold is reached. This is
especially relevant for LDA-100 and for denser graphs, e.g.,
the visit graph, cf. Table 2 for its characteristics. We also in-
vestigated the impact of the minimal support threshold com-
pared to the combination with optimistic estimate pruning

GF GC GV

L100 L500 L100 L500 L100 L500

MODL 76.4 71.4 83.8 74.8 82.3 72.5
COIN 75.1 70.0 81.8 73.7 82.6 72.6

Table 4: Mean cosine-similarities (in percent) of the top 25
communities discovered by COMODO (Tn = 20) given by
the means of the respective pairwise node similarities.
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Reduction in steps: Pruning with optimistic estimates of local modularity and iconductance
GF GC GV

MODL COIN MODL COIN MODL COIN

method Tn = 5 Tn = 10 Tn = 20 Tn = 5 Tn = 20 Tn = 50 Tn = 5 Tn = 50 Tn = 70
L100-K25 99.99 37.60 99.25 99.99 93.80 99.99 99.99 73.13 99.80
L100-K50 99.96 36.80 99.17 99.98 92.70 99.99 99.98 72.65 99.76
L100-K100 99.58 35.98 98.20 99.97 90.95 99.99 99.94 72.60 99.70
L500-K25 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
L500-K50 99.98 99.98 99.99 99.99 99.98 99.99 99.99 99.99 99.99
L500-K100 99.98 99.97 99.99 99.99 99.97 99.99 99.99 99.99 99.99

Table 3: Impact of optimistic estimate pruning for local modularity and iconductance (Pruned steps in percent). Lx-Ky denotes
the LDA-x dataset and the y top communities, for different support counts (Tn ). 99.99% of the steps are pruned, for example,
using the optimistic estimate for local modularity for the LDA-100 dataset concerning the 25 top communities with Tn = 5.

for the conductance quality function in more detail: As ex-
pected, the results indicate that the conductance optimistic
estimate pruning enable a significant gain in pruning perfor-
mance, after pruning with minimal support thresholds, even
for larger ones. Considering the friend graph, for example,
for a minimal support threshold Tn = 10 we could observe
a boost from 9.60% to 37.60%, and from from 87.80% to
93.80%, for the click graph with Tn = 20, respectively.

Furthermore, we obtained the mean pairwise cosine-
similarities, e.g., (Salton 1989), of the nodes contained in
the communities for the different networks, and measures,
cf., Table 4, according to the set of assigned topics. As
expected, the similarity values for the LDA-100 dataset are
higher than the ones for the (sparser) LDA-500 dataset. The
results indicate a high similarity for users in the discovered
communities, evidencing good community structure.

Conclusions

In this paper, we have presented an approach for mining de-
scriptive community patterns: We discussed the descriptive
setting and described how to efficiently perform the mining
using optimistic estimates for standard community evalua-
tion functions. The presented approach was evaluated using
data from the social bookmarking system BibSonomy.

For future work, we aim to apply the proposed method on
more (diverse) evidence networks. Additionally, we aim to
analyze and compare further community quality functions
regarding their impact and pruning potential.
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