
Extending Case-Based Planning with Behavior Trees ∗

Ricardo Palma†, Pedro A. González-Calero, Marco A. Gómez-Martı́n and Pedro P. Gómez-Martı́n
rjpalma@estumail.ucm.es, {pedro,marcoa,pedrop}@fdi.ucm.es

Dpto. Ingenierı́a del Software e Inteligencia Artificial
Facultad de Informática, Universidad Complutense de Madrid

C/ Prof. José Garcı́a Santesmases, s/n
28040-Madrid (Spain)

Abstract

The combination of learning by demonstration and
planning has proved an effective solution for real-time
strategy games. Nevertheless, learning hierarchical
plans from expert traces also has its limitations regard-
ing the number of training traces required, and the ab-
sence of mechanisms for rapidly reacting to high prior-
ity goals. We propose to bring the game designer back
into the loop, by allowing him to explicitly inject deci-
sion making knowledge, in the form of behavior trees,
to complement the knowledge obtained from the traces.
By providing a natural mechanism for designers to in-
ject knowledge into the plan library, we intend to inte-
grate the best of both worlds: learning from traces and
hard-coded rules.

Introduction

Real-time strategy (RTS) games are very demanding in
terms of AI complexity. They require fast pathfinding algo-
rithms for moving large numbers of units through extensive
levels, which need to be manually or procedurally annotated
with tactical information. Regarding decision making, RTS
games require a multi-tiered AI approach, with decisions
made at a low level for individual characters, at an inter-
mediate level for a formation of characters, and at the high
level for reasoning about an entire team in the game. Usu-
ally simple techniques, such as state machines, are used for
low level decision making, while some form of rule-based
system is the most common approach for decision making
at higher levels (Millington and Funge 2009).

Building a rule-based system for decision making at the
tactical and strategic level of an RTS game is a complex
task for game designers. In order to alleviate this author-
ing effort, there is an open line of research on the automatic
acquisition of decision making knowledge for RTS games
from recorded traces of human experts playing the game.
Such approaches, through the application of machine learn-
ing techniques, seek to make possible a form of program-
ming by demonstration, where the human author shows the

∗Supported by the Spanish Ministry of Science and Education
(TIN2009-13692-C03-03).

†Currently under grant from Obra Social Fundación “la Caixa”.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

game AI how to play the game. One way to accomplish
this is to automatically extract sequences of expert actions as
plans for later reuse. A case-based planning (CBP) system
maintains a library of plans, a plan base, where a plan used
for a situation in the past can be retrieved to be re-applied in
a similar situation, possibly after some adaptation.

On-line case-based planning (OLCBP) (Ontañón et al.
2010) has been proposed as an extension to CBP for those
domains, such as RT games, where plan generation and ex-
ecution need to be interleaved in order to react to a partially
observable changing environment. Plans need to be moni-
tored in order to be discarded whenever the plan execution
engine detects that a given plan can not possibly success and
a new one must be devised. In such a situation, OLCBP ex-
pands the CBP cycle to include plan execution monitoring,
while postponing plan expansion and adaptation.

The combination of learning and hierarchical case-
based planning has proved an effective solution for RTS
games (Ontañón et al. 2009). Nevertheless, learning hier-
archical plans from expert traces also has its limitations. A
game AI generated by an expert playing the game may only
be as good as the recorded traces, which may contain “holes”
in those areas where not enough training has been provided.
Identifying and selectively providing training examples to
fill such holes may prove a difficult task. Moreover, in some
situations, exemplified in this paper, OLCP may fail to react
adequately to the changing situations in a RTS games, stub-
bornly sticking to a plan when a higher priority goal should
be taking its attention, or hastily discarding a plan when a
concrete non-essential action fails.

In order to solve these problems, this paper proposes to
bring the game designer back into the loop, by allowing
him to explicitly inject decision making knowledge to com-
plement the knowledge obtained from the traces. Behavior
trees are the technology of choice for representing decision
making knowledge in commercial videogames. They can be
built both by programmers and designers, and provide the
capability of reacting to more urgent goals that hierarchical
planning lacks of. By providing a natural mechanism for de-
signers to inject knowledge into the plan library, we intend
to integrate the best of both worlds: learning from traces and
hard-coded rules.

The rest of the paper runs as follows. First two Sec-
tions briefly describe the two technologies we propose to

407

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



integrate: hierarchical case-based planning and BTs. Next
Section describes the main issues we have identified in CBP
systems for games. The next two Sections describe the pro-
posed solution, integrating CBP and BTs, along with de-
tailed examples of their use and the architecture required
to support it. The final Section presents related work and
concludes the paper.

On-line Case-based Planning

On-line case-based planning (OLCBP) systems (Ontañón et
al. 2010) suitable for RTS games are based on a three step
process:

• Case acquisition: a human expert plays the game mul-
tiple times, and traces are generated containing detailed
descriptions of all the events produced throughout each
session.

• Plan extraction: traces are analyzed to extract plans. De-
pending on the capacities of the system, this stage may
require the supervision of an expert.

• Plan execution: once traces have been processed and
stored as plans, they are used to play the game using the
on-line case-based planning cycle.

Traces store, among other data, sequences of the domain
dependent basic actions that were carried out during the
game. They are manually or automatically analysed after-
wards in order to create a hierarchy of goals that will be
used in the next step. The analysis provides groups of ac-
tions that, when executed (in sequence or in parallel), pursue
a common goal. This process is generalised in order to find
higher-level goals composed of subgoals that will be decom-
posed into basic actions, creating the previously mentioned
goal hierarchy. The most general goal will be something
like WinGameGoal, that would be decomposed, for exam-
ple, into DefeatEnemy, HaveGoliath, etc. They will be af-
terwards broken down into more subgoals and, eventually,
into basic actions such as Move or AttackEnemy.

The goal hierarchy is afterwards split to store each node
and its direct successors (actions or subgoals) as indepen-
dent plans. When comparing with Hierarchical Task Net-
works (HTN) (Erol, Hendler, and Nau: 1994), goals play
the role of tasks and plans are similar to methods.

Plans are stored in a case base indexed both by the goal
they pursue and the game state when the expert put them
into practice. Plan execution consists of iteratively retriev-
ing plans to fill open goals (those that should be executed
but have not been expanded yet) until specific actions are
reached (leaf nodes). These actions will be returned to the
game to be executed by the AI player.

In RTS games, primitive actions are not atomic, so they
could take some time to finish or even could fail. In order for
the CBP system to track the actions execution, they may be
enriched with conditions inspired by ABL (Mateas and Stern
2002): alive conditions of an action are those that must be
satisfied throughout the execution of the action (otherwise,
the action should be stopped), and success conditions will
be used to determine when an action can be considered to
have correctly finished.

Behaviour Trees

The low level decision making located in the units of a strat-
egy game has traditionally used some variant of finite state
machines (FSMs). Other approaches, such as scripting lan-
guages, that allow a finer grained control of the behaviors
have also been applied, and, in the last few years, a new tech-
nique known as behavior trees (BTs) has gained momentum.
BTs can be seen as an evolution of hierarchical finite state
machines (HFSMs) that promotes behavior reuse by replac-
ing the explicit state transitions with predefined procedural
mechanisms that allow computing the next state.

Though BTs were initially proposed as a tool for program-
mers, they are also used by professional game designers to
create the behaviors of the entities from scratch (Isla 2008;
Krajewski 2009). One of the key points is that, as FSMs,
BTs open up the possibility of developing tools for creating
and editing behaviors with a graphical user interface. A BT
is a hierarchical structure where every node can be seen as
a behavior. While an inner node is a composite behavior,
leaves in the tree represent concrete actions to be performed
in the virtual environment. In both cases, the execution of
the behavior represented by the subtree (or leaf) may suc-
ceed or fail. At that moment, the parent node of the finished
behavior takes the control of the execution and reacts ac-
cordingly.

BTs designers have a set of inner nodes that can be used
to create complex behaviors. The simplest one is known as
sequential node (depicted as an arrow in Figure 3), which
is composed of a set of children that are executed sequen-
tially; if all of them can be successfully accomplished, the
complete behavior succeeds, failing otherwise. A different
strategy is taken by the selector node (depicted as a ques-
tion mark in Figure 3), that tries to execute sequentially its
children and it succeds when one of them is executed suc-
cessfully and terminates with failure when none of them can
be accomplished.

In order to promote reusability, behaviors do not include
conditions that lead to transitions, but they can be labelled
with a guard or condition that must be true for the behavior
to be activated. The inner node known as the static priority
list allows the designer to label every child with a condition.
Prior to the execution of the children, the node evaluates the
guard and it launches the child only if the guard is true. Oth-
erwise, it tries with the next child. If no guard is satisfied, the
complete behavior fails. Otherwise, the result of the node is
the result of the first child whose guard is true. A variant of
this inner node is the dynamic priority list where even when
a child behavior has already been selected and its execution
has started, the guard of the remaining siblings are continu-
ally checked against the world state. Whenever one of them
becomes true, the current child behavior is aborted and the
higher priority child starts executing.

BTs may be seen as goal structures that represent how
high-level goals can be decomposed into lower level ones.
In this sense, BTs resemble HTNs, although their purpose
is totally different. While HTNs are used to generate plans,
BTs are used to store hand-written plans. BTs can be seen
as and-or trees that store a set of plans that a game entity can
follow to obtain its goals.

408



Issues of Case-based Planning in Games

We have identified three main problems in OLCBP systems:
poor reactivity at the plan level, an excessive reactivity at the
action level, and the difficulty in fine-tunning these learning
by demonstration systems to solve the first two issues. We
exemplify these problems in the StarCraft game controlled
through Darmok (Ontañón et al. 2007), the reference imple-
mentation of an OLCBP system.

Regarding the first one, an OLCBP system presents a
problem of reactivity. It builds a global plan by extracting
subplans from its case base, finally reaching low level ac-
tions to be sent to the game engine. In long term scenar-
ios (macro-management), these low level actions are good
enough to make the plan evolve successfully. However,
when these low level actions are to be changed or even
aborted due to quick changes in the world, the fact that the
system sticks to them deteriorates its performance: as long
as the alive conditions of the actions remain true, the plan
will keep running, even if some recent event suggests that
the actions should be cancelled or modified. This is in part
due to the way the OLCBP learns plans from the traces it
processes. If it had learnt better structured plans, it could
create more complex plans for every low level action. How-
ever, this would require not only much more traces, but also
a vast effort from the expert. Unfortunately, the reactivity of
such plans would still be compromised, since the execution
model does not rethink plans unless they fail.

This problem is specially important when single units
have to be controlled in a low level fashion. When a unit
is given an order (low level action) from the plan, it may
be the case that, while performing it, it should be somehow
modified due to some events observed in the world. It is
easy to find such situations in games like StarCraft. For in-
stance, many StarCraft units have special abilities, which is
the case of high templars. High templars are able to cast
psionic storms on specific positions. A psionic storm is just
a spell that occupies a small area of the map and causes great
damage to the units under it.

When Darmok orders a high templar to cast a psionic
storm on {X,Y } (it issues the CastPsionicStorm action),
the high templar will just go there and cast the storm. Since
Darmok has carried out a previous adaptation step, {X,Y }
is likely to be a position similar to that of the original traces,
which would usually be a region containing many enemy
units and almost no ally units (in order for the storm not
to kill ally units). However, as the high templar moves to
{X,Y }, the enemy units could have moved around, mak-
ing casting the storm totally useless, since no enemy unit
would be damaged. What is more, if many ally units had
moved to {X,Y }, they could get destroyed by the storm. In
such cases it would be convenient for the templar to care-
fully think about the area on which he has been told to cast
the storm. This problem could be solved by just adding a
new alive condition to the action so that, if the reached posi-
tion were not suitable for the storm any more, then the action
would get cancelled.

Nevertheless, the idea behind OLCBP is to learn through
examples, with as little domain knowledge as possible. In
order for OLCBP to be very reactive, it should define count-

less alive conditions modelling all these scenarios, which
would greatly increase the effort put when gathering the do-
main knowledge. If, for instance, the high templar had to run
away from an eventual source of danger (in order not to get
killed), new alive conditions should be defined accordingly
for the CastPsionicStorm action.

On the other side of the spectrum, when thinking at the
action level instead of the plan level, OLCBP systems en-
counters some situations in which they do not perform ade-
quately due to an overly reactive behaviour. When Darmok
learns plans from the traces it is fed, it may be the case that
some of the learnt plans do not have a proper structure. This
problem is in part related to the execution model of Darmok.
Darmok associates plans to goals. When one of the individ-
ual actions or subplans the main plan is composed of fails,
the main plan also fails and Darmok discards it, marking its
goal as open again. As a result, Darmok will try to find a
different plan for that goal, then run it.

There are scenarios in which this behaviour does not pro-
vide a good outcome. For example, if a goal DefeatEnemy
is used to destroy all the enemy’s units, plans for that goal
will be composed of many actions or subplans, all of them
with the purpose of destroying the enemy. In the middle of
a battle, however, units are expected to fail their intended
actions, since in a battle many situations arise that will pre-
vent them from completing their tasks (e.g., they may get
killed). Hence, in these cases, Darmok will always keep fail-
ing whatever plans it retrieves for the goal DefeatEnemy, due
to the continuous failure of individual actions or subplans.
In the end, after retrieving and failing several plans, Darmok
ends up doing something that somehow makes sense, but of
course the quality of the solution is not good at all. This is
in fact the main reason why Darmok is not good at battles,
usually needing to have twice as many units as the enemy
does in order to defeat him (Ontañón et al. 2010).

Finally, it should be noted that OLCBP for strategy games
may require a lot of effort to refine the case base. If an expert
detects the lack of a reaction in the case base, he should pro-
vide a new plan to be learnt. Unfortunately, the only way of
doing so is by playing a game emulating the very particular
scenario, which may be very difficult due to the complexity
and randomness inherent in strategy games.

Extending Case-based Planning with BTs

Our contribution is to use BTs to overcome the problems
described in the previous Section. Firstly, since they let the
designer define behaviours at a very low level, complex sce-
narios can be easily modelled (designers are used to mod-
elling complex behaviours). Secondly, they can be used to
model low level actions. Finally, they can be used to model
plans for goals in situations where it is convenient to have a
better control.

We have extended the OLCBP architecture by means of a
tactical layer based on behaviour trees, which is in charge of
managing some low level actions and specific goals. When-
ever the OLCBP issues a low level action or a goal, a de-
cision is made about whether it is convenient for it to be
managed by a behaviour tree; the main idea is to provide be-

409



haviour trees that, in some scenarios, are expected to behave
appropriately as substitutes for low level actions or goal.

Tactical Layer for Low Level Actions

In traditional OLCBP systems, low level actions fired by
them are directly performed by the game API. In order to
have a better control over them, we propose to use BTs to
implement them. Initially, it may be thought that for every
type of action, such as AttackEnemy or Move, there could
be a BT implementing it. These would be action-oriented
BTs, that is, BTs that pursue a particular goal (the action it-
self), but also with the ability to change the overall behavior
if needed. This is just what we explained above: when a unit
is given some order, it should stick to it, but it should also be
able to change its behavior in certain cases. However, it is
not a realistic approach to expect a single BT to behave prop-
erly when controlling one kind of action (for instance, the
AttackEnemy or Move actions above) in every possible sce-
nario. Our approach proposes to have several BTs for each
kind of action. These BTs are stored in a BT library created
by designers. Every BT has the same result as the primitive
action it is related to and it is labelled with a world descrip-
tion where this BT is expected to behave better. When the
tactical layer receives the primitive action that OLCBP sys-
tem want to execute, it use the BT library to check whether
for that particular game state a suitable BT exists. In order to
make this choice it uses CBR similarity measures described
by (Flórez-Puga et al. 2009). Therefore, at run time, the tac-
tical layer checks the similarity between the current game
state and the states provided by all the trees for that kind of
action, and the tree with the closest game state gets selected.
In case no BT can be retrieved (for instance, if the closest
BT is not close enough to a pre-established threshold), the
resulting a BT is one with just the basic action on it.

Figure 1 shows how this architecture is actually imple-
mented. For every action Darmok issues, our tactical layer
processes it. The tactical layer requests an external BT Base
to provide a BT to manage the action. Depending on the
type of the action, the BT Base retrieves a set of potential
BTs (those designed for that type of action); then, it com-
pares the current game state to those of the BTs in the set,
and the closest one is returned. This BT then is inserted
into the BT interpreter that manages the collection of all the
BTs currently in execution and is the layer that comunicates
with the game. In case a BT could not be retrieved from the
BT Base, the low level action is transformed in the simplest
possible BT with just a leaf node with that action.

As reveals Figure 1, both the tactical layer and the BT
intepreter have the game state available in order to have a
richer control over what is going on in the game. Finally,
we should mention that this extension to the OLCBP archi-
tecture does not need to modify the OLCBP system. By
contrast, as we are about to describe, our next extension for
managing goals will require some changes on them.

Tactical Layer for High Level Goals

In those cases where Darmok has not been able to learn ef-
fective plans for some goals, BTs may be used as an alter-
native. The idea is similar to that of low level actions; BTs

���������	�
��

�����

���������

�������

����������������

�������������������

������������ ������������

����

�������
�������
����������������

 ���������

�����!����

"	#� 

���������������$��������

Figure 1: Low level tactical layer

are built by an expert. These BTs contain a description of
the game state specifying when it is appropriate to use them.
When a BT is retrieved for a particular goal, it will be the
tree itself, along with the tactical layer, that will manage the
original goal.

Figure 2 shows the architecture of the tactical layer at a
high level. Initially, OLCBP proceeds as normal. However,
when a goal is detected within a plan, the expansion module
checks if that goal must be managed by a BT. In order to
perform this check, Darmok asks the BT Base, just the same
way as in the low level action scenario. If the BT Base can
retrieve a BT for the current game state and goal, the current
goal (Goal 3 in the figure) is replaced by a BT Plan, and the
BT is marked to be sent out. A BT Plan is just a Darmok plan
whose execution is not managed by Darmok, but by an ex-
ternal BT (as far as Darmok is concerned, it does not matter
whether the plan is managed outside, as long as it provides
the same interface as that of a standard Darmok plan). This
way, at every game cycle, Darmok does not only issue low
level actions (to be processed as described in the previous
Section), but also BTs to be run by the tactical layer (they
are inserted into the BT interpreter). In case a BT cannot be
retrieved from the BT Base, Darmok proceeds as usual, that
is, it expands the goal by retrieving from the case base a plan
for it. Figure 2 corresponds to the situation in which a BT
(called tree in the figure) can be retrieved for Goal 3.

Global Architecture

The previous subsections described how BTs can be used
to manage low level actions issued by Darmok as well as
goals. The core of the architecture is the tactical layer men-
tioned above. The tactical layer manages a pool of BTs (BT
Pool). This pool contains all the BTs currently in execution.
At every game cycle, the tactical layer gives the BTs in the
pool some time to run which in turn may provoke actual or-
ders to be sent to the game API. As far as low level action
BTs are concerned, they are terminated by the tactical layer
whenever the success or failure condition (according to the
semantics of Darmok) of the actions they represent are met,
since it is at that time when Darmok expects them to stop

410



�����

����		
	

���	� ���	��������

���	�
�	��������	�

����		
	

���	��

���	� �
��	��������	�

���
�������	���
�

�����


�	��
���������
 �!"	


���
#"
��$���	�%

&��
��'��

(

���	!
�
��
!

�
��	��

��

)���
�����
$%

��



��*
+���


�	����,����

+���!��!�	���
���
-�	$��
���
����

���,����
!���*
�����
%

��



�����
���
�
�.�����	

��*


��&�������

Figure 2: High level tactical layer

running so that it can make the global plan go on. With
respect to high-level goals, their interaction with Darmok
is made through special BT Plans. As long as they pro-
vide a way of checking their failure and success conditions,
Darmok is able to interact with them as normal. Success
conditions for these plans are those of the goal they repre-
sent. The key point here is failure conditions. In a normal
situation, the plan would be marked as failed as soon as an
individual action or subplan of it failed. In this case, how-
ever, since the whole execution of the plan is managed by a
BT, the failure condition is set by the BT itself, thus allowing
us to terminate it when we consider appropriate.

Scenario

In this Section we describe two scenarios in which our pro-
posed architecture improves Darmok. One of them is a low
level action scenario, and the other is a goal plan scenario.

Low Level Action Scenario

In the low level scenario, let us have a look at the CastP-
sionicStorm action. Figure 3 shows a BT implementing the
reactive model explained before: the high templar not only
thinks about the target position where to cast the storm, but it
also reacts to dangerous situations. As explained in previous
sections, this BT must also define a game state specifying
when it is convenient to use it. Since this is a very standard
BT, it can be used for many scenarios, but it is probably best
suited for scenarios in which both ally and enemy forces are
balanced. In such cases the high templar should try not to
damage ally units and run away in case of danger, in order
not to lose advantage.

�������
	
��
������

��
���
��������
��������

��������
��
���
���������

������������
���
����

��
������������

�

���������
�����������
���
��������

�����

����������

��������

�
��
���������

�������������
��
���
��������

Figure 3: BT for the action CastPsionicStorm

In other scenarios, for instance when the ally armies out-
number the enemy, high templars could behave more ag-
gressively or even boldly, so new behaviors could be im-
plemented by another BTs with different associated game
states.

When Darmok issues a CastPsionicStorm order, our tac-
tical layer processes it. If in the current game state both ally
and enemy forces are balanced, the BT of figure 3 could be
retrieved. If so, it would be inserted into the BT Pool for
subsequent use. If no BT could be found, the CastPsionic-
Storm action would be sent to the game API to be run right
away.

Goal Scenario

When dealing with some goals, Darmok is not expected to
behave properly. Take as an example the DefeatEnemy goal
mentioned in the previous section. When Darmok builds
plans for it, they will take the form of many low level ac-
tions, maybe organized as sequence or parallel construc-
tions. Even though these plans may look very complex, they
would share the same structure, that is, being composed of
many low level actions with almost no subplan.

Whenever an individual action or subplan fails, the whole
plan is marked as failed, and a new plan has to be found for
the goal DefeatEnemy. Since this will happen very often,
Darmok will not behave properly in this situation.

We can define BTs to handle the DefeatEnemy goal in
certain scenarios. For instance, we can build a BT to be used
in scenarios where the ally armies outnumber the enemy. It
is not our purpose to give a detailed description of what such
a BT is like, but to show how our architecture overcomes
the problem. An effective strategy in such situation consists
in just ordering all the ally units to simultaneously attack all
the enemy’s buildings and units until the enemy is destroyed.
As in the low level scenario, the BT contains a description
of the game state for the situations in which it should be

411



used. When the DefeatEnemy goal is generated in the plan
Darmok builds, Darmok’s expansion module tries to find an
appropriate BT from the BT Base, by using the current game
state and the game state associated to the tree. If the ally
armies outnumbered the enemy in the present game state,
the described BT could be retrieved and subsequently sent
out of Darmok along with the actions that it normally issues.
From then on it would be managed by the tactical layer.

Related Work and Conclusions
There is no, to the best of our knowledge, any other work
combining case-based planning and BTs. Nevertheless, this
approach can be considered as an example of a more gen-
eral AI trend of combining domain theory and empirical
data: BTs encode a partial view of the expert’s domain the-
ory, and cases in the plan library are empirical data. From
this point of view, multiple examples of integrations of a do-
main theory, usually in the form of a set of rules, and case-
based reasoning (CBR) can be found in the research liter-
ature (Prentzas and Hatzilygeroudis 2007). Some systems
take the output of a rule-based component as the input for
a case-based one, such as the one described in (Lee 2008),
a bank audit system that automatically detects abnormal, ir-
regular, risky, and violated transactions from the standards
at the first screening stage, and then applies CBR, which
scrutinizes the detected transactions and provides the pun-
ishment levels at the second stage. While other systems take
an approach, closer to the one presented here, where the out-
put of a case-based module feeds a rule-based one, such as
the system described in (Marling and Whitehouse 2001), a
medical system for Alzheimer’s Disease patients, where the
case-based module is invoked to determine whether a neu-
roleptic drug should be prescribed to a patient and if this is
so, the rule-based is invoked to select one of five drugs.

Considering BTs as a kind of planning artefact that stores
hand-written plans, we can also find related work on the
combination of case-based planning and other planning ap-
proaches. The SiN system (Muñoz-Avila et al. 2001) uses a
case-based planning algorithm that combines conversational
case retrieval with generative planning. SiN can generate
plans given an incomplete domain theory by using cases
to extend that domain theory, which is given in the form
of a planning domain. SiN can also reason with imperfect
world-state information by incorporating preferences into
the cases. While the case-based module and the domain the-
ory are independently developed in SiN, we propose a more
efficient approach by purposely developing a domain theory
to fill the holes in the empirical data.

This ongoing research still needs to be validated through
empirical evaluation. A key aspect to be evaluated is to what
extent the authoring effort of creating BTs to complement
an existing plan library can improve the effectiveness of the
result game AI.

Regarding future work, we intend to explore possible
techniques for facilitating the task of identifying those ar-
eas in the plan library that require the expert intervention.
At this point, a major drawback of the proposed approach is
that the expert needs to analyse the plan library in order to
identify those plans, sub-plans or basic actions that require

improvement. We envision a computer-assisted identifica-
tion process, where by generating traces of the AI controlled
by the plan library the system can automatically pinpoint ac-
tions and goals that usually fail as places for improvement.

References

Erol, K.; Hendler, J. A.; and Nau:, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Hammond, K. J., ed., Proceedings of the
Second International Conference on Artificial Intelligence
Planning Systems, 249–254.
Flórez-Puga, G.; Gómez-Martı́n, M. A.; Gómez-Martı́n,
P. P.; Dı́az-Agudo, B.; and González-Calero, P. A. 2009.
Query enabled behaviour trees. IEEE Transactions On Com-
putational Intelligence And AI In Games 1(4):298–308.
Isla, D. 2008. Halo 3 - building a better battle. In Game
Developers Conference.
Krajewski, J. 2009. Creating all humans: A data-driven AI
framework for open game worlds. Gamasutra.
Lee, G. H. 2008. Rule-based and case-based reasoning
approach for internal audit of bank. Know.-Based Syst.
21(2):140–147.
Marling, C. R., and Whitehouse, P. 2001. Case-based rea-
soning in the care of alzheimer’s disease patients. In Aha,
D. W., and Watson, I., eds., 4th International Conference
on Case-Based Reasoning, ICCBR 2001, Proceedings, 702–
715.
Mateas, M., and Stern, A. 2002. A behavior language
for story-based believable agents. IEEE Intelligent Systems
17(4):39–47.
Millington, I., and Funge, J. 2009. Artificial Intelligence for
Games. Morgan Kaufmann, second edition.
Muñoz-Avila, H.; Aha, D. W.; Nau, D. S.; Weber, R.; Bres-
low, L.; and Yamal, F. 2001. Sin: integrating case-based
reasoning with task decomposition. In IJCAI’01: Proceed-
ings of the 17th international joint conference on Artificial
intelligence, 999–1004.
Ontañón, S.; Mishra, K.; Sug, N.; and Ram, A. 2007. Case-
based planning and execution for real-time strategy games.
In Proceedings of the 7th international conference on Case-
Based Reasoning: Case-Based Reasoning Research and De-
velopment, 164–178. Springer-Verlag.
Ontañón, S.; Bonnette, K.; Mahindrakar, P.; Gómez-Martı́n,
M. A.; Long, K.; Radhakrishnan, J.; Shah, R.; and Ram, A.
2009. Learning from human demonstrations for real-time
case-based planning. In Kuter, U., and Muñoz-Avila, H.,
eds., Proceedings of the IJCAI-09 Workshop on Learning
Structural Knowledge From Observations.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.
Prentzas, J., and Hatzilygeroudis, I. 2007. Categorizing
approaches combining rule-based and case-based reasoning.
Expert Systems 24(2):97–122.

412




