
Active and Interactive Discovery of Goal Selection Knowledge

Jay Powell1, Matthew Molineaux2, and David W. Aha3

1Computer Science Department; Indiana University; Bloomington, IN 47405
2Knexus Research Corporation; Springfield, VA 22153

3Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory (Code 5514); Washington, DC 20375
jhpowell@cs.indiana.edu | matthew.molineaux@knexusresearch.com | david.aha@nrl.navy.mil

Abstract
If given manually-crafted goal selection knowledge, goal
reasoning agents can dynamically determine which goals
they should achieve in complex environments. These agents
should instead learn goal selection knowledge through
expert interaction. We describe T-ARTUE, a goal reasoning
agent that performs case-based active and interactive
learning to discover goal selection knowledge. We also
report tests of its performance in a complex environment.
We found that, under some conditions, T-ARTUE can
quickly learn goal selection knowledge.

1. Introduction
Modern autonomous agents can plan, learn, reason, and
solve problems in the context of many diverse tasks set by
a human. However, they require a human to specify all
their goals. An important aspect of autonomy is the ability
to self-select goals. We are studying methods for a new
generation of goal reasoning agents that can select their
own goals without human guidance (Ram and Leake 1995;
Cox 2007).

Some agent architectures (e.g., Soar (Laird and
Rosenbloom, 1990)) achieve many goals by recursively
decomposing top-level goals into all other goals the agent
might ever pursue. While this can define many interesting
agents, it is restrictive. Agents that represent the relative
importance of each goal and explicitly manage their
pending goals (i.e., those they are currently pursuing)
should perform more robustly in dynamic environments.

In this paper, we extend the Autonomous Response to
Unexpected Events (ARTUE) agent, which performs goal
formulation and goal management in the context of a Goal-
Driven Autonomy (GDA) model for continuous planning
(Molineaux et al. 2010). ARTUE formulates its goals using
rule-based principles, which describe situations where
specific goals should be formulated and their relative
importance. Although ARTUE can formulate and manage

Copyright © 2011, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

new goals to properly respond to developing situations, it
cannot respond to novel situations (i.e., those for which it
lacks manually-encoded knowledge for goal selection and
prioritization). However, if ARTUE could learn this
knowledge, it would exhibit even greater autonomy.

We extend ARTUE with the ability to learn goal
selection knowledge through interaction with an expert.
We frame this as a case-based supervised learning task that
employs active learning (AL) (Settles 2009): the agent can
query a human expert for knowledge rather than be limited
to consulting its own knowledge sources. We call this
extension the Trainable Autonomous Response to
Unexpected Events (T-ARTUE) agent.

We next describe the GDA model, followed by its
implementation in ARTUE and related work. We describe
how goal selection knowledge can be actively and
interactively learned in §4, T-ARTUE’s learning
algorithms in §5, and our empirical study in §6. Our results
indicate that, under some assumptions, T-ARTUE’s
performance quickly attains the level of ARTUE.

2. Goal-Driven Autonomy
GDA is a conceptual model for online planning in
autonomous agents (Molineaux et al. 2010). It separates
the planning process from procedures for goal formulation
and goal management. Special formalisms (e.g., Dal Lago
et al. 2002) exist for managing goals during planning.
However, these require a specific planner, whereas the
GDA model can be paired with an arbitrary planner. In
Figure 1, we illustrate how GDA extends Nau’s (2007)
model of online planning: it expands and details the scope
of the Controller, which interacts with a Planner Π and a
State Transition System Σ (an execution environment).

System Σ is a tuple (S,A,F,γ) with states S, actions A,
exogenous events F, and state transition function γ:
S�(A�F)�2S, which describes how an action’s execution
or an event’s occurrence transforms the environment’s
state. In complex environments, the agent has only partial
access to the state, events, and state transition function.

413

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

The Planner receives as input a planning problem
(MΣ,sc,gc), where MΣ models Σ, sc is the current state, and
goal gc can be satisfied by some states Sg�S. It outputs a
plan pc, which is a sequence of actions Ac=[ac,…,ac+n], and
a corresponding sequence of expectations Xc=[xc,…xc+n],
where xi�Xc is a set of state constraints corresponding to
the sequence of states [sc+1,…,sc+n+1] expected to occur
when executing Ac in sc using Σ.

The Controller takes as input initial state s0, initial goal
g0, and MΣ, and gives them to the Planner to generate plan
p0 and expectations X0. The Controller then forwards p0’s
actions to Σ for execution and processes the resulting
observations, which may also reflect the processing of
other agents’ actions or events from an Event Generator.

During plan execution, a GDA Controller performs the
following four knowledge-intensive tasks:
Discrepancy detection: GDA detects unexpected events by
comparing sc+1 with xc�X (i.e., it tests for constraint
violations corresponding to unexpected observations). If a
discrepancy d of one or more differences exists, then
explanation generation is performed to explain it.
Explanation generation: The cause for a detected
discrepancy d must be revealed so that it can be resolved.
Given a state sc and d, this task hypothesizes an
explanation e of its cause.
Goal generation: Resolving a discrepancy may warrant a
change in the current goal(s). This task generates a goal g
in response to d, given e and sc.
Goal management: Given a set of pending goals GP and
new goal g, this task will update GP (e.g., by adding g or
deleting/modifying other pending goals) and select the next
goal g′�GP to be given to the Planner.

GDA does not prescribe specific types of algorithms for
these tasks, and treats the Planner as a black box. In

contrast to reactive planners (e.g., Firby 1987)), GDA
agents use expectation failures for goal formulation.

3. ARTUE and Related Work
ARTUE is a GDA agent. It uses set-difference to detect
discrepancies and an assumption-based truth maintenance
system (ATMS) (de Kleer 1986) to generate explanations.
ARTUE calls SHOP2 (Nau et al. 2003) to generate plans,
where we assume a mapping exists from any goal to be
achieved to a SHOP2 task that achieves it. Molineaux et al.
(2010) reported that ARTUE performs well on scenarios
defined using the TAO Sandbox (see §4).

To perform goal generation and management, ARTUE
uses expert-provided principles, which encode goal
selection knowledge. T-ARTUE instead learns it via a
case-based active and interactive learning algorithm.
Research on AL, both case-based and otherwise, tends to
focus on strategies for determining which labels to request
in the context of classification tasks (e.g., Hu et al. 2010;
Sculley 2007). We also focus on a classification task, but
in a GDA online planning context.

Two groups have investigated case-based GDA for
controlling agents in complex video games. First, Weber et
al. (2010) introduced a case-based approach for goal
formulation. They define it as the tasks of (1) locating a
case c whose goal state c.s is most similar to the current
goal g, (2) computing difference d=c′.s-c.s, where c′.s is a
future goal state of c after executing n actions, and (3)
adding d to g. Our work differs in that goal selection is
triggered by a state discrepancy and cases are learned using
AL and interactive feedback processes. Second, Muñoz-
Avila et al. (2010) used two manually-engineered case
bases for their GDA algorithm, which (1) fetches the next
expected state ci.x from a case ci whose state and goal
states are maximally similar to the current versions, (2)
detects whether ci.x differs from xnext, and if so (3) retrieves
a goal state corresponding to this discrepancy. In contrast,
T-ARTUE learns to acquire cases for goal selection.

Finally, while goal reasoning research has focused on a
variety of interesting tasks, no prior work exists on AL for
GDA (Aha et al. 2010).

4. Discovery of Goal Selection Knowledge
We describe three types of structured interactions between
an agent and an expert through which the agent can learn
goal selection knowledge: (1) goal selection queries, (2)
generalization confirmation queries, and (3) goal selection
criticism. The first two are system-initiated AL techniques
(occurring when the system is unable to formulate a goal),
whereas the third is user-initiated. These interactions
facilitate online learning, allowing an agent to derive a
procedure for goal selection that meets the expert’s needs.

Figure 1: Goal-Driven Autonomy Conceptual Architecture

414

We define scenarios from the TAO Sandbox (Auslander
et al. 2009) to exemplify these interaction types. It is a US
Navy simulator for training Tactical Action Officers in
anti-submarine warfare (Figure 2). Trainees control assets
(ships, planes, helicopters) by giving instantly-executed
orders. Autonomous mission planning in the TAO Sandbox
is a continuous planning problem (desJardins et al. 1999).
This environment is partially observable, dynamic, and
open with respect to the introduction of new objects. Thus,
opportunities and failures can arise that benefit from a goal
reasoning process. However, this requires substantial
engineering effort, which motivates the development of
agents that can learn new goal selection knowledge.

4.1 Goal Selection Queries
In this interaction type, the agent queries an expert for the
goal to select in the current state. This resembles other AL
processes, but is more constrained due to the nature of the
online task, where the agent must experience and respond
to states in an order determined by its environment, and
has no knowledge of future states. Therefore, it only makes
sense for the agent to query an expert regarding the current
state, rather than an arbitrarily chosen example, as is
common in AL research (Settles 2009).

The agent’s query includes (1) a comprehensive state
description (that the expert can use to make a decision) and
(2) a set of goals (that the Planner can accept). The expert
must respond with a single selected goal. For example, a
TAO Sandbox agent may request a goal when observing
the first signs of an approaching storm. To do this, it forms
a state description (e.g., locations and velocities of all
known vessels and possible destinations), and enumerates a
list of the goal types it understands. It communicates these
to the expert, who responds by selecting any of the infinite
set of possible goal for this state, such as (sheltered ship1).

4.2 Generalization Confirmation Queries
Here the GDA agent requests confirmation of its learned
goal selection knowledge. This enables it to get feedback
on its hypothesized generalizations of user-provided goal
selection knowledge with respect to the current state.
These queries are less constrained than goal selection

queries, as the agent can hypothesize arbitrary connections
based on prior learning, and are thus more similar to
traditional AL techniques.

These queries include (1) a description of the current
state and (2) a set of hypothesized generalizations, where
each describes the process the agent used for goal selection
and the selected goal. The user can reply by confirming
zero or more of the hypothesized explanations. For
example, suppose a TAO Sandbox agent sees signs of
another storm. It recalls prior similar occasions where the
expert advised it to select the goal (sheltered ship1). Thus,
it forms a query by (1) creating a state description and (2) a
list of generalizations (e.g., the deductive rule “(storm-
signs) � (goal-select (sheltered ship1))” and the selected
goal (sheltered ship1)). These are displayed, and the expert
responds by indicating which (if any) are confirmed.

4.3 Goal Selection Criticism
This interaction is expert-initiated. After an expert
observes an agent operating in an environment, they may
critique it (e.g., indicate that a goal selected in a given state
was not correct). This may help the agent to recover from
learned over-generalizations.

In this interaction: (1) the user requests a justification
for goal selections (e.g., within a given time interval); (2)
the agent presents its decisions (i.e., a list of states and
goals selected); and (3) the user provides a critique (i.e.,
selected states and goal recommendations). For example,
suppose the agent learned to return to its original goal
(transport cargo destination) after a storm passes.
However, in state s a nearby ship2 requests assistance. Not
recognizing this as a significant difference, the agent
selects the (transport cargo destination) goal. Seeing this
incorrect behavior, the expert later requests a justification.
The agent responds with its relevant decisions and the user
highlights the agent’s mistake, explaining that in state s,
the goal (render-aid ship2) should be selected.

5. Learning in T-ARTUE
During training, we run a simulator that gives T-ARTUE a
stream of TAO Sandbox states, from which it learns its
Goal Generator knowledge. When its prediction
confidence is low, T-ARTUE uses the AL techniques
described in §4.1 and §4.2, and the expert can also provide
feedback after a trial ends (§4.3).

If at time t T-ARTUE observes a discrepancy dt
(between xt and st), it calls the Explanation Generator to
generate explanation et. Then, the Goal Generator predicts
a goal gt to resolve dt (given et and st) using case base C.
We next describe T-ARTUE’s case representation,
retrieval and reuse algorithms, and its learning techniques.

Figure 2: An Annotated Screenshot from the TAO Sandbox

415

5.1 Case Representation
Each case is a pair c = {prob,sol}, where prob={s,d,e}, s is
the recorded state, d is the discrepancy at that time, and e is
the explanation (i.e., a set of beliefs) T-ARTUE generated
in response to d in s. A case’s solution is a tuple sol={g,i},
where g is the goal that T-ARTUE selected to resolve d,
and i is its discrete goal intensity level (i.e., a fixed value
proportional to the importance of satisfying g).

Each problem component is represented by a set of
literals, which are logical expressions that ascribe a
predicate to zero or more constants. There are 40-70
literals per problem. T-ARTUE maintains a weight with
each literal in a problem, and these are all initially set to 1.

5.2 Retrieval and Reuse
T-ARTUE uses a weighted nearest neighbor rule to
compute the feature similarity of new problem probt at time
t with the problem ci.prob of each case ci�C as follows:

where j and k are literals, wi,k is k’s weight, W is the sum of
ci.prob’s literal’s weights, and 1(j,k) tests whether j=k.
Equation 1 yields a value in [0,1]. Equation 2 transforms
this value to account for case intensity:

where ci.int is case ci’s intensity, and we set α=6 and β=10.
This prevents cases with high intensity and low similarity
from overriding cases with the inverse.

At time t, the Goal Generator retrieves the goal ct.g of
the most similar case ct and outputs it to the Goal Manager.

5.3 Retention and Maintenance: Active Learning
Figure 3 displays T-ARTUE’s learning processes. The
probability that it will request a label (i.e., a goal to
formulate and its intensity) is p(1-sim(probt,ct.prob,ct.int)),
where ct is the retrieved case. (Initially, T-ARTUE will
always request a label to seed the case base.) If it requests

a label, it will (1) request it from the user, or (2) present a
set of hypotheses describing the goals it believes apply,
from which the user can confirm or reject some subset.
Goal Selection Queries
These queries yield a new case. Many literals in a case c’s
problem (e.g., positions and velocities of vehicles) are
contextually irrelevant to c’s goal and will vary greatly
during trial runs. A few literals of a case problem (typically
1-5) will suffice to identify the goal’s applicable context.
Relying on initially equal weights for case retrieval can
yield poor performance. Thus, T-ARTUE adapts weights
to increase goal selection accuracy, as described below.
Explanation Confirmation Queries
T-ARTUE generalizes cases to increase predictive
accuracy. For example, the first time signs of a storm are
observed, it creates a case describing the current state (e.g.,
positions and velocities of all vehicles, and the literal
(storm-signs)) and the new goal (sheltered ship1). The next
time a storm is observed, it will not retrieve a case that
recommends (sheltered ship1) because the new state will
differ, causing it to retain another case. However, after it
acquires several cases with the same goal, it can generate
hypotheses that generalize its case knowledge.

T-ARTUE’s rule-based hypotheses describe problem
similarities among cases with the same goal, and define
when a goal should be formulated. Rules are generated
using Apriori (Agrawal and Srikant 1994), which takes a
set of cases as input and searches for frequently occurring
itemsets (conjuncts of literals) within their problems. A
frequent itemset is one that appears in at least � cases (we
set �=3) and all of its subsets are frequent. Frequent
itemsets of length k are generated from frequent itemsets
of length k-1. This process recurses, with increasing values
of k, until none are found. Rules are then generated whose
antecedent is a maximal-length frequent itemset and whose
consequent is a corresponding goal.

This set of hypotheses H is presented to the user, who
can confirm a subset H′�H or reject them all. If the former,
then T-ARTUE locates all cases C′�C whose problems
each match at least one hypothesis in H′. For each case
ci�C′, the weight wi,j for each of its literals li,j is updated.
The squared error of the existing weight is defined relative
to the probability that li,j appears in H′:

The space of possible weights per case is searched using
stochastic gradient descent, where weight updates
correspond to the derivative of the squared error (Equation
3) multiplied by a learning rate η (we set η=0.6).

If the user rejects all the hypotheses, then the user must
provide a goal and intensity, which triggers case retention.

5.4 Goal Selection Criticism
After a trial a user can critique T-ARTUE’s sequence of
goal selection decisions (i.e., the goal chosen and the

Figure 3: T-ARTUE’s Active and Interactive Learning Processes

416

problem literals influencing a case’s selection). For each
decision, the user may (1) recommend a different goal, or
(2) criticize the weights T-ARTUE used. (See Figure 4.)

T-ARTUE may fail to transition between goals. For
example, in one scenario it must rescue a foundered vessel
before heading to port. Initially, it will not recognize when
the goal (rescue ship2) has been satisfied, and (at ship1
destination) should instead be pursued. After a ship is
rescued, the current state includes (rescued ship2). This
may not appear in cases with the goal (at ship1
destination), or its weight may be too low to correctly
classify the appropriate goal. However, after the user
provides a correct goal, T-ARTUE creates rules describing
the differences between the case’s and current problem,
and automatically adapts the literals’ weights (see §5.3).
These adaptations are not immediately confirmed by a
user, but may be corrected after subsequent trials. T-
ARTUE makes many mistakes during its initial learning
stages, which could cause it to create many similar cases.
Thus, it attempts to hypothesize generalizations for goals
provided by the user during criticism (see §5.3).

 T-ARTUE may choose the correct case but using the
wrong literal weights. For example, it may choose the goal
(sheltered ship1) due to the literals (storm-signs), (at-x
helicopter1 35), and (at-y helicopter1 49). The helicopter’s
position should not influence the decision to seek shelter.
Thus, the user can tell T-ARTUE that (storm-signs) is the
only relevant literal. Given this, it would create a rule
associating the literals selected by the user with the case’s
goal, and use the algorithm in §5.3 for weight learning.

6. Empirical Study
We claim that T-ARTUE can quickly and accurately learn
to respond effectively in TAO Sandbox scenarios, given

access to an expert. To test this, we trained it with 30 trials
for each of two TAO Sandbox scenarios, where trials differ
in their randomly-generated state conditions. As a baseline,
we used ARTUE (given its expert-designed goal selection
knowledge ‒ principles) using these conditions.

Scenario 1 (Sub Hunt) requires T-ARTUE to respond to
a nearby ship in distress, submarines, and underwater
mines. Scenario 2 (Iceberg) requires it to learn to respond
to a fast-approaching storm, the formation of an iceberg,
and the foundering of a nearby vessel. Each scenario
requires T-ARTUE to learn goals to respond effectively.
We created oracles that automatically respond to T-
ARTUE’s queries, and used them in a set of online
learning tests. We ran 10 repetitions per scenario, each
with a different random seed.

Figure 5 (top) shows the average percentage of this
“optimum” performance attained by T-ARTUE per
scenario, using the same random seeds, throughout
training. For each trial, the oracle provided criticism each
time T-ARTUE erred. As shown, T-ARTUE maintains
90% of optimal performance after only 5 trials in Sub Hunt
and after 15 trials in Iceberg.

A mixed-initiative system is often more useful if it
requires less attention from the human collaborator.
Therefore, we investigated the effect of lowering the
probability p that the expert would provide criticism by
repeating the experiments with p={0, .2, .6, 1.0}. For
example, with a setting of .6, an expert “notices” and
criticizes T-ARTUE when it chooses a non-optimal goal
with probability p=.6. Otherwise, the error was ignored.

The lower two graphs in Figure 5 display the results.
Lower amounts of criticism increase the time required to
attain the same level of performance, although long term
performance is not severely affected. However, the lack of
any criticism can prevent T-ARTUE from attaining a high
performance level, and can even cause catastrophic failure.
This is due to an incorrect assumption made early on that
cannot be corrected through the query processes.

To determine how much expert interaction was required,
we examined the number of queries T-ARTUE per training
repetition. For Iceberg, it averaged 11.2 queries. This
decreased quickly as time progressed: 90% of these
occurred during the first ten learning trials. This indicates
that T-ARTUE can survive on its own fairly quickly.
However, Sub Hunt required 26.9 queries on average, and
they were distributed more evenly throughout the trial.
Examining the causes of this is a topic of future research.

7. Conclusions
Our study demonstrates that an agent can learn goal
selection knowledge for immediate use in an online setting.
This is useful for goal reasoning agents that must respond

Figure 4: Process for Goal Selection Criticism

417

effectively to unexpected states in dynamic environments.
Our results show that active and interactive learning
techniques allow our agent to perform comparably to when
its knowledge is manually crafted, given access to a
sufficiently attentive expert. Our tests also show that a high
level of expert attentiveness is needed to guarantee good
performance. Our future work will include improving the
generalization algorithms so that a lower level of
attentiveness suffices to constrain the concepts learned by
T-ARTUE. Finally, we will also examine other means to
learn goal selection knowledge in goal reasoning agents.

References
Agrawal, R., & Srikant, R. (1994). Fast algorithms for

mining association rules. Proceedings of the 20th
International Conf. on Very Large Data Bases (pp. 487-
499). Santiago de Chile, Chile: Morgan Kaufmann.

Aha, D.W., Klenk, M., Muñoz-Avila, H., Ram, A., &
Shapiro, D. (Eds.) (2010). Goal-Directed Autonomy:
Notes from the AAAI Workshop (W4). Atlanta, GA:
AAAI Press.

Auslander, B., Molineaux, M., Aha, D.W., Munro, A., &
Pizzini, Q. (2009). Towards research on goal reasoning
with the TAO Sandbox (Technical Note AIC-09-155).
Washington, DC: Naval Research Laboratory.

Cox, M.T. (2007). Perpetual self-aware cognitive agents.
AI Magazine, 28(1), 32-45.

Dal Lago, U., Pistore, M., & Traverso, P. (2002). Planning
with a language for extended goals. Proceedings of the
18th National Conference on Artificial Intelligence (pp.
447-454). Edmonton (Alberta), Canada: AAAI Press.

de Kleer, J. (1986). Problem solving with the ATMS.
Artificial Intelligence, 28(2), 197-224.

desJardins, M.E., Durfee, E.H., Ortiz, C.L., & Wolverton,
M.J. (1999). A survey of research in distributed,
continual planning. AI Magazine, 20(4), 13-22.

Firby, R.J. (1987). An investigation into reactive planning
in complex domains. Proceedings of the Sixth National
Conference on Artificial Intelligence (pp. 202-206).
Seattle, WA: AAAI Press.

Hu, R., Delaney, S.J., & Mac Namee, B. (2010). EGAL:
Exploration guided active learning for TCBR.
Proceedings of the 18th International Conference on
CBR (pp. 156-170). Alessandria, Italy: Springer.

Laird, J.E., & Rosenbloom, P.S. (1990). Integrating
execution, planning, and learning in Soar for external
environments. Proceedings of the Eighth National
Conference on Artificial Intelligence (pp. 1022-1029).
Boston, MA: AAAI Press.

Molineaux, M., Klenk, M., & Aha, D.W. (2010). Goal-
driven autonomy in a Navy strategy simulation. In
Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence. Atlanta, GA: AAAI Press.

Muñoz-Avila, H., Jaidee, U., Aha, D.W., & Carter, E.
(2010). Goal-driven autonomy with case-based

reasoning. Proceedings of the Eighteenth International
Conference on Case-Based Reasoning (pp. 228-241).
Alessandria, Italy: Springer.

Nau, D.S. (2007). Current trends in automated planning. AI
Magazine, 28(4), 43–58.

Nau, D., Au, T.-C., Ilghami, O, Kuter, U, Murdock, J.W.,
Wu, D., & Yaman, F. (2003). SHOP2: An HTN
planning system. Journal of Artificial Intelligence
Research, 20, 379-404.

Ram, A., & Leake, D. (1995). Learning, goals, and
learning goals. In A. Ram & D. Leake (Eds.) Learning,
goals, and learning goals. Cambridge, MA: MIT Press.

Sculley, D. (2007). Online active learning methods for fast
label-efficient spam filtering. In Proceedings of the
Fourth Conference on Email and Anti-Spam. Mountain
View, CA: [http://www.ceas.cc/2007].

Settles, B. (2009). Active learning literature survey
(Technical Report 1648). Madison, WI: University of
Wisconsin, Department of Computer Science.

Weber, B.G., Mateas, M., & Jhala, A. (2010). Case-based
goal formulation. In (Aha et al. 2010).

Figure 5: Empirical Results for T-ARTUE

418

	FLAIRS24
	Contents
	Index
	Help
	Terms
	AAAI
	FLAIRS Website

