
Failure Detection and Dynamic Extensions
for Behavior-Based Subsumption

Frederick W. P. Heckel, and G. Michael Youngblood
University of North Carolina at Charlotte

9201 University City Blvd
Charlotte, NC 28223

{fheckel, youngbld}@uncc.edu

Abstract

Behavior-based and reactive control methods are popular
choices for building fast and lightweight intelligent con-
trollers for resource-constrained systems. Reactive methods
are extremely useful in highly resource-constrained applica-
tions, but at a cost: they tend to be even more susceptible to
certain types of failures than deliberative techniques. With-
out a planner to adapt to changes, even a small failure can
result in incorrect behavior from the entire controller. In this
paper, we propose extensions to behavior-based subsumption
that can detect four types of failures.

Introduction
Reactive control methods, while useful for building compu-
tationally inexpensive intelligent systems, suffer from sus-
ceptibility to failures that deliberative systems can handle
more effectively. Using deliberative systems in these cases
is not always possible, especially in resource-constrained
applications, such as video game AI or robotics. Without
sufficient metadata to detect errors and methods for recon-
figuring the controller when errors occur, small problems
can quickly build up to become catastrophic failures for the
agent. The types of failures that can limit the applicability of
reactive controllers may be due to changes in the agent’s ca-
pabilities, modifications to the environment, or design over-
sights. In modern games, this can occur frequently when a
character is injured or the environment undergoes a major
dynamic change.

In this paper, using the monitoring techniques of plan-
ning systems as a model, we propose extensions to reactive
and behavior-based systems that allow detection of four dis-
tinct classes of failure. While they are useable with other
reactive and behavior-based methods, these extensions are
presented in the context of a behavior-based subsumption
architecture (Brooks 1986). We show that failure detection
can provide new capabilities such as dynamic adaptation of
subsumption controllers and inexpensive multi-agent coor-
dination.

Behavior Monitoring
We have identified four types of errors that can be easily de-
tected in the subsumption architecture: activation failures,

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

capability failures, behavior interaction failures, and envi-
ronmental failures. Each of these failures can be detected
in a well-defined manner, though some are more expensive
than others to detect.

We assume that we are dealing with two types of agents:
mobile robots and virtual characters. Both commonly use
reactive control, are resource-constrained, and use highly
crafted controllers. There are major differences between
these types of agents: the perceptions of virtual characters
are highly restricted by the level of detail present in their
environment, but require less processing than the output of
sensors carried by intelligent robots.

Activation Failures Activation failures are the simplest
types of failures to detect. These failures occur when a com-
ponent of the controller fails to execute. This indicates that
anticipated conditions never occur or that a higher-level be-
havior is preventing the execution of the layer. Activation
failures can be easily detected in both virtual characters and
robots, as they depend entirely on software state. While they
are simple to detect, these are also the least reliable failures,
as some behaviors may be expected to activate only occa-
sionally.

Capability Failures Capability failures occur when an
agent is not capable of executing a given behavior. These
directly correspond to unanticipated changes in agent state;
in a virtual character, it may be an item missing from the
character’s inventory, or an action that is no longer allowed.
In robotics, this could correspond to a hardware failure or
a partial loss of power. Capability failures can be detected
using trigger conditions from the architecture.

Environmental Failures Environmental failures occur
when agent capabilities are correct and the behavior exe-
cutes, but the behavior action fails in the environment. An
environmental failure may indicate that the expectations for
the behavior are incorrect given the environment (e.g., a lift
behavior may fail if objects in the environment are heavier
than expected by the behavior) or that another agent has in-
terfered with the execution of the behavior. These errors are
relatively easy to detect in virtual environments, as the sim-
ulation in which the agent is running will return an error.

486

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



Detection of environmental failures due to other agents is
feasible in real-world environments, but other types of fail-
ures may not be easily detected.

Behavior Interaction Failures Behavior interaction fail-
ures are potentially the most difficult failures to detect. This
type of failure occurs when a behavior can be executed cor-
rectly, does not generate an environmental error, but also
does not achieve the expected result. Failures of this type are
due to behaviors interacting in a way that causes one behav-
ior to undo or cancel out the effects of another. Detecting be-
havior interaction failures requires specifying expected pre-
and post-conditions for a given behavior. In many cases, the
triggering conditions for the behavior layer can be used for
both pre and post conditions.

Case Study: Reactive Teaming

Augmenting subsumption layers with the information re-
quired for failure detection is relatively easy. Pre-requisites
and expected results can be described in the same manner as
the triggering conditions already used to decide when to ac-
tivate a behavior. Tracking activation history adds a constant
amount of additional state to each layer. The most invasive
addition is detection and handling of environmental failures,
but most systems will already watch for these error states.

For individual agents, failure detection can be used to re-
move layers that are not functioning correctly. Malfunction-
ing behaviors can mask correct behavior that has lower pri-
orities. Consider a virtual guard agent that is designed to
patrol the environment. In addition, this guard agent has a
higher priority layer to pick up trash. Eventually, the guard
will run out of room to carry the trash it gathers, but with-
out failure monitoring, it will get stuck trying to pick up the
n + 1st piece of trash. With failure monitoring, the trash
gathering layer will be identified as failing; since it has no
space in its inventory, it can remove this layer. The patrol
behavior will then continue as expected.

Insertion and removal of behaviors can be very useful in
scenarios where multi-agent coordination is required. We
used behavior monitoring to enable the reactive teaming ap-
proach to multi-agent coordination (Heckel and Youngblood
2010). In reactive teaming, agents coordinate by transfer-
ring behavior layers. Agents must decide when to request
behaviors from other agents and which behavior to transfer
when they receive a request. One possible choice is to make
requests to replace failing layers. In addition, when trans-
ferring a behavior, the agent can choose to transfer a failing
layer in case a different agent can perform it successfully.

The effectiveness of reactive teaming with failure detec-
tion can be demonstrated with a case study. In our scenario,
the first agent, Alice, searched the environment for cans. The
second agent, Bob, searched the environment for boxes. The
goal of the agents was to pick up all of the objects scattered
throughout the environment. The environment was initially
loaded with many cans placed in the world. After a period, a
large number of boxes were added to the environment. With
static controllers, each agent would perform only the task
initially designed. This means that while Alice was well-

occupied for the first part of the scenario, Bob was perform-
ing very little work.

We ran the scenario in two ways. The first method used
a static team. In addition to Alice and Bob, 10 more agents
were added, divided evenly between can and box gathering
behaviors. In this case, half of the agents were guaranteed to
be idle anytime only one type of item existed in the environ-
ment. This results in poor team utilization; half of the team
is idle while the other half is performing a task.

The second variation used 10 generic agents in addition
to Alice and Bob. Generic agents have a base layer, but
instead of being designed to perform a task, they are de-
signed to have activation failures. These activation failures
lead the agents to use reactive teaming to request behaviors
from other characters. As the scenario started, each of the 10
agents randomly received either the behavior to pick up cans
or the behavior to pick up boxes based on whether they met
Alice or Bob first. Since boxes are nonexistent for the first
part of the scenario, the can-gathering agents were quite pro-
ductive, but the box-gathering agents continued to generate
activation failures. This caused in the box-gathering agents
to request new behaviors, and the number of can-gathering
agents surged.

As the scenario continued, boxes were added to the world.
With most of the cans gone, the can-gathering agents gener-
ated activation failures, causing them to request new behav-
iors. The number of box-gathering agents then surged, as the
majority of agents received the appropriate behavior. Once
all but a few objects have been gathered, the distribution of
behaviors changed again, as all of the behaviors became idle.

Behavior insertion and removal enables the reactive team-
ing technique. With this technique, which requires behav-
ior failure detection, it is possible to create flexible teams
of reactive agents that adapt to changing conditions. The
scenario in this case study shows an example of how using
the dynamic reactive teaming approach results in better team
utilization than the static approach.

Conclusions

We have presented a framework for adding failure moni-
toring to behavior-based subsumption architectures. Four
classes of errors can be detected without significant changes
to the subsumption architecture, and the required meta-
data also enables dynamic extensions to behavior-based sub-
sumption. Individual agent adaptation and team coordina-
tion can be improved through the use of failure detection.
Failure detection is currently used to enable the reactive
teaming technique for multi-agent coordination.

References

Brooks, R. A. 1986. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and Automation
2(1):14–23.
Heckel, F. W. P., and Youngblood, G. M. 2010. Multi-
Agent Coordination Using Dynamic Behavior-Based Sub-
sumption. In Proceedings, 6th Artificial Intelligence for In-
teractive Digital Entertainment (AIIDE 2010).

487




