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Abstract

Multiply Sectioned Bayesian Networks (MSBNs) extend
single-agent Bayesian networks to the setting of multi-agent
probabilistic reasoning. The MSBN global propagation is
conducted through inter-agent message passing, coupled with
intra-agent (local) message passing at local domains. Exist-
ing LJF-based MSBN inference algorithms require repeated
full-scale local propagation, which may cause bottlenecks in
a non-sparse network. We propose a novel method that con-
ducts 1) delayed inter-agent message manipulation, and 2)
partial local message propagation. Analysis shows that our
approach significantly reduces the amount of local computa-
tion while maintaining the correctness of MSBN global prop-
agation.

1 Introduction

As an extension to the traditional Bayesian Network (BN),
a Multiply Sectioned Bayesian Network (MSBN) provides
a specific framework for probabilistic reasoning in a multi-
agent setting (Xiang 2002). A large and distributed problem
can be modeled as a set of organized subdomains each main-
tained by an individual light-weighted agent. An MSBN’s
hypertree structure enables the extension from the BN Junc-
tion Tree (JT) algorithm to agent-based inference. Typically,
a Linked Junction Forest (LJF) is constructed for distributed
inference in an MSBN. Inter-agent messages, passed be-
tween two LJF local JTs over their interface, are essential
in unifying the beliefs of different MSBN subnets. Each
inter-agent message contains a set of potentials over an LJF
linkage tree representation of the shared nodes.

Existing MSBN LJF inference algorithms mostly follow
the same underlying principle of the product-based Hugin
architecture. In particular, the sender of an inter-agent mes-
sage must conduct a full round of local JT propagation to
ensure the correctness of the message; the receiver of the
message must immediately propagate the message through a
round of full-scale local propagation as well. Methods have
been proposed to improve local computation, e.g. adopting
lazy inference in message calculation (Xiang, Jensen, and
Chen 2006). However, repeated local propagation is still re-
quired. This results in extensive local message calculation
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which may form communication bottlenecks and possibly
halt the MSBN global inference in a dense network.

In this paper, we introduce two techniques to optimize the
LJF local computation.

• Delayed message manipulation eliminates repeated lo-
cal propagation. Despite the similarities between a BN
JT and an MSBN hypertree, there has been little research
on extending non-Hugin message passing methods to the
MSBN LJF global inference. In this paper, we introduce
new semantics for the LJF linkage trees. A pair of corre-
sponding linkage trees, used as a single Hugin separator
in existing architectures, are now treated as two individ-
ual buffers. Then we present a new architecture, extend-
ing from the Shenoy-Shafer architecture to avoid repeated
rounds of local message passing.

• Partial local propagation further reduces the amount of
local messages passed. During the MSBN global propa-
gation, we achieve the globally coherent system belief for
each agent through inter-agent message passing. Exist-
ing algorithms must repeatedly invoke local propagation
to maintain a state of consistency, which in term guaran-
tees the proper handling of inter-agent messages. In this
paper, however, we present algorithms that allow us to ob-
tain correct inter-agent messages and consistent local be-
liefs without any full-scale local propagation. The tech-
nique of partial propagation, previously studied in more
restricted context of updating LJF linkage potentials (Xi-
ang 1995) and LJF initial calibration (Jin and Wu 2008), is
now applied on a complete local JT and during the actual
global belief propagation.

2 Background

2.1 MSBNs

We assume the readers are familiar with common terminolo-
gies presented in the literature of BN. MSBNs extend BNs
and provide a framework for uncertainty reasoning in co-
operative multi-agent systems (Xiang 2002). An MSBN is
composed of a set of BN subnets each maintained by an
agent and representing a partial view of a larger problem
domain. The union of all subnet DAGs must also be a DAG,
and these subnets are organized into a tree structure called a
hypertree. Each hypertree node corresponds to a subnet, and
each hypertree link corresponds to a d-sepset, which is the
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Figure 1: MSBN Inference with LJFs. (a) The hypertree; (b) The constructed LJF with linkage trees.

set of shared variables between adjacent subnets. A hyper-
tree follows the running intersection property so that a hy-
perlink renders two sides of the network conditionally inde-
pendent similar to a JT separator. Several meta-requirements
are necessary for the MSBN representation and they distin-
guish MSBNs from several other knowledge representation
models (Xiang 2002).

A secondary structure called linked junction forest (LJF)
is typically used for distributed inference in MSBNs. An
LJF is constructed through a process of cooperative and dis-
tributed compilation, so that each node in a hypertree is
transformed into a local JT and each hyperlink into a link-
age tree. A linkage tree is also a JT, in which each cluster
is called a linkage, and each separator, a linkage separator.
The cluster in the local JT that contains a linkage is called
a linkage host. Essentially, a linkage tree is an alternative
representation of the d-sepset between adjacent subnets, but
contains linkages with a smaller domain than the d-sepset in
order to facilitate inter-agent message calculation. Each of
the adjacent LJF subnet pair maintains its own linkage tree
corresponding to the same d-sepset. These two linkage trees
may be different, but only at their topologies so the result of
message passing is not affected (Xiang 2002).

For example, a trivial MSBN with 4 subnets is shown in
Figure 1 (a). Three hyperlinks connect the subnets into a
hypertree structure. We have omitted the details of each
BN subnet structure for simplicity. Figure 1 (b) shows an
LJF constructed from the MSBN in Figure 1 (a). Local JTs,
Ti, i = 0, ..., 3 are enclosed by boxes with solid edges. Link-
age trees, converted from d-sepsets, are enclosed by boxes
with dotted edges. The figure also shows the linkages of
each linkage tree and their corresponding linkage hosts in
the local JT.

2.2 Local Computation in Hugin-based
Distributed Inference

The main task of MSBN inference is to supply the correct
global posterior probabilistic knowledge to each agent given
all locally observed evidence. The LJF-based algorithms,
extending from JT-based Hugin architecture (Jensen, Lau-
ritzen, and Olesen 1990), have been proven to be the most
successful (Xiang 2002).

Existing LJF inference algorithms (Xiang 2002) all follow
the Hugin architecture for inter-agent message passing. Be-
liefs are propagated as inter-agent messages calculated over
the linkage trees connecting two adjacent subnets. For an
LJF local JT Ti to deliver a message to Tj over Ti’s link-
age tree Lij , each linkage Qi in Lij is assigned an extended
linkage potential and together all the potentials compose an
inter-agent message. For example, consider the LJF with
local JTs and linkage trees shown in Figure 1 (b). An inter-
agent message, originated from G0 to be delivered to G3, is
calculated over their corresponding linkage trees L0 and L′

0
.

The message consists of the extended potentials over three
linkages Q1, Q2 and Q3.

The local belief of each subnet must be updated relative
to the global system belief by absorbing incoming messages
from its adjacent subnets. The Hugin-based global inference
consists of a coordinated sequence of inter-agent message
passing for all subnets. Typically, a random root agent is
selected, and two rounds of inter-agent messages passing are
recursively carried out amongst all agents. However, each
inter-agent “Hugin” message is no longer passed between
two JT clusters as in its original context. Now, we have two
subnets each having its own internal structure of a local JT.
Therefore, the inter-agent message passing must be coupled
with local message passing. With the existing Hugin-based
architectures, a round of local updates is required to bring
subnets to local consistency for the purpose of calculating
an outgoing inter-agent message, as well as absorbing an
incoming one. This obviously results in a significant amount
of local message passing in local JTs.

We show such extensive local message passing with an
example. In Figure 1 (b), suppose G0 is the root. During
inward message passing, G0 will receive three inter-agent
messages, one from each of its three neighbors, G1, G2 and
G3. First, these three subnets must achieve their local con-
sistency to obtain the inter-agent messages for G0. More
importantly, G0 must update its local belief upon the arrival
of each inter-agent message, thus for a total of three times.
Each local propagation involves a full round of local mes-
sage passing, but the resulting local JT is not consistent with
system belief until after the very last update.

We may view the multiple local propagation as a means
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to establish a transitional state of local consistency within a
local JT. Given such transitional consistency, however, the
globally consistent posterior belief is not available until ad-
equate amount of incoming messages have been received
from neighboring agents. Nevertheless, we can not forgo
the repeated local updates due to the fact that each pair of
linkage trees are used as a single Hugin separator. An inter-
agent message coming from one direction must be imme-
diately processed (i.e. locally propagated) since its linkage
tree storage will be soon occupied by another message from
the opposite direction. The Hugin-based architectures must
maintain the costly transitional consistency in order to han-
dle the inter-agent message passing correctly.

3 A New LJF Inference Architecture

Aiming at improving the efficiency of local computation, we
present a new LJF global inference architecture. Our archi-
tecture is based on the same underlying LJF construct, but
extends the Shenoy-Shafer algorithm (Shenoy and Shafer
1986). Local propagation is optimized in terms of both the
total number of propagations and the required amount of lo-
cal message passing.

3.1 Linkage Tree as Message Buffer

Given two adjacent agents in an LJF, each agent maintains
its own linkage tree. These two linkage trees are constructed
over the same d-sepset, thus containing a same set of link-
ages and linkage separators. During the global propaga-
tion with existing algorithms, the two corresponding linkage
trees serve the purpose of a single Hugin separator. This
treatment guarantees the correctness of the Hugin-based
message passing. However, as an inter-agent message is de-
livered between two subnets each with an internal JT struc-
ture, maintaining a single conceptual separator demands im-
mediate process of the message. That is, a complete round
of local message passing must be conducted repeatedly.

Contrary to the Hugin architecture, messages in Shenoy-
Shafer architecture are explicitly calculated and stored. That
is, two message buffers are allocated for each pair of adja-
cent JT clusters. Extending the idea to the LJF structure,
we can simply view each linkage tree as a message buffer.
Indeed, it is natural to treat LJF linkage trees as message
buffers as each of them is maintained independently by an
agent and no additional storage is required.

Inter-agent message passing under our new architecture is
now buffered into the linkage tree. Let Ai and Aj be two
adjacent agents. An inter-agent message M passed from Ai

to Aj is first obtained from Ai’s linkage tree Li. M con-
sists of a set of potentials for all linkages in Li. Next, M
is delivered to Aj and stored at Aj’s corresponding linkage
tree Lj . That is, each potential of M is stored in the corre-
sponding linkage of Lj . Since the local propagation is no
longer triggered by any incoming message, an agent deter-
mines when to perform the local message passing following
certain global propagation rules.

We use a standard non-rooted message scheduling
scheme (Shenoy and Shafer 1986). Rather than following
a recursive call during the global propagation, each agent

starts to process incoming and outgoing inter-agent mes-
sages simultaneously. The coordination of the message
passing is controlled by two simple rules:

-Rule 1. When an agent has received all except one mes-
sage from its adjacent agents, the agent calculates an out-
going message to that particular neighbor.

-Rule 2. When an agent has received the last message from
its adjacent agents, the agent absorbs the message, up-
dates the local belief and calculates all outgoing messages
to its other neighbors.

Based on the above two rules, we present Algorithm
Communicate Belief that runs at each individual agent
during the global propagation process.

Algorithm 1 Communicate Belief
Let Ti(i = 1, ..., n) be the local JTs and H the corre-

sponding hypertree of an LJF L, which is populated by n
agents with one at each subnet. Each agent Ai has Ki

adjacent subnets. When called, each agent Ai performs the
following:
1. Set cnt= Ki;
2. While( cnt �= 0) {
3. Wait for incoming messages;
4. If an incoming message is received
5. Set cnt = cnt− 1;
6. If ( cnt == 1 && ∃ Aj such that incoming
7. message buffer for Aj is empty )
8. Deliver the first outgoing message to Aj;
9. }
10. Conduct local propagation in Ti;
11. Deliver all remaining outgoing messages;

The global belief propagation with Algorithm
Communicate Belief is controlled by an implicit
order of inter-agent message calculation. Repeated local
propagation is avoided. Regardless of the network topology,
each agent requires only two rounds of local propagations:
one at Line 10 after all messages have arrived, and one
at Line 8 when local propagation is implicitly needed to
calculate the message. We show in the next sections that
these two rounds of local message passing can be further
optimized with partial local propagation.

3.2 Partial Local Propagation

An agent’s correct local belief, w.r.t the LJF global system
domain, is obtained through receiving inter-agent messages
from its adjacent agents. Under the Hugin-based architec-
tures, local consistency is required to 1) compose an outgo-
ing message and 2) absorb an incoming message. The local
consistency is costly maintained: a full round of local JT
propagation. Nevertheless, a consistent local JT during the
global propagation process does not reflect the global con-
sistency, until all incoming messages have arrived. Chain-
pattern partial propagation was proposed to facilitate the ab-
sorbance of an incoming message over the linkage tree (Xi-
ang 1995), but it is restricted to the context of host trees and
has limited impact on reducing the total cost of local propa-
gation under the Hugin architecture.
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In our new architecture, it is not necessary to constantly
maintain such transitional consistency. A local JT is kept
partially consistent for most of the time during the global
propagation. We first introduce the concept of a linkage host
tree and an extended linkage host tree to support the partial
propagation.

Definition 1 Linkage host tree. Let Ti be a local JT and
Li be a linkage tree connecting Ti to an adjacent local JT.
In Ti, H is the set of linkage host clusters for linkages in Li.
Then a JT Th can be constructed by connecting all clusters
of H , and Th is called a linkage host tree of Ti w.r.t. Li.

For example, consider again the subnet G0 in Figure 1
(b). Figure 2 shows the local JT T0 and the linkage tree L0

to its neighbor T3. Suppose the root cluster of T0 is Cr. The
linkage hosts for linkage tree L0 are clusters Cr, C1 and C3,
each shown with a bold border. These three clusters can be
linked into a JT in which the dashed line indicates the extra
link needed. This JT is the linkage host tree of T0 w.r.t. L0.

Definition 2 Extended linkage host tree. Let Ti be a
local JT and its linkage host tree Th that corresponds to a
linkage tree Li. The minimum subtree of Ti that contains all
clusters in Th is called an extended linkage host tree Te of
Ti with regards to Li.

In Figure 2, linkage host clusters Cr, C1 and C3, together
with a non-host cluster C2, construct an extended linkage
host tree Te. Te is shown in the shaded area of T0.

Note that a linkage host tree is a conceptually defined
structure that contains only linkage host clusters. It may not
be a subtree of the local JT. Meanwhile, an extended linkage
host tree is a subtree within the local JT, containing clusters
possibly other than linkage hosts.

T0

L0

Cr

C3

C2

C1

Te

Figure 2: The local JT T0 from Figure 1, shown with linkage tree
L0, linkage host tree Lh and extended linkage host tree Te. The
figure also shows an example of the partial local propagation for
calculating the first outgoing message.

Partial Propagation for Message Calculation

An outgoing inter-agent message contains a set of linkage
potentials each obtained from its corresponding linkage
host. During message calculation, all linkage hosts, in the
linkage tree w.r.t. to the receiver of the message, should
contain the correct potential. Rather than maintaining a
consistent local JT, we only need to make sure that all

linkage hosts are updated with current beliefs. Thus, we
optimize the original full-scale local propagation to a
partially conducted local message passing as described in
Algorithm Cal Single MSG

Algorithm 2 Cal Single MSG.

Let Ai and Aj be two adjacent agents. Ai’s local JT is Ti

with the set of clusters C. Ti’s linkage tree to Aj is L. In Ti,
H is the set of linkage hosts of L and the extended linkage
host tree is Te. When called, an inter-agent message passed
from Ai to Aj is calculated as the following:

Step 1. For all linkage trees of Ai connecting to neighbor-
ing agents except Aj , absorb the extended linkage potential
and update the belief on corresponding linkage hosts.

Step 2. Randomly select a linkage host Cr ∈ H ⊂ C as
the root of Te as well as Ti. Direct all clusters away from
Cr in Ti.

Step 3. Perform an inward message passing on Cr in Ti,
such that Cr calls recursively all child clusters to send an
inward message.

Step 4. Perform a restricted outward message passing on
Cr within the context of Te, such that Cr sends outward mes-
sages to all linkage hosts recursively.

Step 5. For each linkage in L, obtain corresponding ex-
tended linkage potential and compose the outgoing message.

Consider again Figure 2. Suppose we want to calculate
an outgoing message from T0 over linkage tree L0. After
Step 1 of Algorithm Cal Single MSG , we select Cr and
perform an inward message passing toward Cr in the lo-
cal JT T0. The arrows between the clusters show the mes-
sage flow, which is originated from all leave nodes and with
messages recursively passed toward the root. Next, outward
message passing is originated from root Cr, but the outward
messages only reach the clusters within the extended linkage
host tree Te. After this phase of partial message passing, we
can compose an outgoing message over L0 through the link-
age host of each linkage in L0, as shown with the shaded
thick arrows.

We may select any root for the partial local propagation,
as long as the outward passing covers the extended linkage
tree. However, it is most efficient to root the partial message
passing at a linkage host. Given such a root, we conduct
a full inward passing so the local messages carrying the
probability information of all JT clusters flow towards the
root. Then a partial outward passing is performed only in
the context of the extended linkage host tree to distribute
belief originated from the root within the clusters of the
extended linkage host tree. The local JT is not consistent as
the propagation is not complete. Nevertheless, the extended
linkage host tree is consistent, so that all linkage hosts
are equipped with the correct local knowledge to form the
outgoing inter-agent message.

Partial Propagation for Local Consistency

When an agent receives all incoming messages, the local
belief with all messages absorbed is consistent to the global
system belief. As mentioned earlier, the local belief update
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Figure 3: An example of partial local propagation for updating
local belief upon the arrival of last incoming message. Shown with
the local JT T0, linkage tree L0 and extended linkage host tree Te.

at Line 10 of Algorithm Communicate Belief can also be
replaced as a partial propagation. The partial local propa-
gation was used for sending a single outgoing message, and
we extend it to incorporate all incoming messages.

In fact, a closer look at Algorithm Communicate Belief
reveals that we need to deal with only one additional incom-
ing message after a call to Algorithm Cal Single MSG .
Moreover, the sender of this message is also the exact re-
ceiver of the outgoing message just calculated by the call to
Cal Single MSG . Recall that by the time a call to Algo-
rithm Cal Single MSG is finished, all previously received
messages have already been absorbed into the extended link-
age host tree. Thus, we only need to update the same ex-
tended linkage host tree to absorb this last message.

Essentially, we have taken full advantage of the non-
rooted message scheduling scheme (Rule 1 and Rule 2)
in our new architecture. Algorithm Cal Single MSG
consists of full inward (in the context of local JT) and partial
outward (in the context of the extended linkage host tree)
message passing. Similarly, we design another partial local
propagation algorithm in order to achieve local consistency
upon receiving the very last message.

Algorithm 3 Update Belief .

Let Ai and Aj be two adjacent agents. Ai’s local JT is
Ti with the set of clusters C. Ti maintains a linkage tree L
to Aj . In Ti, H is the set of linkage hosts of L and the ex-
tended linkage host tree is Te. Suppose Ai has calculated an
outgoing message to Aj with Algorithm Cal Single MSG
with selected root Cr. Ai, on receiving the last incoming
message from Aj , performs the following:

Step 1. Ai absorbs message from Aj by updating belief of
all clusters in H with the extended linkage potential of each
linkage in L.

Step 2. Perform a restricted inward message passing on
Cr in Te, such that Cr calls recursively all clusters in H to
send an inward message.

Step 3. Perform an outward message passing on Cr in lo-
cal JT Ti, such that Cr sends outward messages to all link-
age hosts recursively.

An example of the partial belief update is illustrated in
Figure 3. Suppose the last incoming message arrives over
linkage tree L0. The linkage hosts Cr, C1 and C3 have ab-

sorbed the message and the updated potentials of these clus-
ters need to be propagated in the local JT T0. As the mod-
ified potentials are only for clusters in the extended linkage
host tree Te, we first issue a partial inward pass in Te for
Cr to collect all inward messages. Next, outward messages
are propagated from Cr to all the cluster in T0, which brings
all clusters to locally consistency with regard to the received
incoming message.

By adopting the new message passing architecture and
defining the concept of extended linkage host tree, we are
able to restrict the propagation to a usually much smaller
context in the local JT, and completely avoid full rounds of
message passing during the LJF global propagation process.

4 Soundness

We first show that an inter-agent message calculated with
Algorithm Cal Single MSG is consistent to the JT’s local
belief.
Proposition 1: Let T over the set of local variables N be a

local JT of an agent A. Let L be T ’s linkage tree connecting
to an adjacent agent A′ over their d-sepset I. The extended
linkage host tree is H , with Cr being the root cluster. For
each linkage Q ∈ L, let Φ∗(Q) be the extended linkage po-
tentials. After a call of Cal Single MSG to calculate an
inter-agent message to A′, we have

∏

Q∈L

Φ∗(Q) = const
∑

N\I

Φ(N)

where Φ(N) is the local belief calculated by multiplying
N ’s initial belief and its all incoming messages except the
one from A′.

Proof: First, consider the root cluster Cr in linkage host tree
H as well as local JT T . After step 1 of Cal Single MSG,
the messages except from A′ are absorbed. Next, an in-
ward propagation is performed in the local JT with re-
gard to Cr as the root. Therefore, the potential associ-
ated with root cluster Cr defines the marginal of Φ(N) onto
Cr. For Cr’s corresponding linkage QCr

in L, Φ(QCr
) =

const
∑

N\QCr

Φ(N). Next, consider all other linkage host

clusters in H . Step 4 performs a partial outward JT mes-
sage passing within H . After each Ci ∈ H has received
an outward message, the potential associated with Ci de-
fines the marginal of Φ(N) onto Ci, and we have Φ(QCi

) =
const

∑
N\QCi

Φ(N).

Since all clusters in H are consistent with the local belief
and incoming messages, the correct linkage potentials can
be obtained. Therefore, based on the definition of extended
linkage potential, we have

∏
Q∈L α(Q) = constΦL(I) =

const
∑

N\I Φ(N).

�

Next, we show that after a call to Algorithm
Update Belief , the local belief of an LJF local JF defines
the marginal of joint system potential.
Proposition 2: Let F be the LJF of an MSBN over domainN
and Communicate Belief is performed in F. Let A be the
agent of a local JT T over the local variables N, and let Tc be
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the clusters of T. A has n neighboring agentsA1, A2, ..., An.
Let

Φ(N) =
∏

C∈Tc

Φ(C)
n∏

i=1

Φ(MAi→T ),

where Φ(C) is the potential initially assigned to a cluster C,
and an incoming message received from T’s one neighboring
agent is denoted by Φ(MAi→T ). Then,

Φ(N) = const
∑

N\N

ΦF (N ),

where ΦF (N ) represents the global belief of F over N .

The most intuitive way to verify its validity is to view
our global message passing in LJF as the Shenoy-Shafer
message passings integrated with partial propagations for
local updates. Proposition 1 shows that the message com-
puted with Algorithm Cal Single MSG is consistent with
local belief. Similarly, Algorithm Update Belief updates
the local belief coherently given the last incoming message
with a partial propagation. A proof to Proposition 2 can
be simply lifted from the correctness of Shenoy-Shafer JT
global propagation to our LJF message passing architecture.

Based on the above two propositions, after a call to
Communicate Belief in an LJF is finished with all inter-
agent messages delivered, each agent’s local belief is locally
as well as globally consistent w.r.t system belief.

5 Comparison

In an analysis with a comparison to other LJF inference ar-
chitectures, we use the follow parameters:

• c: the maximum number of clusters in a local JT.

• d: the maximum number of clusters in an extended link-
age host tree.

• s: the maximum number of adjacent agents.

• q: the cardinality of the largest cluster.

With Hugin-based LJF inference, each local JT cluster
sends a message to, and receives a message from, each of its
adjacent clusters during the local update. The time complex-
ity of a single local update is thus O(2c2q) (Xiang, Jensen,
and Chen 2006). Due to the fact that an agent must up-
date local belief whenever a message is delivered from its
adjacent agent, the local time complexity is O(4cs2q). We
now consider the complexity of the local calculation with
our architecture. During a call to calculate the first outgoing
message, as only partial propagation is performed, the time
complexity for message passing among local clusters is be-
tween O(c + d) and O((c + d)2q), which is also the cost
during the partial update on the last incoming message. The
total cost for local calculation during a round of global belief
update is between O(2(c+d)) and O(2(c+d)2q). As shown
in Table 1, the local computation in our new architecture is
clearly more efficient than the other methods, and particu-
larly it does not depend on the topology of the network, e.g.
the number of neighboring nodes.

Local Cost

Hugin-based O(4cs2q)
Lazy-based O(4cs) - O(4cs2q)

Our architecture O(2(c+ d)) - O(2(c + d)2q)

Table 1: Comparison of time complexity for local computational
cost.

6 Conclusion

Exact posterior calculation is one of the most important tasks
of multi-agent probabilistic inference. The existing LJF-
based algorithms typically extend the Hugin message pass-
ing and require an extensive amount of computation in LJF
local JTs. In this paper, we presented a new global infer-
ence architecture based on the Shenoy-Shafer message pass-
ing scheme. We introduced new semantics for the LJF link-
age trees, so that even the inter-agent messages of the same
amount and content are passed, the local computation re-
quired in each local JT is optimized.

The improvement is realized first through the elimination
of repeated local updates. Contrary to the existing methods
that constantly maintain a transitional local consistency, our
approach aims at one final consistent state at each local JT
during the global propagation. Secondly, we conduct only
partial propagation to handle all inter-agent messages. That
is, no full-scale local message passing is ever invoked during
the global propagation process.

The correctness of LJF global propagation is guaranteed
in our new architecture. All local JTs are locally as well as
globally consistent with the LJF joint system belief when the
global propagation terminates. The complexity analysis has
shown that the cost for message passing in an LJF local JT
with our new architecture is much lower than the existing
methods.
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