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Abstract
Dialogue-based intelligent tutoring systems use speech act 
classifiers to categorize student input into answers, questions, and 
other speech acts. Previous work has primarily focused on 
question classification. In this paper, we present a complimentary 
speech act classifier that focuses primarily on non-questions,
which was developed using machine learning techniques. Our 
results show that an effective speech act classifier can be 
developed directly from labeled data using decision trees.  

Introduction   
Intelligent tutoring systems (ITS) are artificially intelligent 
computer programs that seek to be as effective instructors 
as human tutors (Sleeman & Brown, 1982; VanLehn, 
2006; Woolf, 2009). Within this larger research program, a 
group of researchers have attempted to make ITS 
interactions more naturalistic and conversational. In order 
to accomplish this goal, researchers have analyzed corpora 
of human-human tutorial dialogues to better understand 
both individual dialogue acts and patterns of acts that occur 
in human tutoring (Graesser & Person, 1994; Graesser, 
Person, & Magliano, 1995; Litman & Forbes-Riley, 2006; 
Person, Lehman, & Ozbun, 2007; Boyer et al., 2009; Chi, 
Roy & Hausmann, 2008; Chi, Siler & Jeong, 2001; Lepper 
& Woolverton, 2002).  The linguistic unit of analysis in 
these studies is a speech act or dialogue act which abstracts 
away from the content of an utterance to its underlying
communicative function, e.g. question, assertion, or 
directive (Searle, 1969). 

We are currently engaged in building an ITS, called 
Guru, to emulate an expert human tutor for biology 
(D'Mello, Olney, & Person, 2010). To date we have 
collected 50-hours of expert human tutorial dialogues, 
which we have transcribed, coded into dialogue acts, and 
analyzed (D'Mello et al., in press). Our analyses revealed 
that state transition networks constructed from sequences 
of tutor and student dialogue acts can capture a large 
portion of the observed behavior in our expert human 
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tutoring corpus. The collaborative dialogue patterns  in our 
corpus reveal a rich interleaving of initiative between 
student and tutor, yielding a finer coding of non-question 
dialogue acts.  These state transition networks can be used 
as the backbone for an ITS, as long as the student’s 
utterance can first be classified to the same dialogue act 
coding scheme. In this paper we outline a machine learning 
based approach to dialogue act classification for ITS. 

Related Work
A substantial amount of research has addressed dialogue 
act tagging over the past two decades (Fisel, 2007; Olney, 
Graesser, & Person, 2010; Samuel, Carberry, & Vijay-
Shanker, 1998; Stolcke et al., 2000; Verbree, Rienks, & 
Heylen, 2006; Sridhar, Bangalore, & Narayanan, 2009; Di 
Eugeno et al., 2010).  The plurality of taxonomies, the 
differences amongst available features, and the techniques 
used have yielded a variety of approaches. Verbee et al. 
(2006) examined the features used by 16 dialogue act 
tagging studies and identified 24 features that have been 
previously used. While an extensive discussion of these 
features is outside the scope of the present paper, the 
features fall loosely into four categories: word based (e.g. 
cue phrase), acoustic (e.g. prosody), surface form (e.g. 
sentence length), and context (e.g. previous dialogue act). 
 Not all 24 features are meaningful for all applications; for 
example, Sridhar et al. (2009) make use of acoustic 
features in speech input, e.g. prosody, which are not 
available in the present text-based system.  

Olney et al., (2003) developed a speech act classifier 
(SAC) that focuses primarily on question classification 
according to the scheme developed by Graesser and 
colleagues (Graesser, & Person, 1994). That SAC 
contained 16 categories for questions, two categories for 
metacommunicative acts, and one for an assertion. The 
SAC’s emphasis on question classification was highly 
aligned to the dialogue model of the AutoTutor system in 
which it was embedded (Graesser, Olney, Haynes, & 
Chipman, 2005) In that system, dialogue is tutor-driven, 
such that the most natural student dialogue act at any time 
is a statement in response to a question posted by the tutor.
Questions therefore represent a major shift in initiative, 
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and students’ contributions must be correctly classified in 
order to discriminate between questions and other speech 
acts and respond to the right category of question, e.g. 
causal question rather than judgmental question. Assertions 
in the AutoTutor system are not differentiated, i.e. there is 
only one type of statement in this coding scheme. 

The choice of classification method is also important 
and directly related to the features selected. Fisel (1997) 
looked at several different methods, including decision-
trees, Hidden-Markov models and n-grams, Bayesian 
classifiers, neural networks, transformation-based learning 
and more. Although many of these techniques could be 
effective, inspection of our tutorial dialogue transcripts 
(described below) led us to conclude that many of the 
distinguishing characteristics of our dialogue acts were 
word-based and semantically-based, rather than driven by 
the surrounding dialogue acts. Hidden Markov models and 
n-grams appear less suitable for our purpose as frequently 
their use focuses on sequences of dialogue acts.  Instead 
we focus on the following five techniques from machine 
learning that have been widely effective in a number of 
applications (Wu et al., 2007): ZeroR, NaiveBayes, 
LogitBoost, J48, and IBk. These machine learning 
techniques and their parameters for the present study are 
further discussed in the Methods section. 

Corpus
Our expert tutoring corpus was created by collecting 
observations of naturalistic one-to-one expert tutoring 
(Olney et al., 2010; Person et al., 2007).  Ten expert math 
and science tutors were recruited to participate in the 
project. The following criteria were used to define 
expertise: all have a minimum of five years of tutoring 
experience, a secondary teaching license, and a degree in 
the subject that they tutor. All of the students in our study 
had genuine need of tutoring and were either sought 
tutoring or were recommended for tutoring by school 
personnel. The content of the corpus came from tutoring 
sessions from a number of different math and science 
courses. Guru (the ITS we are developing) is designed 
specifically for biology tutoring rather than a variety of 
science courses. 

Fifty, one-hour, one- on-one tutoring sessions with these 
expert tutors were videotaped, transcribed, and coded into 
dialogue move categories. Taxonomies, or coding 
schemes, were developed to classify every tutor and 
student dialogue move (D’Mello et al., 2010), but only the 
student scheme will be described here, since only student 
moves are unknown and require classification. A student 
dialogue move was a dialogue act, an action, or a 
qualitative contribution made by a student. A taxonomy 
using 16 categories was developed for classification of all 
student dialogue moves. Some move categories capture the 
quality of student dialogue move, e.g., correctness of
answer, while others capture types of questions, 
conversational acknowledgments, and student actions, such 

as reading aloud. The Student Dialogue Move Scheme is 
presented in Table 1.  

Table 1. Student Dialogue Moves 

Student Move Example

Acknowledgment Yes, ma’am.
Common Ground Q. The dipoles?
Correct Answer Dipoles have two poles.
Error Ridden Answer Poles.
Gripe I might as well not pay attention.
Knowledge Deficit Q. Well, what’s a Dipole?
Metacomment I don’t know.
Misconception So dipoles have no polarity.
No Answer
Offtopic Conversation It could be.
Partial Answer Dipoles have more than one pole
Read Aloud
Social Coordination 
A.

Hand me the calculator.

Student Works 
Silently
Think Aloud Uh, dipoles are like little magnets 

which are from before
Vague Answer Yeah, polarity

Note. Q = Question. A. Action 

Four trained judges coded the 50 transcripts on the 
dialogue move schemes, for which Cohen’s Kappas were 
computed to determine the reliability of their judgments. A
Kappa score of .88 was obtained for the Student Move 
Scheme; this is indicative of excellent reliability. In all, 
47,296 dialogue moves were coded. Most classification 
methods require thousands of data-points to create robust 
decision models (Hämäläinen & Vinni, 2006). By having 
access to such a large database, we are not limited by these 
constraints.  

As mentioned above, not every coded student dialogue 
act is a speech act. Some are nonverbal student behaviors, 
such as “Student Works Silently” and “No Answer.” 
Prosodic features are likewise difficult to interpret from 
text input. Therefore the number of categories needed to 
implement a runtime ITS are fewer than those required to 
code the face-to-face interaction in our tutoring corpus. 
Likewise, the intent of an ITSs SAC is different from that 
of corpus coding scheme. An ITS could use the SAC as a 
dispatch module, routing the problem of handling the 
student’s input to the relevant module. For a question 
category that relevant module would be a question 
answering module, and for a statement/answer category the 
relevant module would be an answer assessment module. 
 Under this conceptualization, a coarser scheme is 
sufficient in an ITS because other components will further 
refine the categories. Thus the five categories of interest 
from our original scheme are Metacomment (representing 
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838 dialogue acts), Common Ground Question (1060 
dialogue acts), Knowledge Deficit Question (515 dialogue 
acts), Acknowledgement (5794 dialogue acts), and Answer 
(5129 dialogue acts). Note that Answer represents a 
collapsing of answer types of varying quality such as 
correct or partially-correct answers, vague or error-ridden 
answers, and no-answers.  

Our five category scheme is highly complementary to 
the previous work presented in (A. Olney et al., 2003). 
That work makes finer distinctions in question 
classification, essentially partitioning the present 
“Knowledge Deficit Question” into 16 subtypes of 
question. Similarly, the present “Metacomment” category 
is represented in the (A. Olney et al., 2003) scheme as 
“Metacognitive” and “Metacommunicative.” Conversely, 
the present classifier extends that previous work by 
subdividing “Contribution” into “Answer” and 
“Acknowledgement.” 

Method
WEKA (Hall et al., 2009) is a tool kit for various machine 
learning and visualization algorithms written in Java. 
WEKA is widely used in multiple applications, from 
bioinformatics to network security (Frank, Hall, Trigg, 
Holmes, & Witten, 2004; Panda & Patra, 2008), and is 
extremely easy to use with dialogue analysis due to its 
included packages. Because of the large memory 
requirements of our data set, this project was run on a 64-
bit build of WEKA. 

Many of the classifications algorithms used in machine 
learning require numerical or categorical input and cannot 
accept text-strings. WEKA has numerous packages for pre-
processing data, including string-to-numeral 
transformation filters needed to use most classifying 
algorithms using the StringToWordVector package. This 
filter can be configured to do tf-idf weighting. The tf-idf 
(term frequency–inverse document frequency) weight is 
commonly used in text mining applications due to its good 
performance and is a statistical measurement to determine 
how important a word is in a corpus. We used tf-idf to 
generate features from student utterances based on our 
hypothesis that word level features are the most 
discriminating features for this dataset. 

The WEKA filter transformed the text into 2300
weighted numerical features for use with its classifier 
packages. This data set was evaluated with five different 
classification algorithms, representing several different, 
common approaches to classification, each of which was 
validated using 10-fold cross-validation. First, ZeroR, a 
simple rule-based classifier that classifies all dialogue 
moves into the most prevalent classification. Second, 
NaiveBayes, which assumes feature independence and uses
a Bayes rule for classification. Third, IBk, a classifier that 
uses a version of the k-nearest neighbor (k-NN) algorithm 

which was configured with k=10. j48, an open source 
implementation of the C4.5 algorithm, was also used. It 
builds decision trees designed to give the maximum 
discrimination between data in a training set. j48 is 
particularly interesting because its decision-tree allows 
manual inspection and simpler visualization. Lastly, we 
used LogitBoost, which uses a boosting algorithm to create 
a strong learner out of a collection of small weak learners. 
These weak learners used a decision stump for their 
classifiers.  

In addition to the tf-idf feature-based models, we 
constructed another model based on the best tf-idf model 
but with features suggested by the analysis in (Verbee et 
al., 2006). For our corpus, the most relevant features were 
sentence length (expressed in characters), the presence of a 
question mark, and the previous tutor speech act.  Results 
for the five basic models and the augmented model are 
presented in the next section. 

Results
The overall results for the five different classifiers using tf-
idf features are presented in Table 2. The numbers 
presented show the percent of correctly classified instances 
aggregated across all categories. 

Table 2. Classifier results 

Classifier Percent Correct
ZeroR 45.72
NaiveBayes 66.51
IBk 78.49
j48 79.33
LogitBoost 77.84

The ZeroR classifier, a knowledge poor baseline, 
classified all dialogue moves into Acknowledgment (45% 
of the corpus). Three of the five classification methods, 
IBk, j48 and LogitBoost, had moderate results, with j48 
performing the best by a small margin. Thus these three 
models have almost twice the accuracy of the majority 
class baseline. The naïve Bayes classifier’s performance 
was intermediate. The success of the three classification 
models suggests that groupings of features are needed to 
produce good results. NaiveBayes, in comparison, 
considers each feature as independent from other features.
This independence assumption is violated because this 
grouping of features required for good classification
demonstrates that the features in the data are not 
independent, leading to the poor performance of the 
classifier. 

Class-level performance for j48, the best classifier, is 
presented in Table 3. j48 is proficient at classifying 
Acknowledgments and Answers, with moderate accuracy, 
precision and recall rates. The other three, however, are not 
as accurately classified using this approach, thereby 
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leaving room for some improvement. The scores for 
Common Ground and Knowledge Deficit Questions are 
particularly low, with TP-rates of only 13% and 4%
respectively. Additionally, unlike the other categories, their 
precision and recall rates are imbalanced as well, with 
substantially higher precision than recall in both cases.  

Table 3. Accuracy statistics for the j48 classifier 

Category TP
Rate

FP
Rate

Precision Recall

Common Ground 
Question

0.039 0.006 0.344 0.039

Knowledge 
Deficit Question

0.125 0.005 0.452 0.125

Metacomment 0.520 0.025 0.586 0.520
Acknowledgment 0.949 0.111 0.878 0.949
Answer 0.862 0.197 0.705 0.862
Weighted Avg. 0.778 0.122 0.741 0.778

LogitBoost and IBk both also classify Answers and 
Acknowledgements reasonably well, but their 
classification of the other three categories is worse than 
j48. The overall Kappa statistic for the j48 classifier was 
0.685. 

The j48 classifier produced a large decision tree with 
over 400 leaves, so a complete description of the tree is not 
practical due to space constraints. However, three leaves 
account for 51% of the total mass (each leaf has over a 
thousand classifications), and an inspection of the branches 
leading to these leaves yields some insight into the 
decision making process of the tree.  In a nutshell, the 
decision tree that j48 creates looks to see if certain words 
are contained in the dialogue move. For each of the 
classifications, therefore, a list of excluded and included 
words can be created. Table 4 presents the excluded words 
that the first heavy leaf (representing 4068 Answers) uses 
to classify a dialogue move. In other words, if a move is 
lacking all of these words, it is classified as an Answer. 
Table 4 also includes the frequency with which each word 
appears in the corpus. 

Table 4. List of excluded words in the first heaviest leaf of 
the j48 decision-tree, term-frequency included  

Excluded Words (word term-frequency)
oh (869) know (259) how (105) is (759)
mmm (115) right (1158) where (60) are (137)
sure (47) sure (47) wait (47) you (913)
hmm (2019) mm (1998) if (151) really (64)
i (1675) ok (1836) got (130) yup (21)
want (40) why (49) dont (292) which (107)
makes (38) maam (224) do (387) like (470)
me (48) yeah (1157) thing (76) huh (186)
wouldnt (56) alright (529) was (188) yes (442)
isnt (42) okay (335) height (76) does (53)

An important characteristic of this list it is mostly 
devoid of domain-specific content words (e.g., “speed”, 
“cell”, “mitosis”, “hydrogen”). The only exception in this 
leaf was the word “height” from math and physics tutoring. 
This trend of few or no content words continues as we 
traverse through the tree, a beneficial result 

The second heaviest leaf (representing 1669 
Acknowledgments) relies on both the exclusion and 
inclusion of words to determine its classification. 
According to this branch, the single included word, “OK,” 
is very diagnostic of an Acknowledgement. The words 
excluded by this branch are also very distinct. The words 
excluded show that an Acknowledgment is recognized by 
the exclusion of personal pronouns, such as “I” in this leaf, 
Metacognitive words, “know” and “remember,” and 
question initiators, such as “what.” Table 5 presents the 
word list for the second heaviest leaf.  

Table 5. List of words used by second heaviest leaf of the 
j48 decision-tree 

Category Word (term-frequency)
Excluded 
Words

know (259), remember (86), what (302),
mm (1998), i (1675), so (1164)

Included 
Words

ok (1836)

The third heaviest leaf (representing 1982 
Acknowledgments) again uses both the inclusion and 
exclusion of certain words. Interestingly, the word list for 
this leaf shares most of its words with the prior leaf. For 
this leaf, though, the text “mm”, previously on the 
excluded list, is now included. Since these latter two leaves 
represent around a quarter of the total number of 
classifications, the dual roles of words like “mm” suggest 
that the surrounding words in a dialogue move can greatly 
affect its classification.  Additionally, neither of these 
leaves have any content words, continuing to suggest that 
the features necessary for good classification of most 
categories are largely independent of domain. Table 6 
displays the word list for this leaf.  

Table 6. List of words used by third heaviest leaf of the 
j48 decision-tree 

Category Word (term-frequency)
Excluded 
Words

know (259), remember (86), what (302)

Included Words mm (1998)

Our second set of results is based on the best performing 
model, j48. Recall that this augmented model includes the 
tf-idf features from the first set, plus sentence length, 
previous tutor move, and the presence of a question mark. 
Classification accuracy for the augmented model increases 
to 85%, a 6% increase, with a somewhat higher Kappa 
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statistic of 0.775. Table 7 contains the statistics for this 
new classifier. 

Table 7. Accuracy statistics for the revised j48 classifier 

Category TP 
Rate

FP
Rate

Precision Recall

Common Ground 
Question

0.650 0.031 0.620 0.650

Knowledge Deficit 
Question

0.375 0.011 0.559 0.375

Metacomment 0.509 0.014 0.718 0.509
Acknowledgment 0.945 0.053 0.940 0.945
Answer 0.896 0.097 0.839 0.896
Weighted Avg. 0.858 0.063 0.853 0.858

It is notable that the overall percent correct increased by 
about 6% without reducing classification accuracy in the 
most accurate categories (See Table 3). Thus this 
augmented model showed very similar results for the 
Acknowledgements, Metacomments, and Answers 
categories, but provided a much better model for the 
previously less accurate classifications of Common Ground 
Questions and Knowledge Deficit Questions. This 
performance improvement is most dramatic in the 
Common Ground Question category where classification 
performance was 16 times better than in the prior model.  

The differences in results between the first and second 
j48 models suggests that one of our initial hypothesis, that 
word based features were highly diagnostic of dialogue 
acts, was true for some dialogue act categories but not 
others. Common Ground Questions, in particular, appear to 
be marked to a greater extent by superficial features such 
as the presence of a question mark and a shorter sentence 
length, e.g. “This one?” Knowledge Deficit questions are 
more difficult to categorize, however they do share some 
of the same features of Common Ground Questions.  

These results look similar to those in other efforts, such 
as those of Sridhar et al. (2009); however, the corpus used 
in our research is different than those used previously. In 
the cases of corpora that necessarily include features 
unavailable to our system (prosody, etc.), these differences 
are largely insurmountable. Other studies, such as the use 
of Latent Semantic Analysis (LSA) and an IBk classifier 
by Di Eugeno et al. (2010), are more similar and we are 
interested in future possible performance comparisons. 

Conclusions 
We presented a machine learning approach to constructing 
a speech act classifier from an annotated tutorial dialogue 
corpus. Although the overall accuracy of the classifier is 
moderately high, the accuracy for the less frequent 
categories is somewhat lower.  For a runtime ITS, the 
accuracy for all categories would ideally be in the 80-90% 
range. Our approach focusing primarily on non-questions 

is complementary to that of Olney and colleagues (2003) 
which was more focused on questions and an area of future 
exploration is in the combination these classifiers.  

Some possible limitations of this study relate to the 
transferability of the features used to an ITS. Since the 
features used in this study were derived from transcripts of 
human-to-human tutorial dialogue, it may be the case that 
the transcribed speech of students differs significantly from 
the typed input of students using the ITS. Furthermore, the 
punctuation and word length features used by the 
augmented model may not be properly calibrated for typed 
student input. In future work we will analyze student 
sessions with the Guru ITS to determine if the accuracy of 
the augmented j48 classifier is preserved. 

Additionally, future work should determine what the 
cost is to the system for incorrectly classifying a speech act 
to one of the other categories. These costs may differ 
depending on the categories in question, e.g. is it worse to 
misclassify an acknowledgement as a question or an 
answer? This cost could be a valuable tool for fine tuning 
the precision/recall curve for our classifier. 
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