
An Efficient Random Decision Tree Algorithm
for Case-Based Reasoning Systems

Tor Gunnar Houeland
Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
houeland@idi.ntnu.no

Abstract

We present an efficient random decision tree algorithm for
case-based reasoning systems. We combine this algorithm
with a simple similarity measure based on domain knowledge
to create a stronger hybrid algorithm. This combination is
based on our general approach for combining lazy and eager
learning methods. We evaluate the resulting algorithms on a
case base of patient records in a palliative care domain. Our
hybrid algorithm consistently produces a lower average error
than the base algorithms.

Introduction

Lazy learning approaches do not draw conclusions until it
is necessary, allowing them to collect all available informa-
tion before doing any generalization. This has the poten-
tial advantage of including highly relevant information that
an eager approach would not have access to, and adapting
the reasoning to the particular characteristics of the problem
query to solve. The drawback is that the system’s reasoning
(and computations) will only be performed all at the very
end when an answer is required. Eager methods have the
advantage that parts of their reasoning can be precomputed
during training, and they only need to store abstract gen-
eralizations which can typically take only a fraction of the
storage space.

In this paper we examine a hybrid approach that uses a
modified version of an eager method (random decision trees)
that can be partially precomputed and partially adapted to
the particular problem query. We examine the results for
determining similarity in a data set describing the results of
palliative care for cancer patients, which is an ongoing topic
of investigation in our research group.

For our random decision tree (RDT) algorithm the forest
of random trees can be grown once before the system be-
gins reasoning about cases, and we use internal data struc-
tures that can be incrementally updated in an efficient man-
ner when new cases are added to the case base. The data
structures additionally support efficiently considering only
selected subsets of the case base as training data at runtime.
This capability is combined with a simple similarity measure
based on domain knowledge to simulate having trained the

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithm on only the most relevant cases in a computation-
ally inexpensive manner. This high computational efficiency
and ability to be integrated with other uses of cases are the
primary strengths of our RDT algorithm.

In the next section we summarize some earlier research
results and relate it to our work. This is followed by a de-
scription of our RDT-based experiment in the domain of pal-
liative care for cancer patients. We describe and compare
4 different algorithms and discuss empirical results for run-
ning the algorithms on a case base of palliative care patients.
Concluding remarks end the paper.

Related Research

The topic of indexing cases beforehand to support efficient
retrieval during problem solving has been extensively stud-
ied in the literature. A popular form of indexing structure is a
tree with cases at the leaf nodes. One early example of such
a tree-based indexing structure used in case-base reasoning
is a kd-tree (Wess, Althoff, and Derwand 1994), which par-
titions the indexing space into disjoint areas. Each leaf node
is called a bucket, and contains the cases within a particular
area of the indexing space.

An ensemble method combines multiple models to pro-
duce a better result than any individual model would. This
approach has also been used for indexing trees, where multi-
ple trees are created and combined to address a single prob-
lem. Perhaps the most well-known example of such a tree
ensemble is the Random Forest (RF) classifier (Breiman
2001). RF grows a number of decision trees based on boot-
strap samples of the training data. For each node of a tree,
m variables are randomly chosen and the best split based on
these m variables is calculated based on the bootstrap data.
Each decision tree results in a classification and is said to
cast a vote for that classification, and the ensemble classi-
fier returns the class that received the most votes. RF can
also compute proximities between pairs of cases that can
be used for clustering and data visualization, and as a sim-
ilarity measure for case-based reasoning. We use a similar
concept of proximity to measure similarity in our random
decision tree algorithm.

Diversity is an important aspect of an ensemble classifier
that affects its accuracy. Bian and Wang (2007) found that
the performance of an ensemble learning approach varied
considerably for different applications. They studied homo-

401

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



geneous and heterogeneous ensembles and found connec-
tions between diversity and performance, and an increased
diversity for heterogeneous ensembles.

Gashler et. al. (2008) examined ways to increase the
diversity for ensembles of decision trees. They compared
an approach that split on randomly selected attributes as a
means to increase diversity, with an approach that combined
multiple tree algorithms to increase diversity. For our ran-
dom decision tree algorithm we similarly use entirely ran-
dom attributes, and also perform the splits at random.

Ferguson and Bridge (2000) describe a generalization of
similarity measures they call similarity metrics, and build
upon a way of combining similarity metrics called prioriti-
zation. This approach uses an indifference relation to pri-
oritize a secondary metric when no significant difference is
found based on the primary similarity metric. In our ap-
proach we also use two similarity measurements, but they
are integrated in a hybrid combination.

Richter (1995) introduced the knowledge container model
for CBR systems. In this model the system’s knowledge
is categorized into four categories: case vocabulary, cases,
similarity assessment and adaptation knowledge. A distinc-
tion was also made between compiled knowledge, which is
”compiled” in a very general sense before actual problem
solving begins, and interpreted knowledge that is assessed
at run time, during the process of problem solving. In our
research we integrate the similarity assessment with the in-
ternal storage of cases, and develop a method for efficiently
”compiling” the similarity knowledge for an ensemble of
random decision trees.

The utility problem occurs when additional knowledge
learned decreases a reasoning system’s performance instead
of increasing it (Minton 1990; Smyth and Cunningham
1996). Theoretically this will always occur for a CBR sys-
tem when the system’s case base increases without bound,
and has therefore been the subject of considerable research,
since the problem remains relevant even as computers be-
come faster and cheaper.

Patterson et. al. (2003) examine efficient retrieval as a
means to reduce the effects of the utility problem. They
present two indexing approaches that give efficiency gains
of up to 20 times faster retrieval, with a small reduction in
case base competency. As a similar trade-off, our research
focuses on a highly efficient method for lazy reasoning, with
a limitation on the type of decisions that can be performed
to determine similarity.

In an earlier study (Houeland and Aamodt 2010), we sug-
gest that the usefulness of an optimization should be mea-
sured by the effect it has on the reasoning system’s overall
utility. We continue this line of reasoning in the research
presented here, by examining the trade-off between accu-
racy and speed that occurs in the developed algorithms.

Random Decision Tree Experiment

Our random decision tree (RDT) algorithm is an example of
a general approach to combining machine learning methods
with case-based reasoning. Like a traditional CBR approach
we retrieve the local cases nearest to our input query (shown

Figure 1: Selecting a similarity-based local case subset for
use as training data. The cases within the circle are retrieved
as the closest neighbors of the marked case, and are used to
train an independent learning algorithm.

in figure 1), but we retrieve an unconventionally large num-
ber of cases (in the following experiment we retrieve half the
case base). We run a machine learning algorithm on this sub-
set of cases as training data, partially combining the lazy and
local attributes of a CBR retrieval with the eager and global
methods often used for more traditional machine learning
algorithms.

This combination is based on the intuition that CBR sim-
ilarity measures can often easily express rough case rele-
vance estimates based on domain knowledge, while eager
machine learning algorithms are typically very effective at
selecting precisely the best option among possible alterna-
tives, but without the beneficial features of laziness.

A drawback of this approach is that a straightforward ap-
plication of an eager method would have to be trained from
scratch on the case subset during problem solving. This can
be prohibitively expensive because eager methods typically
perform a lot of computations that are normally amortized
over many subsequent problem solving sessions.

We develop an RDT variant where the storage of the tree
knowledge is inverted, by associating each case with its re-
sult for every tree and storing the knowledge with the cases.
This is in contrast to the more traditional approach of cre-
ating the tree structure based on the training data and im-
plicitly storing the knowledge in the trees. Our variant al-
lows very efficient incremental updates for additional train-
ing data, i.e. learning new cases one by one.

In this experiment we use a forest of randomly grown
trees to determine the similarity between two cases. Each
tree is a fully grown binary tree of height 5, where one par-
ticular measurement is compared to a threshold value at each
node.

An example tree generated by our implementation is
shown in figure 2. The root node ”Addiction < 0.5739”
in the example compares the patient’s addiction value to
the specified threshold 0.5739, and continues down the left
branch marked with a dotted line in the figure if it’s be-
low the threshold value and otherwise down the right branch
marked with a solid line.

402



Figure 2: A randomly generated decision tree for the pallia-
tive care domain.

Each tree sorts a case into one of 16 leaf node buckets, or
no bucket if a node would compare a measurement the case
does not include (because it is a partial patient record). The
forest of trees acts as a measure of similarity between cases,
where two cases are said to be more similar if they’re in the
same bucket for a higher number of trees.

This is the same as the proximity value uses in the Ran-
dom Forest (RF) classifier, but with a different algorithm for
growing trees. While the RF classifier generates strong trees
based on the training data, we generate completely random
trees.

This aspect is more similar to Random Decision Trees
(Fan et al. 2003) and the Max-diverse Ensemble (Liu, Ting,
and Fan 2005) algorithm, which was shown to have nearly
comparable accuracy to RF but without using bootstrap sam-
ples based on the training set.

The important advantage of completely random trees for
our experiment is that growing the trees does not depend on
the training data, which means that a single forest can be
generated once and used for case bases with different sets
of case instances. This allows us to keep the same precom-
puted trees when adding a case to the case base, and only
incrementally update the data structures that are used to rep-
resent the cases.

Algorithms

For each new case we go through all the trees and compute
which bucket the case belongs to, and for each case we store
these computed bucket values for each tree. The advantage
of this representation is that the proximity of two cases can
be computed by only iterating through the stored bucket val-
ues which can be implemented efficiently.

For our experiments we are interested in combining this
knowledge-lean random decision forest method with a sim-
ple CBR-like similarity measurement based on variables
medical doctors consider relevant for pain classification.
This similarity measurement is the sum of the normalized
differences of patients’ pain intensity, breakthrough pain,
pain mechanism, psychological distress, cognitive function-
ing, addiction and pain localization.

We compare 4 different similarity methods: the random
decision forest, the least difference in relevant variables, a
completely random approach, and a hybrid approach based
on the random decision forest plus the differences in relevant
variables.

Unfortunately the European Palliative Care Research Col-
laborative (EPCRC) has not been able to reach a consensus
on how to classify pain, so there is no clear ”solution” or
”answer” for our cases. We have decided to estimate the
similarity by comparing the difference in worst pain and
average pain experienced after three weeks and basing our
comparisons only on the data acquired before three weeks
had passed.

Our data set consists of 1486 cases with 55 numerical fea-
tures from the first two weeks as the problem description,
and these two pain classifications as the solution. This is rel-
evant because the main palliative treatment is started during
week 2 and the pain experienced afterwards depends on the
treatment and is of utmost importance for a patient receiving
palliative care. Our presented research uses the difference in
pain levels as a means to indirectly estimate the correctness
of the computed similarity.

We evaluate a similarity by measuring this combined dif-
ference in worst pain and average pain between the input
query and the case in the case base that was determined to
be the most similar, in effect measuring the performance of
using the similarity measure for a 1-NN classifier. We sim-
ulated problem solving by going through each of the patient
cases in order, attempting to solve them using the cases in
the case base so far and then adding the case to the case
base.

The observed results are sensitive to both random chance
and the order of the cases in the case base. To achieve a
fair comparison we generated 100 different versions of input
where the order of the patient data cases had been randomly
shuffled, and used the same set of 100 input orders for each
similarity method. We compared the average measured dif-
ference for all problem solving attempts for the 100 different
orders between the different similarity methods (excluding
the first case in each order, when the case base is empty).
This approach was used to empirically evaluate 4 different
similarity methods for our domain, which are presented in
increasing order of complexity.

403



Algorithm 1 RANDOM-SIMILARITY

1. Cases← EMPTY

2. for each patient p ∈ PATIENTS

3. do q← CREATE-INPUT-QUERY(p)
4. x← RANDOM-INTEGER(1, length[Cases])
5. best-case← cases[x]
6. � Use best-case as the solution for query q

7. APPEND(Cases, p)

RANDOM-SIMILARITY simply chooses a random case
from the case base and naturally gives the worst results and
an average error of about 4.98, but is a baseline to work
against that signifies no correlation to real similarity. Like
the other algorithms it is used to select a case best-case as
the solution (line 6) in a case-based reasoning system, which
is afterwards learned and added to the case base before the
next query is received. Line 3 extracts the problem descrip-
tion for a case, which in our domain is the patient data from
the first two weeks.

Algorithm 2 LEAST-DIFFERENCE

1. Cases← EMPTY

2. for each patient p ∈ PATIENTS

3. do q← CREATE-INPUT-QUERY(p)
4. closest←∞
5. best-case← NIL

6. for each case c ∈ Cases
7. do diff ← CBR-DIFFERENCE-MEASURE(q, c)
8. if diff < closest
9. then closest← diff

10. best-case← c
11. � Use best-case as the solution for query q
12. APPEND(Cases, p)

LEAST-DIFFERENCE is a straight-forward CBR system
that uses the simple CBR-DIFFERENCE-MEASURE based
on the normalized differences in the 7 variables a medical
doctor expected to be relevant. Using this method as essen-
tially a 1-NN classifier gives an average error of about 4.55.

Algorithm 3 N -RANDOM-TREES

1. Cases← EMPTY

2. Buckets← EMPTY

3. Trees← GENERATE-TREES(N )
4. for each patient p ∈ PATIENTS

5. do q← CREATE-INPUT-QUERY(p)
6. Buckets[q]← COMPUTE-TREE-BUCKETS(q, Trees)
7. most-similar← (−∞)

8. best-case← NIL

9. for each case c ∈ Cases
10. do sim ← COMPUTE-PROXIMITY(Buckets[q],

Buckets[c])

11. if sim > most-similar

12. then most-similar← sim

13. best-case← c

14. � Use best-case as the solution for query q

15. APPEND(Cases, p)

N -RANDOM-TREES is based on our approach for effi-
ciently using random decision trees in a CBR system. The
GENERATE-TREES procedure builds N fully grown binary
trees of height 5, which is stored as an array of 15 attribute-
threshold pairs that represent the nodes in the tree. When
generating a tree, the attribute to compare at each node is se-
lected randomly, and the threshold is set to a random value
chosen from that attribute’s range of possible values. For our
experiment we do not have the domain knowledge to deter-
mine the true distribution of possible attribute values. For
simplicity we choose to select uniformly random values be-
tween the highest and lowest values that are contained in the
data set.

The COMPUTE-TREE-BUCKETS procedure computes the
resulting bucket for each of the N trees and returns the pre-
viously described N -value representation that is used for
efficient comparisons. The COMPUTE-PROXIMITY proce-
dure iterates through the bucket values for two cases and
returns the number of matching values, i.e. the number of
trees where the two cases end up in the same leaf node.

Algorithm 4 N -HYBRID

1. Cases← EMPTY

2. Buckets← EMPTY

3. Trees← GENERATE-TREES(N )

4. for each patient p ∈ PATIENTS

5. do q← CREATE-INPUT-QUERY(p)

6. Buckets[q]← COMPUTE-TREE-BUCKETS(q, Trees)

7. Distance← EMPTY

8. for each case c ∈ Cases

9. do Distance[c] ← CBR-DIFFERENCE-
MEASURE(q, c)

10. Closest-Cases ← The closest half of Cases sorted
according to Distance

11. most-similar← (−∞)

12. best-case← NIL

13. for each case c ∈ Closest-Cases

14. do sim ← COMPUTE-PROXIMITY(Buckets[q],
Buckets[c])

15. if sim > most-similar

16. then most-similar← sim

17. best-case← c

18. � Use best-case as the solution for query q

19. APPEND(Cases, p)

404



 4

 4.2

 4.4

 4.6

 4.8

 5

1 10 100 1k 10k 100k

E
rr

or

Trees

Random trees
Hybrid

Random similarity

Least difference

Figure 3: Measured error in the palliative care domain com-
pared to the number of trees for our 4 algorithms. (Lower
error is better.)

N -HYBRID is a hybrid combination of the LEAST-
DIFFERENCE approach and our efficient random decision
tree implementation. For a given problem query it considers
only the closest half of the case base, as measured by the
CBR-DIFFERENCE-MEASURE function. This hybrid ap-
proach is proposed as a general way to combine similarity
measures based on domain knowledge with knowledge-lean
methods, and can be straight-forwardly adapted to ensem-
bles of classification trees.

In our domain, the CBR-DIFFERENCE-MEASURE acts as
a domain knowledge-based guard against spurious similar-
ities detected by the random trees. Our random forest im-
plementation performs an unguided similarity comparison,
without considering whether that similarity applies for clas-
sifying pain or not. The pain treatment domain knowledge
present in the CBR-DIFFERENCE-MEASURE function com-
plements the ”raw” similarity computed by the trees, com-
bining the two diverse knowledge sources in a CBR sys-
tem in a way that has some similarities to the approaches
used for very heterogeneous combinations in ensemble clas-
sifiers. Just as for ensemble classifiers these combinations
do not necessarily improve performance for CBR systems if
the knowledge sources do not complement each other.

In our experimental setup where the first similarity mea-
sure selects a local case subset that contains a great number
of cases (half the original cases), the effect of the second
similarity measure that reduces this down to a single case
will be larger than the first. Because of this the combination
is most successful when the stronger tree-based approach is
used as the second similarity measure. It is possible to use
the tree-based approach to reduce the case base and then the
CBR-DIFFERENCE-MEASURE function to select the single
nearest case, but this does not produce as good results for
our domain, with an error of around 4.3 (depending on the
number of trees). This is as expected, because our hybrid ap-
proach improves the results compared to only using the sec-
ond similarity measure. For a large number of trees the er-

 4

 4.2

 4.4

 4.6

 4.8

 5

1s 10s 1m 10m

E
rr

or

Time

Hybrid

Random similarity

Least difference

Random trees

Figure 4: Measured error in the palliative care domain com-
pared to computational time required for our 4 algorithms.
(Lower error is better.)

ror from the N -RANDOM-TREES algorithm is significantly
lower than for LEAST-DIFFERENCE, and thus the starting
point for the hybrid combination is better.

Results

Figure 3 shows the measured error compared to the num-
ber of trees in the forest for the 4 different algorithms.
RANDOM-SIMILARITY and LEAST-DIFFERENCE do not
depend on the number of trees and are shown as horizon-
tal lines for their error level.

The error for N -RANDOM-TREES and N -HYBRID
rapidly decreases for N values up to around 100 trees, and
then starts flattening out, and more than 1000 trees only
gives a slight decrease in error. This is expected as addi-
tional trees provide less new information when a larger pro-
portion of possible attribute combinations have already been
examined, and in general it becomes increasingly difficult to
improve a result the lower the remaining error is.

The N -HYBRID algorithm consistently provides lower
error than the base algorithms N -RANDOM-TREES and
LEAST-DIFFERENCE, which suggests that our combined hy-
brid approach works successfully in our domain. For a
large number of trees the errors for the N -HYBRID and N -
RANDOM-TREES algorithms are relatively close in absolute
value, but achieving the same incremental improvement us-
ing only a larger N value would be much more computation-
ally expensive than using the hybrid approach, and might
possibly be unachievable at the highest end as the error con-
tinues to flatten out around 4.0.

Figure 4 also shows the measured error for the 4 dif-
ferent algorithms, but compared according to the time
(computational resources) required. (For legibility the
RANDOM-SIMILARITY and LEAST-DIFFERENCE algo-
rithms are shown as extended horizontal lines, while in re-
ality they consist of only the leftmost point since their exe-
cution time for a given set of inputs remains constant apart
from small random fluctuations in the computing environ-

405



ment.)
While the exact values are highly dependent on the type

of computing machine it’s measured on, we are interested in
the relative differences between algorithms which are mostly
determined by their computational complexity.

We see that the LEAST-DIFFERENCE algorithm is con-
siderably more computationally expensive than the effi-
cient N -RANDOM-TREES implementation for low values of
N . Running the LEAST-DIFFERENCE algorithm is roughly
comparable to 1000 random trees, and this overhead is re-
flected for the N -HYBRID algorithm as well.

The increase in computational cost to generate hundreds
of trees for N -HYBRID is relatively modest compared to the
cost of including the LEAST-DIFFERENCE computations at
all, which means that the N -HYBRID algorithm rapidly be-
comes the best-performing of the 4 algorithms once enough
computational resources are allotted to run it at all.

Algorithm Time Error

RANDOM-SIMILARITY 0.3 seconds 4.98
LEAST-DIFFERENCE 45 seconds 4.55
1-RANDOM-TREE 0.5 seconds 4.87
10-RANDOM-TREES 1 second 4.46
100-RANDOM-TREES 4 seconds 4.10
1000-RANDOM-TREES 30 seconds 4.04
10000-RANDOM-TREES 300 seconds 4.03
100000-RANDOM-TREES 3030 seconds 4.01
1-HYBRID 45 seconds 4.50
10-HYBRID 45 seconds 4.33
100-HYBRID 50 seconds 4.08
1000-HYBRID 70 seconds 4.02
10000-HYBRID 320 seconds 4.01
100000-HYBRID 2730 seconds 3.99

Table 1: Numerical results for our 4 algorithms in the pallia-
tive care domain.

Table 1 shows a more detailed numerical display of an
illustrative subset of the results for power-of-10 values of
N . 100-RANDOM-TREES is a very quick algorithm that
produces a relatively low error compared to the other al-
gorithms, while the best results are achieved by the N -
HYBRID algorithm for high values of N . It is also interest-
ing to note that 100000-HYBRID runs faster than 100000-
RANDOM-TREES, which is because in the HYBRID version
the somewhat expensive operation of comparing 100k trees
is only performed for half as many cases.

Conclusions

In this paper we have developed a new random decision tree
(RDT) algorithm that can be very efficiently implemented
in a CBR setting. We have combined this RDT algorithm
with a simple traditional similarity measure based on do-
main knowledge to create a hybrid similarity assessment al-
gorithm. The hybrid combination outperformed the base al-
gorithms it was based on by returning predictions with con-
sistently lower error on average for cases from a palliative
care domain.

Acknowledgments

We wish to thank Cinzia Brunelli for providing the data
set, and Anne Kari Knudsen for interpreting the data and
analysing the relevance of the features from a clinical per-
spective.

References
Bian, S., and Wang, W. 2007. On diversity and accuracy of
homogeneous and heterogeneous ensembles. Int. J. Hybrid
Intell. Syst. 4:103–128.
Breiman, L. 2001. Random forests. Machine Learning
45:5–32. 10.1023/A:1010933404324.
Fan, W.; Wang, H.; Yu, P. S.; and Ma, S. 2003. Is random
model better? on its accuracy and efficiency. In Proceedings
of the Third IEEE International Conference on Data Mining,
ICDM ’03, 51–. Washington, DC, USA: IEEE Computer
Society.
Ferguson, A., and Bridge, D. 2000. Generalised weight-
ing: A generic combining form for similarity metrics. In
Procs. of Eleventh Irish Conference on Artificial Intelligence
& Cognitive Science, J.Griffith and C.O’Riordan, 169–179.
Gashler, M.; Giraud-Carrier, C.; and Martinez, T. 2008. De-
cision Tree Ensemble: Small Heterogeneous Is Better Than
Large Homogeneous. In 2008 Seventh International Con-
ference on Machine Learning and Applications, 900–905.
IEEE.
Houeland, T., and Aamodt, A. 2010. The utility problem
for lazy learners - towards a non-eager approach. In Bichin-
daritz, I., and Montani, S., eds., Case-Based Reasoning. Re-
search and Development, volume 6176 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg. 141–155.
10.1007/978-3-642-14274-1.
Liu, F. T.; Ting, K. M.; and Fan, W. 2005. Maximizing
tree diversity by building complete-random decision trees.
In Ho, T. B.; Cheung, D.; and Liu, H., eds., Advances in
Knowledge Discovery and Data Mining, volume 3518 of
Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg. 605–610. 10.1007/11430919.
Minton, S. 1990. Quantitative results concerning the util-
ity of explanation-based learning. Artif. Intell. 42(2-3):363–
391.
Patterson, D. W.; Rooney, N.; and Galushka, M. 2003. Ef-
ficient retrieval for case-based reasoning. In Russell, I., and
Haller, S. M., eds., FLAIRS Conference, 144–149. AAAI
Press.
Richter, M. M. 1995. The knowledge contained in similarity
measures. Invited Talk at ICCBR-95.
Smyth, B., and Cunningham, P. 1996. The utility problem
analysed - a case-based reasoning perspective. In Proceed-
ings of the Third European Workshop on Case-Based Rea-
soning, 392–399. Springer Verlag.
Wess, S.; Althoff, K.-D.; and Derwand, G. 1994. Using
k-d trees to improve the retrieval step in case-based reason-
ing. In Selected papers from the First European Workshop
on Topics in Case-Based Reasoning, EWCBR ’93, 167–181.
London, UK: Springer-Verlag.

406




