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Abstract

In a competitive game it is important to identify the op-
ponent’s strategy as quickly and accurately as possible
so that an effective response can be planned. In this
vein, this paper summarizes our work in exploring us-
ing first order inductive learning to learn rules for repre-
senting opponent strategies. Specifically, we use these
learned rules to perform plan recognition and classify
an opponent strategy as one of multiple learned strate-
gies. Our experiments validate this novel approach in a
simple real-time strategy game.

Introduction
Most competitive games, ranging from professional soccer
to StarCraft, require participants to have a solid strategy to
be successful. An effective way to defeat an opponent is
often to identify their strategy, as then their actions can be
predicted and an effective response can be organized.

One way to identity an opponent’s strategy is through
plan recognition (Schmidt, Sridharan, and Goodson 1978).
Plan recognition is the process of inferring the plan of an
intelligent agent from observations of the agent’s actions
or the effects of those actions. Plans can be represented
in various forms. In this paper we focus on learning op-
ponent strategies that are composed of collections of rules.
Many different algorithms could be used to learn these rules
(Fürnkranz 1999), but we chose the first order inductive
learning (FOIL) algorithm (Quinlan 1990) because of its
ability to take in predicates and produce a list of rules or-
dered by their Laplace accuracy.

There is previous work in both rule learning and plan
recognition in the context of games (e.g. Kabanza et al.
2010, Molineaux, Aha, and Sukthankar 2009). However,
to the best of our knowledge, ours is the first to present an
inductive logic programming approach to plan recognition.
In particular, the FOIL algorithm takes gameplay traces of a
strategy as input and generates a set of rules representing that
strategy. After learning multiple strategies, we can predict
which learned strategy an opponent is following by com-
paring the rules for the opponent’s trace against the learned
rules for previously seen strategies.
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Learning Strategies through FOIL
A trace is created every time a complete game is played.
Specifically, a trace consists of a list of triples, where each
triple contains a time stamp, game state, and a set of actions.
The list of triples represents the evolution of the game and
the actions executed during different time intervals.

Traces are difficult to input and use by FOIL in their origi-
nal form, so we translate the relevant information from each
trace into a more usable form. In particular, we define a
set of attributes F = {f1, ..., fn} to be extracted from each
entry as either true or false. In this way, each entry Si is
translated to a set of identifiers F (Si) that correspond to all
of the attributes in Si. We can then easily input these sets
of identifiers into the FOIL algorithm as a modified trace
T ′ = [〈t1, F (S1)〉, ..., 〈tn, F (Sn)〉].
Using Rules to Represent Strategies
After gathering traces that demonstrate specific opponent
strategies, we use FOIL to learn rules to represent each spe-
cific strategy. For each strategy, we consider each attribute
fi separately. Given an attribute fi and a modified trace T ′,
a training example can be generated for each instant tj (ex-
cept for t1). In particular, if fj is true in F (Sj), then we will
create a positive example ej = 〈F (Sj−1),+〉. Likewise, if
fj is false, then we create a negative example.

Using the set of training examples collected for an at-
tribute fi, FOIL produces a set of rules which predict
whether attribute fi will be true in the next cycle given the
current game state. FOIL is applied to each attribute fi inde-
pendently to generate a rule set for each attribute. Together,
these rule sets represent a specific opponent strategy.

Identifying Opponent Strategies
We can use learned strategies to predict what strategy an un-
known opponent is utilizing given a trace of its actions in the
world. Given a trace in which we want to identify the op-
ponent’s strategy, we gather positively correlated rules that
characterize the opponent’s movements and actions in the
world as described in the previous section. We then compare
these rules to the positively correlated rules of each learned
strategy and determine which learned strategy is closest to
the opponent’s behavior. Specifically, we assign a score to
represent the similarity between rules representing a known
strategy and rules representing the unknown opponent’s be-
havior. The strategy that earns the highest score represents
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Figure 1: The two BattleCity maps used in our evaluation.

the most likely strategy of the unknown opponent.

Experimental Evaluation
To evaluate our technique, we use a two-player real-time
strategy game called BattleCity (see Figure 1). In this game,
each player navigates their tank around a maze while trying
to simultaneously destroy the opponent’s tank or base and
defend their own tank and base. Bases are static, but tanks
can move in four directions and fire bullets in whichever di-
rection the tank last moved. The environment is fully ob-
servable and the only sources of non-determinism in the
game are the actions of the opponent. The terrain consists
of land, water (which can be shot across, but not traversed),
indestructible walls, and walls that can be shot through.

We use two different maps in our evaluation: a simple
map (Figure 1.a) and a more complex map (Figure 1.b). For
each map, we recorded traces demonstrating three distinct
strategies. We recorded 14 winning traces for each strategy,
making a total of 42 traces per map. In each trace, a human
tester controlled the tank protecting the left base, while the
other player was controlled by the built-in artificial intelli-
gence of the game. The human tester attempted to exhibit a
particular playing strategy in each trace. The three strategies
considered in the simple map (Figure 1.a) were:

‘Direct’ : turn right from the start and fire through the walls
towards the opponent base until it is captured.

‘SouthernRoute’ : travel down and around the center wall,
approach the opponent base from the bottom, and then fire
through the wall to capture the base.

‘NorthernRoute’ : is similar to strategy two. However, in
this case travel up and around the wall, approaching the
base from the top.

The three strategies considered in the complex map (Fig-
ure 1.b) were:

‘Direct’ : position the tank across from the opponent base
and fire across the water and through the wall until the
base is captured.

‘SouthernBridge’ : travel down until aligned with the lower
bridge. Then fire through walls and travel across the
bridge before approaching the base from the bottom.
Then fire through the wall and capture the base.

‘NorthernBridge’ : is similar to our second strategy, except
now take the upper path and approach the opponent base
from the top.

Map Strategy Exhibited Percent Correct
Simple Direct 10/10
Simple SouthernRoute 10/10
Simple NorthernRoute 9/10
Complex Direct 10/10
Complex SouthernBridge 10/10
Complex NorthernBridge 8/10

Table 1: The number of times each strategy was correctly
identified on the simple map (Figure 1.a) and the complex
map (Figure 1.b).

For each map, we divided the 42 full-game traces into two
sets: 12 traces (4 of each strategy) constituted the training
set and 30 traces (10 of each strategy) constituted the test
set. We learned rule sets off-line for each strategy using the
traces in the training set. We then used these rules to clas-
sify each of the 30 unseen traces as one of the three learned
strategies. Results can be found in Table 1.

It is important to note that although the human tester tried
to demonstrate the same strategy in each trace recorded for
a particular strategy, traces exhibiting the same strategy are
often rather different due to uncertainty introduced by the
opponent. For example, the enemy might block the path
the tester is trying to move through, causing a delay or slight
deviation from the prescribed strategy. Lastly, it is important
to note that the attributes used in our evaluation were not
fine tuned. In fact, the same set of attributes were used in a
previous paper (Ontañón et al. 2009).

Future Work
One future step is to evaluate our approach in domains that
are more complicated than BattleCity. Additionally, other
approaches for identifying opponent strategies should be
considered. It could also be beneficial to attempt to learn op-
ponent strategies from losing traces. Finally, learned strate-
gies could be used in an on-line fashion to predict the next
move that will be made by the adversary in real-time. Strate-
gies learned from partial traces could potentially be used for
this since predictions would be made mid-game.
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