
Domain Independent Knowledge Base Population
From Structured and Unstructured Data Sources

Michelle Gregory, Liam McGrath, Eric Bell, Kelly O’Hara, and Kelly Domico

Pacific Northwest National Laboratory
902 Battelle Boulevard
Richland, WA 99354

{michelle, liam.mcgrath, eric.bell, kelly.o’hara, kelly.domico}@pnl.gov

Abstract
In this paper we introduce a system that is designed to
automatically populate a knowledge base from both structured
and unstructured text given an ontology. Our system is
designed as a modular end-to-end system that takes structured
or unstructured data as input, extracts information, maps
relevant information to an ontology, and finally disambiguates
entities in the knowledge base. The novelty of our approach is
that it is domain independent and can easily be adapted to new
ontologies and domains. Unlike most knowledge base
population systems, ours includes entity detection. This feature
allows one to employ very complex ontologies that include
events and the entities that are involved in the events.

Introduction
Ontologies are widely used in knowledge management, but
are seeing resurgence within the NLP community in
applications such as information extraction and question
answering. More specifically, NLP applications are
running in the context of external knowledge sources (i.e.,
ontologies). A knowledge base is a stored representation
of information. The task of Knowledge Base Population
(KBP) is identifying instances of your external knowledge
source in textual data and storing them in a knowledge
base. The incorporation of extracted information into an
existing knowledge base is such a prevalent problem that it
has had a special track at the Text Analysis Conference
since 2008 (McNamee et al., 2010).

In this paper we present a system designed to extract text
from both structured and unstructured data sources in order
to populate a knowledge base based on an existing
ontology. While others have introduced systems that are
designed to do the same general task (see Maynard et al.,
2010, who have shown that using a combination of rule-
based approaches and machine learning approaches works

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

well for knowledge base population tasks), our system is
unique in that it is data type agnostic and it has been built
in a modular manner that makes easy to generalize to new
datasets and domains. In addition, our KBP system allows
for very complex ontologies that include event structures in
addition to entities and taxonomies.

System Description
Our system is an end-to-end process with modular
components that populates a knowledge base with
information extracted from structured data sources and
unstructured natural language text. The process can be
broken down into three phases: Extraction, mapping and
entity disambiguation. The system architecture is shown in
Figure 1.

Extraction and mapping for structured and unstructured
data sources are handled separately. Often a single
ontology is used to populate a knowledge base with
evidence from both structured and unstructured data types.
While mapping structured data to an ontology can be fairly
straightforward, when both data types are present we
combine them for improved performance. Structured data
sources are processed first, as these high-confidence data
can be used to inform the processing of unstructured data.

For the structured data sources, we use a rule-based
system to map field in the data to types in the target
ontology. These high-confidence data can then be added
directly to the knowledge base. For unstructured data, we
use a natural language processing (NLP) pipeline,
described in the next section, to extract named entities and
events from the input document and add them to an
unmapped triple store. In the mapping phase, the extracted
entities and events are then mapped to a domain-specific
ontology.

251

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Once all input documents have been processed, we
disambiguate entities across the entire knowledge base.
This is a cyclical process, where disambiguated entries are
added back to the knowledge base, and processed again to
ensure that all duplicate entities are found.

We have designed the system such that each phase
occurs in independent modular components that can be
modified or swapped out entirely. We describe each
component in the following section. While many of our
components are standard open source tools, we believe the
novelty of our system lies in the modular design and
functionality the combination provides.

Processing Structured Data

In addition to unstructured textual data, often
structured data is available as a source and it needs to
be mapped to the ontology to augment the population
of the knowledge base.

In order to map structured data into the knowledge
base, a customized rule-based mapping was created
that reads in the appropriate fields of the structured
data and maps them to the corresponding
ontologically valid entries. The resultant triples are
then added directly into a mapped knowledge base
that can be combined and de-duplicated with the
knowledge base obtained from unstructured data
sources. Figure 5 diagrams the flow of structured and
unstructured data through our system.

However, the strength in integrating structured data
comes from the inherent nature of that data.
Structured data can be used as high-confidence data
that helps populate and augment dictionaries for
named entities, events, and entity disambiguation.

Entity and Event Extractor

Unstructured data sources naturally require more
complex processing to identify, extract, and map
entities and events. Here we describe the NLP
pipeline we have created to process free natural
language text.

The extractor is designed to take advantage of the
capabilities of the Apache UIMA Framework; it
consists of a series of components (annotators) that
can be added or removed from the pipeline as desired.
The full text of documents is internally represented in
a specialized object. These objects allow the
document to be marked up, by storing start and end
indices of annotations as well as metadata provided
by the annotator components. The information stored
in these objects can be accessed by any component in
the pipeline.

The extractor contains four components: two
named entity extractors, an event finder and a triple
producer. The first three components are independent
of each other, and their definitions specify the set of
annotation data types used by each component. The
triple producer is an aggregator; it defines which

Figure 1 – The system consists of three main components, entity
and event extraction, a mapper, and entity disambiguation.
Structured data, unstructured data, and an ontology are the
inputs to the system.

ONTOLOGY

MAPPER

ENTITY & EVENT
EXTRACTION

STRUCTURED &
UNSTRUCTURED DATA

UNMAPPED KB

ENTITY
DISAMBIGUATION

MAPPED KB

252

components to use and the order in which to run
them, and combines their results. These components
are described in more detail in the following sections
below. A visual overview the extractor’s overview in
the overall system is shown in Figure 2.

Figure 2 - The NLP Pipeline. Text is annotated with named
entities and events. Then, OWL triples are created, mapped to the
target ontology, and entities are disambiguated.

Named Entity Extraction
Our system is designed to extract both events and entities
from the data. For named entity extraction, we run two
independent named entity recognizers – one dictionary-
based, and one statistical – and then combine the results.

Dictionary-based Named Entity Recognition. We built
our dictionary-based named entity recognizer utilizing
functionality from LingPipe1. User-created dictionaries are
stored as text files. We have general purpose dictionaries,
and domain-specific dictionaries can be added and edited
easily if desired. For the most part we use exact dictionary
matching to identify entities in the input text, but also
include some heuristics for combining matches from
dictionaries of common first and last names to identify
people. Entities identified by this component are annotated
with their start and end indices and the label defined in the
dictionary. There are no restrictions on the labels that can
be used in the dictionaries.

Statistical Named Entity Recognition. Our second NER
component is based on the Stanford Named Entity
Recognizer. We use the pre-trained model available from
Stanford, which identifies entities and labels them as
Person, Organization, or Location. These are added as
annotations similar to the dictionary-based annotations.

1 http://alias-i.com/lingpipe

Combining Results. After both recognizers have run, an
aggregator combines the results. If an entity is identified by
one recognizer but not the other, we extract the entity and
entity type it provided. If the recognizers identify
overlapping entities, we use the dictionary-based
recognizer to determine both the entity type and, if
necessary, the entity boundaries (if the entities identified
overlap but don’t completely align).

Event Extraction
Events provide a representation of complex relationships
among entities. For example, one event type that is used
regularly is communicate. This event requires two entities
related via meeting, calling, reporting, emailing, etc. Event
extraction is a necessary step in cross-domain knowledge
base population. The event extraction process can be
broken down into two steps: detection and argument
identification.

Detection. Event detection involves finding event triggers:
the lexical items in the text that best represent the event.
The lexical items are usually verbs; for our purposes we
only consider verbs. At this initial stage every verb is
selected as an event trigger, and if some arguments are
identified, it is stored as an event in the unmapped
knowledge base. The selection of the events of interest
comes later in the mapping step, allowing event extraction
to remain domain independent. In this way

Argument Identification. Event identification involves
finding arguments for each event trigger, i.e., the
constituents that have a semantic role in the event.
Resources such as PropBank and FrameNet define sets of
argument types for verb or event types. For this stage of
the process, we use a simple set of arguments across all
event types, which is later mapped to a more complete set
of event-specific arguments dependant on the target
ontogloy: AGENT, the entity doing the event; PATIENT,
the recipient or them of the event; and ARG, a catch-all for
other arguments of the event. To identify and type the
arguments, we use a simple set of rules over typed
dependency parses from the Stanford Dependency Parser.
Statistical parsers are not always completely accurate, but
we find it to be sufficient for our purposes. See below for
evaluation results.

Event detection and argument identification are run in a
single UIMA component. As with the named entity
extraction, events are annotated with their indices, with
metadata containing the arguments, any temporal
expressions modifying the verb, and flag if the verb is
negated.

253

Triples
The extracted entities and events are initially stored as
subject-predicate-object statements, or “triples”, in a
temporary Sesame RDF repository. This is the unmapped
knowledge base shown in Figure 1. The triple producer is
responsible for converting the annotations into triples and
adding the triples into the unmapped triple store. All
extracted data such as name, type, temporal information,
negation and provenance are saved in this repository.

Mapper

Since one of the overall goals for our system is to be
domain-independent, our event detection system uses
a separate domain mapping component to be as
flexible as possible. We use rule-based techniques for
event detection in order to provide a simple
mechanism for cross-domain application. However,
we also provide an optional second-stage
classification using supervised techniques to boost
precision when labeled data can be created for a
domain.

After a knowledge base of extracted entities and
events has been created, the Mapper maps this data to
the target ontology. This component enables the
pipeline to remain domain independent, yet able to
support applications using specific domain
ontologies.

Entities and Events are mapped to the domain
ontology according to a set of rules. A mapping rule
consists of:

1. Target Event Type: the event type from the
ontology that an event will become if the rule
fires, e.g. Deployment

2. Triggers: the lexical items that will fire this
rule if they occur as the event trigger, e.g.,
introduce, upgrade, implement, launch,
install, deliver, deploy …

3. Argument Mappings: from verb semantic
arguments to event roles, e.g. agent ->
organization, patient -> technology

Figure 3 shows an example event mapping.

Figure 3 - An example event is mapped to the target ontology.
Nodes represent individuals in the knowledge base and are
labeled with lexical items from the text and a type. Edges connect
events to entities and are labeled with a role type.

Mapping rules are created by hand with the help of
some tools for lexical expansion. Using WordNet
(Fellbaum,, 1998), each verb can be expanded to
include synonyms and hypernyms, which will usually
indicate an event of the same type. Note that the
system is not dependent on use of handwritten rules,
and a component for automatically generating
mapping rules could easily be added.

If event-labeled data can be created for the target
domain, a second classification step can be used to
refine the event mapping. Statistical classification
based on Naïve Bayes or k-Nearest Neighbors can be
used to improve results. Feature selection is very
important in the success of this component. Basic
features, part of speech based features, and most
importantly syntactic features (dependency relations
in the current parse tree, parse tree depth, etc) should
be included for the best overall performance (Ahn
2006, Bell 2010)

The mapped triples are then inserted into a hybrid
triple store (the mapped knowledge base). This hybrid
mapped triple store includes a Sesame RDF
repository paired a SQLite relational database.
Triples are stored in the RDF repository while
provenance information associated with each triple is
stored in the SQLite database.

Ontology

We us an OWL ontology to define the target domain.
This provides a formal definition of the entities and
events of interest to be used by the mapping rules.
OWL Classes are used to define entities (e.g. Person,
Organization, Location) and DatatypeProperties are

254

used to define properties on the entities (e.g. name,
age, gender). OWL ObjectProperties are used to
define relationships between entities (e.g. father,
mother, brother). Events - relationships involving
more than two entities or additional arguments, such
as time and location, are represented using subclasses
of an Event class (e.g. Attack, Deployment).
ObjectProperties between Events and entities define
the Event argument types, and restrictions on the
entity types that can fill them (e.g. Attack has a
perpetrator, which must be a Person or Organization).

Entity Disambiguation

Once the data has been mapped to the domain
ontology, the entity disambiguation component
identifies and labels duplicate entries in the
knowledge base using simple proper name matching.
This step is performed across the entire
knowledgebase (i.e. cross-document).

Only entities with entity type Person, Organization
and Location are considered to have proper names
and, as such, de-duped; events are ignored.
Additionally, abbreviations (e.g. Incorporation and
Inc.) and equivalents (e.g. United Kingdom and
Britain) are considered when matching the names.
This list of valid abbreviations and equivalents is
stored in a reference file that is read in by the
disambiguator during initialization.

Duplicate entities are represented in the
knowledgebase as entities with a sameAs
relationship; this relationship is added for each
matching entity to represent bi-directionality. The
original entities are kept intact so that any incorrectly
labeled entities can later be corrected. We hope to
employ more sophisticated features in our entity
disambiguation module, such as those described by
Drezde et al. (2009).

Evaluation

It is difficult to evaluate our end-to-end system
because there is no gold standard for evaluating
knowledge base populations in which the ontology
includes both entity and event information. For
instance, the TAC evaluation datasets are largely
based only on entity and location information. We
were able, however, to conduct a number of

evaluations on individual components as it is
certainly the case that weak performance in the
individual components will detract from the
performance of the overall system. Below, we
provide evaluations of various system components.

Event Detection. To evaluate the event extraction
portion of our system, the statistical system for event
detection was extended in order to run against the
2005 Automatic Content Extraction (ACE) corpus
(Walker et al., 2006). The ACE event hierarchy
describes an inherent ontology consisting of 8 major
event types and 33 subtypes. The ACE corpus used
consists of 666 text files.

Multi-way classification from a single event
reference to a group of possible class labels was
performed. In addition to positive references,
negative occurrences were also used because they
have been shown to improve classifier performance
(Ahn, 2006, Bell et al., 2010). The system runs a
single statistical classifier for all event classes,
identical to the configuration used in similar
evaluations (Bell, 2010). The results of running the
statistical system against the ACE corpus are shown
in Figure 4. The use of a supervised classifier brings
performance to levels that rival that of state-of-the-art
tools in the field.

Figure 4 - Performance of Event Extraction at identifying
and classifying events according to the target ontology.
achieve close to human agreement, but is not feasible for all
domain types.

Event Argument Identification. We evaluate using
PropBank by mapping our AGENT, PATIENT and
ARG to PropBank types Arg0, Arg1 and all
remaining argument types respectively. One caveat in
comparing these results to other PropBank evaluated
tools is that we do not place the exact bounds
restriction on ourselves, because we only identify the
head of the argument. (This argument identification
could be replaced with a more sophisticated semantic
role labeling systems trained on PropBank or
FrameNet such as without requiring any downstream
code changes, just a different mapping. The

Rule-based Mapping
Classifier-based
Mapping

Precision 0.37 0.74
Recall 0.18 0.53
F1-Measure 0.24 0.62

255

evaluation of argument identification is shown in
Figure 5.

We used a modified propbank evaluation for
argument detection. It is modified in that we were
only concerned with two main argument types, agent
and patient, as generally these were the only two
arguments required by the ontology we were using.
The rest of the argument types were lumped into a
generic Arg category. While the results reported here
are very good for argument identification, it should
be noted that this modification produces slightly
inflated results.

Precision Recall F-measure
Agent .76 .55 .64
Patient .86 .39 .54
Arg .85 .29 .43
Combined .82 .40 .53

Figure 5 - Evaluation of Argument Identification using a modified
PropBank evaluation.

Conclusion

In this paper we have introduced a novel system
designed to populate a knowledge base from
structured or unstructured text. Our system is
designed in a modular format that allows for easy
adaptation to new domains and ontologies. We have
reported near state of the art results for the
components we have built: event extraction,
argument identification, and mapping.

We plan on designing a methodology by which we
can test the entire system. One method might be to
train annotators on a specific ontology and manually
populating a knowledge base from unstructured or
structured documents. This method would be
laborious and expensive. We are also considering the
types of evaluations that are more component based,
such as testing on existing TAC or ACE datasets.

References

Ahn, D. 2006. The Stages of Event Extraction.
ARTE’06: Proceedings of the Workshop on
Annotating and Reasoning about Time and Events.
Morristown, NH.: Association for Computational
Linguistics.

Alias-i 2008. LingPipe 4.0.0. http://alias-
i.com/lingpipe.

Bell, E., 2010. Event Detection and Classification by
Sense Disambiguation. Seattle, WA.: University of
Washington

Bell, E., McGrath, L., and Gregory, M. 2010. Verb-
Triggered Event Detection and Classification. NW-
NLP Workshop. Redmond, WA.: University of
Washington.

Dredze, M., McNamee, P., Rao, D., Gerber, A., and
Finin, T., 2010. Entity Disambiguation for
Knowledge Base Population. Proceedings of
Conference on Computational Linguistics
(COLING).

Fellbaum, C,, editor. 1998. WordNet: An Electronic
Lexical Database. MIT Press, Cambridge,
Massachusetts.

Maynard, D., Li, Y. and Peters, W., 2008. NLP
Techniques for Term Extraction and Ontology
Population Buitelaar, P. and Cimiano, P. (eds.),
Ontology Learning and Population: Bridging the Gap
between Text and Knowledge, pp. 171-199, IOS
Press, Amsterdam.

McNamee, P., Dang, H., Simpson, H., Schone, P.,
and Strassel S., 2010. An Evaluation of Technologies
for Knowledge Base Population Proceedings of the
Seventh Language Resources and Evaluation
Conference (LREC).

Stanford University 2009. Stanford Named Entity
Recognizer (NER).
http://nlp.stanford.edu/software/CRFNER.shtml

Walker, C., Strassel, S., Medero, J., and Maeda, K.
2006. ACE 2005 Multilingual Training Corpus. CD-
ROM.

256

