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Abstract 
Tekkotsu is a free, open source software framework for 
high-level robot programming.  We describe enhancements 
to Tekkotsu's navigation component, the Pilot, to incorpo-
rate a particle filter for localization and an RRT-based path 
planner for obstacle avoidance. This allows us to largely au-
tomate the robot's navigation behavior using a combination 
of odometry and landmark-based localization. Beginning 
robot programmers need only indicate a destination in Tek-
kotsu's world map and the Pilot will take the robot 
there.  The software has been tested both in simulation and 
on Calliope, a new educational robot developed in the Tek-
kotsu lab in collaboration with RoPro Design, Inc.. 

 Introduction    
The Tekkotsu framework, available at Tekkotsu.org, fea-
tures a set of four interacting software components, called 
the Crew, that help relieve programmers of the need to 
directly specify low-level behaviors (Touretzky and Tira-
Thompson 2010). The Crew use a request/event architec-
ture, where requests describe desired outcomes as opposed 
to a specific set of actions for the robot to take. Program-
mers specify a high level behavior, such as “walk to this 
location,” or “find all the blue lines in the scene,” in the 
form of a request data structure that each Crew member 
provides.  The Crew members execute these requests on 
the programmer’s behalf, posting events that signify the 
outcome. This paper describes navigation enhancements to 
the Pilot, the Crew member responsible for locomotion and 
navigation. 
 Providing programmers an interface to express naviga-
tion in terms of high level goals simplifies the construction 
of complex behaviors. To achieve this the Pilot incorpo-
rates a particle filter for localization and an RRT-based 
path planner for obstacle avoidance. Using odometry com-
bined with landmark-based localization allows us to large-
ly automate navigation in Tekkotsu. 
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 The software has been tested both in simulation and on 
Calliope, a new educational robot developed in the Tek-
kotsu lab in collaboration with RoPro Design, Inc. The 
navigation enhancements integrate well with Calliope, 
which provides a camera on a pan-tilt mount (useful for 
locating landmarks), wheel-based mobility, and sufficient 
on-board processing power to handle data-intensive tasks. 

The Tekkotsu Crew 

Each member of the Crew has its own specialty, summa-
rized below. 

The Lookout 
The Lookout manages the robot’s sensor package and pro-
vides camera images and possibly other types of sensor 
observations, such as rangefinder scans. A robot’s sensor 
package is usually mounted on some type of moveable 
“head” which the Lookout can point.  

The MapBuilder 
The MapBuilder is responsible for building representations 
of the world. The MapBuilder calls on the Lookout when-
ever it needs to obtain images. Depending on the applica-
tion, the user may choose to work in any of three coordi-
nate systems: camera space, local (body-centered) space, or 
world space (Touretzky et al. 2007).  The MapBuilder pro-
vides methods for recognizing shapes such as lines or el-
lipses, generic blobs, or navigation markers. Using shapes 
that it extracts from camera images, the MapBuilder can 
construct local or world representations. It invokes Tek-
kotsu’s kinematics engine to determine the camera pose 
based on the robot’s current posture, then performs coordi-
nate transformations from camera to local space. Building 
a body-centered representation may require multiple cam-
era images due to the robot’s fairly narrow field of view  
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The Pilot 
The Pilot interacts with the MapBuilder to find landmarks 
for use in navigation.  In some modes it may also com-
municate with the Lookout to obtain rangefinder readings.  

The Grasper 
For those robots that include an arm, the Grasper is the 
Crew member responsible for manipulation. The Grasper 
invokes an inverse kinematics solver to calculate the joint 
angles necessary to put the “fingers” at a specified point in 
space, and a path planner to calculate arm trajectories 
(Coens 2010).  The Grasper is the only member of the 
Crew that is not used in navigating.  

The World and Local Maps 

World maps are the robot’s representation of the physical 
world in an allocentric “shape space,” part of Tekkotsu’s 
“dual-coding” vision system (Touretzky et al. 2007).  The-
se maps describe the world’s boundaries, landmarks, and 
obstacles. The world boundary for a maze-type environ-
ment is defined by constructing a polygon shape in the 
world shape space.  The robot is also represented in this 
world map, using an “agent” shape with both position and 
orientation attributes. The placement of landmarks in the 
world map gives the particle filter a means to evaluate hy-
potheses about the robot’s position based on what the Pilot 
is currently seeing. The path planner uses the world map to 
search for a collision-free path from the robot’s current 
position to the desired destination. 
 Local maps represent the spatial configuration of the 
objects the robot currently sees, in body-centered coordi-
nates. Due to the camera’s limited field of view (roughly 
60◦ for a webcam vs. 200◦ for a binocular human), local 
maps are typically constructed incrementally by the Map-

Builder from multiple camera images by moving just the 
head. Once the robot moves its body, the local map is no 
longer valid. However, on the Create/ASUS robot, the 
forerunner of Calliope, which lacks a pan/tilt and instead 
relies on the netbook’s built-in camera, the Pilot will rotate 
the body if necessary to acquire enough landmarks for lo-
calization. It will then rotate back to the original heading. 
The heading error induced by this operation, averaging 5 to  
degrees, was judged a reasonable tradeoff in return for be-
ing able to see more of the world. 

Functions Of The Pilot 

The Pilot provides a unified interface for instructing robots 
to navigate through the world, abstracting away the details 
of how each type of robot moves and how it acquires 
landmarks.  Before the advent of the Pilot, users were re-
sponsible for doing their own path planning, obstacle 
avoidance, and localization. Now users are able to invoke 
these functions with minimal effort, and create routines 
that can be used on all platforms supported by Tekkotsu. 

Locomotion 
The fundamental function of the Pilot is to move the ro-
bot’s body through the world. This includes both transla-
tional motion (forward and backward), sideways motion 
(for holonomic robots), and rotation. In the future the Pilot 
will also accommodate requests for postural changes, e.g., 
legged robots can rear up, hunker down, lean in a specific 
direction, etc. The Pilot also allows users to specify the 
speed at which to move and/or the distance to travel.  It is 
the Pilot’s responsibility to interface with the walk engine 
that controls each type of robot. 

Odometry 
The Pilot keeps a running estimate of the displacement and 
heading of the robot. On platforms that provide hardware 
odometry, such as the iRobot Create, it makes use of this. 
Otherwise it does dead reckoning by integrating the robot’s 
velocity vector over time. The particle filter’s motion mod-
el makes use of this odometry information to drag the par-
ticles along as the robot moves, adding noise to reflect in-
creasing uncertainty over time, until the next resampling 
occurs. 

Localization 
As previously described, the Pilot uses the MapBuilder to 
acquire landmarks and a particle filter to maintain its posi-
tion estimate. A variety of landmark types can be used, but 
we find the most reliable are AprilTags (Olson 2010), fidu-
cial markers inspired by Augmented Reality Tags. See 
Figure 1. 
 

 
Figure 1: A Create/ASUS robot examining AprilTag  navigation 
markers in the Mirage simulator environment. This  particular 
virtual world consists of six distinct AprilTags affixed to a vee-
shaped barrier. 
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 Localization is a discrete activity for the Pilot, for two 
reasons. First, we’re using identifiable landmarks rather 
than a continuous stream of raw sensor readings such as a 
sonar array or laser scanner would provide. Therefore we 
must point the camera at the locations where landmarks are 
expected to appear and measure their distances and bear-
ings, one at a time. Second, if the robot uses a webcam that 
suffers from motion blur, as most do, it cannot move and 
localize at the same time. Localization is therefore a 
planned activity, so that the Pilot can optimize the loca-
tions where it occurs. For example, if the robot is about to 
turn a corner, it makes sense to delay localization until the 
turn has been made. 
Planning 
When the user specifies a destination, the Pilot first plans a 
path to that location that avoids world boundaries (walls 
and cliffs) and obstacles. For this it uses the RRT-Connect 

algorithm (Kuffner and Lavalle 2000).  Figure 2 shows a 
path to a goal location behind the barrier of Figure 1, and 
Figure 3 shows the search trees that generated this path. 
 Navigation is goal-directed locomotion informed by 
perception. The Pilot constructs a navigation plan as a se-
ries of motion segments along the planned path, inter-
spersed with localization steps. Path analysis is used to 
optimize the placement of localization operations. For ex-
ample, long straight segments are broken up by localiza-
tions to guard against the robot drifting. Once the robot is 
on the far side of the barrier there will be no landmarks 
visible, so the Pilot must rely on dead reckoning from then 
on, and further localization steps are omitted. In situations 
where this is not acceptable, the path planner would have 
to consider landmark availability as part of its route plan-
ning process. We leave this to future work. 
 Our current mode of using the Create triggers a firm-
ware bug that prevents accurate odometry for slow turns. 
Therefore, the navigation planner does not try to smoothly 
round out the corners of a path. Instead it generates sepa-
rate steps for heading changes vs. translational motion. 

Obstacle and Cliff Detection 
We provide a variety of modes of obstacle and cliff detec-
tion. On the Create we use the left and right bump sensors 
to detect collisions, plus the motor current sensors to detect 
when the robot is encountering resistance, typically be-
cause it’s pushing against a wall. On the AIBO we used the 
chest IR sensor to detect cliffs. This could be done on the 
Create using the wheel drop sensor, but at present we have 
wheel drop events putting the robot into Emergency Stop 
mode as a safety precaution. Calliope has an IR rangefind-
er which could potentially be used for both obstacle and 
cliff detection; this will be explored in future work. We are 
also experimenting with the Microsoft Kinect sensor as a 
source of depth information.  

Execution 
Once the navigation plan has been constructed, the Pilot 
begins to execute the plan. (There is also an option to have 
it return the results of its path planning computation with-
out execution, which is useful if the user simply wants to 
know whether it’s possible to get from A to B given the 
current state of the world.) 
 The Pilot uses Tekkotsu’s “waypoint walk engine” to 
follow a sequence of waypoints up to the next localization 
step. If localization reveals the robot has drifted, the next 
invocation of the waypoint walk engine calculates a correc-
tion to bring the robot back onto the desired path. 
 The user can refresh the world shape space during exe-
cution to see the robot’s progress on the path and some of 
the particle filter’s particles (Figures 2 and 4). 
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 If all plan steps execute without error, the Pilot posts an 
event indicating successful completion of the request. Oth-
erwise,  the event indicates via an error code what went 
wrong. One possibility is planning failure, which can occur 
if there is no collision-free path from the start to the desti-
nation, presumably because some object is blocking the 
way. Another possibility is that a collision occurred. 
 The user can specify what action the Pilot is to take 
when a collision is detected. The default is to stop the robot 
and report the event. Alternatives include ignoring the col-
lision (useful if we’re trying to push an object), or relocal-
izing and then replanning a path to the desired destination. 

Pilot Requests 

Users communicate with the Pilot by filling in the fields of 
a PilotRequest instance and submitting it for  execution.  A 

 
 
 “request type” field that describes the effect to be 
achieved, and additional fields supply parameters for the 
effect. Table 1 lists the request types, and Table 2 summa-
rizes the major parameters. 
 A PilotRequest can include two forms of higher level 
information.  One is a MapBuilderRequest that the Pilot 
should pass to the MapBuilder to tell it what to look for, 
e.g., during a visual search. The other is a functor that the 
Pilot can call to test whether some condition holds. For 
example, the “landmark exit test” tells the Pilot whether it 
has acquired enough landmarks to perform a localization, 
and the “search exit test” indicates when a visual search 
should terminate. 

Building a Navigation Application 

To encourage user experimentation with the Pilot, we pro-
vide a PilotDemo class from which simple navigation ap-
plications can be built. PilotDemo implements a command 
interpreter that allows users to manually construct requests 
to move the robot, localize, navigate to a point in space, or 
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manipulate the particle filter. Users can make their own 
application, e.g., to test out a particular environment and 
landmark configuration, by creating a state machine that 
inherits from the PilotDemo class. 
 Figure 7 shows sample code that produces the path 
shown in Figure 2. The code is written in Tekkotsu’s state 
machine language, a convenient mixture of C++ and state 
machine shorthand. It is translated into pure C++ by a pre-

processor. In this example, the Figure2Demo behavior in-
herits from VeeTags, a built-in class that defines the world 
configuration shown in Figures 1 and 2. (VeeTags in turn 
inherits from PilotDemo.) We define a new node class Go-
ToGoal as a subclass of PilotNode. (A PilotNode con-
structs a PilotRequest instance and automatically submits it 
to the Pilot for execution.) GoToGoal fills in the PilotRe-
quest with a point shape that specifies the destination. 
 The user’s actual state machine contains just three 
nodes: an instance of GotoGoal and two SpeechNodes to 
announce the result of the navigation action.. One of the 
transitions between these nodes, denoted =PILOT=> in 
Figure 7, will fire when the Pilot signals completion of the 
request submitted by GoToGoal. 

The Calliope Robot 

The Create/ASUS and Calliope robots (Touretzky et al. 
2010) have been the primary testing platforms for the nav-
igation facility. Calliope consists of an iRobot Create mo-
bile base on which is mounted an ASUS Eee PC 1001 net-
book, a “neck” with a pan/tilt mount holding a camera and 
IR rangefinder, and an optional arm (Figures 4 and 5).  The 
Create provides odometry, bump sensors, cliff sensors, and 
user-accessible buttons. It communicates with the netbook 
via a serial cable. The ASUS netbook has a 1.66 GHz Intel 
Atom processor, 1 GB of RAM, and a 250 GB hard drive, 
providing plenty of computing power. It runs Ubuntu 
Linux. Use of a netbook rather than a simple processor 
board has several advantages: the netbook provides both 
WiFi and Ethernet networking, speakers for audio output, 
and an internal battery to power USB devices. In a pinch 
it’s also possible to program the robot directly from the 
ASUS keyboard, although it’s usually more convenient to 
use an ssh connection from a full-size laptop or work-
station. 
 The camera is a Sony PlayStation Eye, whose high 
frame rate (up to 125 frames per second) promises to elim-
inate motion blur and allow a future version of the Pilot to 
do landmark tracking on the fly. The pan/tilt uses two Ro-
botis AX-12 servos, and the rangefinder is a Robotis AX-
S1 that looks forward, left, and right simultaneously. 
 Several arm configurations are being investigated; all 
are constructed from Robotis AX and RX series servos. 
The arm in Figure 6 is kinematically similar to a Lynx-
motion arm with five degrees of freedom: base yaw, shoul-
der, elbow, and wrist pitch, and wrist rotate, plus two inde-
pendently controllable fingers. A future version of the Pilot 
will take the current arm configuration into account when 
calculating collision boundaries for path planning. 
 Calliopes with just a pan/tilt draw power from the Cre-
ate’s rechargeable battery to drive the servos. Calliopes 
with an arm have a separate 5000 mAH NiMH battery in 
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Figure 7. 
 
 
the Create’s cargo bay. This auxiliary battery not only 
powers the arm and pan/tilt, but also serves as an effective 
counterweight to the arm. 

Discussion 

The Pilot offers a high level approach to robot navigation 
by combining path planning, localization, and locomotion. 
Users can customize the Pilot’s behavior by supplying it 
with MapBuilderRequests and exit test functors. 
 Other robotics frameworks, such as Player/Stage or 
ROS, also provide path planning and localization facilities. 
Unique to Tekkotsu is its emphasis on integrating these 
components rather than trying to maintain them as inde-
pendent, orthogonal software modules. In addition, Tek-
kotsu emphasizes making vision-based behaviors work on 
relatively low cost robots. 
 Robotics education at the high school and undergraduate 
levels is presently hampered by a lack of affordable robots 
with serious vision, navigation, and manipulation capabili-
ties (Touretzky 2010). Platforms such as Calliope, when 
supported by the right high-level software, promise to 
make sophisticated robotics accessible to a much broader 
population of students, and to researchers who want to use 
robots in their work without becoming roboticists them-
selves. 
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