

Navigating with the Tekkotsu Pilot

Owen Watson1 and David S. Touretzky2

 1Department of Computer and Information Sciences 2Computer Science Department
 Florida A&M University Carnegie Mellon University
 Tallahassee, FL 32301 Pittsburgh, PA 15213
 owen1.watson@gmail.com dst@cs.cmu.edu

Abstract
Tekkotsu is a free, open source software framework for
high-level robot programming. We describe enhancements
to Tekkotsu's navigation component, the Pilot, to incorpo-
rate a particle filter for localization and an RRT-based path
planner for obstacle avoidance. This allows us to largely au-
tomate the robot's navigation behavior using a combination
of odometry and landmark-based localization. Beginning
robot programmers need only indicate a destination in Tek-
kotsu's world map and the Pilot will take the robot
there. The software has been tested both in simulation and
on Calliope, a new educational robot developed in the Tek-
kotsu lab in collaboration with RoPro Design, Inc..

 Introduction
The Tekkotsu framework, available at Tekkotsu.org, fea-
tures a set of four interacting software components, called
the Crew, that help relieve programmers of the need to
directly specify low-level behaviors (Touretzky and Tira-
Thompson 2010). The Crew use a request/event architec-
ture, where requests describe desired outcomes as opposed
to a specific set of actions for the robot to take. Program-
mers specify a high level behavior, such as “walk to this
location,” or “find all the blue lines in the scene,” in the
form of a request data structure that each Crew member
provides. The Crew members execute these requests on
the programmer’s behalf, posting events that signify the
outcome. This paper describes navigation enhancements to
the Pilot, the Crew member responsible for locomotion and
navigation.
 Providing programmers an interface to express naviga-
tion in terms of high level goals simplifies the construction
of complex behaviors. To achieve this the Pilot incorpo-
rates a particle filter for localization and an RRT-based
path planner for obstacle avoidance. Using odometry com-
bined with landmark-based localization allows us to large-
ly automate navigation in Tekkotsu.

Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 The software has been tested both in simulation and on
Calliope, a new educational robot developed in the Tek-
kotsu lab in collaboration with RoPro Design, Inc. The
navigation enhancements integrate well with Calliope,
which provides a camera on a pan-tilt mount (useful for
locating landmarks), wheel-based mobility, and sufficient
on-board processing power to handle data-intensive tasks.

The Tekkotsu Crew

Each member of the Crew has its own specialty, summa-
rized below.

The Lookout
The Lookout manages the robot’s sensor package and pro-
vides camera images and possibly other types of sensor
observations, such as rangefinder scans. A robot’s sensor
package is usually mounted on some type of moveable
“head” which the Lookout can point.

The MapBuilder
The MapBuilder is responsible for building representations
of the world. The MapBuilder calls on the Lookout when-
ever it needs to obtain images. Depending on the applica-
tion, the user may choose to work in any of three coordi-
nate systems: camera space, local (body-centered) space, or
world space (Touretzky et al. 2007). The MapBuilder pro-
vides methods for recognizing shapes such as lines or el-
lipses, generic blobs, or navigation markers. Using shapes
that it extracts from camera images, the MapBuilder can
construct local or world representations. It invokes Tek-
kotsu’s kinematics engine to determine the camera pose
based on the robot’s current posture, then performs coordi-
nate transformations from camera to local space. Building
a body-centered representation may require multiple cam-
era images due to the robot’s fairly narrow field of view

591

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

The Pilot
The Pilot interacts with the MapBuilder to find landmarks
for use in navigation. In some modes it may also com-
municate with the Lookout to obtain rangefinder readings.

The Grasper
For those robots that include an arm, the Grasper is the
Crew member responsible for manipulation. The Grasper
invokes an inverse kinematics solver to calculate the joint
angles necessary to put the “fingers” at a specified point in
space, and a path planner to calculate arm trajectories
(Coens 2010). The Grasper is the only member of the
Crew that is not used in navigating.

The World and Local Maps

World maps are the robot’s representation of the physical
world in an allocentric “shape space,” part of Tekkotsu’s
“dual-coding” vision system (Touretzky et al. 2007). The-
se maps describe the world’s boundaries, landmarks, and
obstacles. The world boundary for a maze-type environ-
ment is defined by constructing a polygon shape in the
world shape space. The robot is also represented in this
world map, using an “agent” shape with both position and
orientation attributes. The placement of landmarks in the
world map gives the particle filter a means to evaluate hy-
potheses about the robot’s position based on what the Pilot
is currently seeing. The path planner uses the world map to
search for a collision-free path from the robot’s current
position to the desired destination.
 Local maps represent the spatial configuration of the
objects the robot currently sees, in body-centered coordi-
nates. Due to the camera’s limited field of view (roughly
60◦ for a webcam vs. 200◦ for a binocular human), local
maps are typically constructed incrementally by the Map-

Builder from multiple camera images by moving just the
head. Once the robot moves its body, the local map is no
longer valid. However, on the Create/ASUS robot, the
forerunner of Calliope, which lacks a pan/tilt and instead
relies on the netbook’s built-in camera, the Pilot will rotate
the body if necessary to acquire enough landmarks for lo-
calization. It will then rotate back to the original heading.
The heading error induced by this operation, averaging 5 to
degrees, was judged a reasonable tradeoff in return for be-
ing able to see more of the world.

Functions Of The Pilot

The Pilot provides a unified interface for instructing robots
to navigate through the world, abstracting away the details
of how each type of robot moves and how it acquires
landmarks. Before the advent of the Pilot, users were re-
sponsible for doing their own path planning, obstacle
avoidance, and localization. Now users are able to invoke
these functions with minimal effort, and create routines
that can be used on all platforms supported by Tekkotsu.

Locomotion
The fundamental function of the Pilot is to move the ro-
bot’s body through the world. This includes both transla-
tional motion (forward and backward), sideways motion
(for holonomic robots), and rotation. In the future the Pilot
will also accommodate requests for postural changes, e.g.,
legged robots can rear up, hunker down, lean in a specific
direction, etc. The Pilot also allows users to specify the
speed at which to move and/or the distance to travel. It is
the Pilot’s responsibility to interface with the walk engine
that controls each type of robot.

Odometry
The Pilot keeps a running estimate of the displacement and
heading of the robot. On platforms that provide hardware
odometry, such as the iRobot Create, it makes use of this.
Otherwise it does dead reckoning by integrating the robot’s
velocity vector over time. The particle filter’s motion mod-
el makes use of this odometry information to drag the par-
ticles along as the robot moves, adding noise to reflect in-
creasing uncertainty over time, until the next resampling
occurs.

Localization
As previously described, the Pilot uses the MapBuilder to
acquire landmarks and a particle filter to maintain its posi-
tion estimate. A variety of landmark types can be used, but
we find the most reliable are AprilTags (Olson 2010), fidu-
cial markers inspired by Augmented Reality Tags. See
Figure 1.

Figure 1: A Create/ASUS robot examining AprilTag navigation
markers in the Mirage simulator environment. This particular
virtual world consists of six distinct AprilTags affixed to a vee-
shaped barrier.

592

 Localization is a discrete activity for the Pilot, for two
reasons. First, we’re using identifiable landmarks rather
than a continuous stream of raw sensor readings such as a
sonar array or laser scanner would provide. Therefore we
must point the camera at the locations where landmarks are
expected to appear and measure their distances and bear-
ings, one at a time. Second, if the robot uses a webcam that
suffers from motion blur, as most do, it cannot move and
localize at the same time. Localization is therefore a
planned activity, so that the Pilot can optimize the loca-
tions where it occurs. For example, if the robot is about to
turn a corner, it makes sense to delay localization until the
turn has been made.
Planning
When the user specifies a destination, the Pilot first plans a
path to that location that avoids world boundaries (walls
and cliffs) and obstacles. For this it uses the RRT-Connect

algorithm (Kuffner and Lavalle 2000). Figure 2 shows a
path to a goal location behind the barrier of Figure 1, and
Figure 3 shows the search trees that generated this path.
 Navigation is goal-directed locomotion informed by
perception. The Pilot constructs a navigation plan as a se-
ries of motion segments along the planned path, inter-
spersed with localization steps. Path analysis is used to
optimize the placement of localization operations. For ex-
ample, long straight segments are broken up by localiza-
tions to guard against the robot drifting. Once the robot is
on the far side of the barrier there will be no landmarks
visible, so the Pilot must rely on dead reckoning from then
on, and further localization steps are omitted. In situations
where this is not acceptable, the path planner would have
to consider landmark availability as part of its route plan-
ning process. We leave this to future work.
 Our current mode of using the Create triggers a firm-
ware bug that prevents accurate odometry for slow turns.
Therefore, the navigation planner does not try to smoothly
round out the corners of a path. Instead it generates sepa-
rate steps for heading changes vs. translational motion.

Obstacle and Cliff Detection
We provide a variety of modes of obstacle and cliff detec-
tion. On the Create we use the left and right bump sensors
to detect collisions, plus the motor current sensors to detect
when the robot is encountering resistance, typically be-
cause it’s pushing against a wall. On the AIBO we used the
chest IR sensor to detect cliffs. This could be done on the
Create using the wheel drop sensor, but at present we have
wheel drop events putting the robot into Emergency Stop
mode as a safety precaution. Calliope has an IR rangefind-
er which could potentially be used for both obstacle and
cliff detection; this will be explored in future work. We are
also experimenting with the Microsoft Kinect sensor as a
source of depth information.

Execution
Once the navigation plan has been constructed, the Pilot
begins to execute the plan. (There is also an option to have
it return the results of its path planning computation with-
out execution, which is useful if the user simply wants to
know whether it’s possible to get from A to B given the
current state of the world.)
 The Pilot uses Tekkotsu’s “waypoint walk engine” to
follow a sequence of waypoints up to the next localization
step. If localization reveals the robot has drifted, the next
invocation of the waypoint walk engine calculates a correc-
tion to bring the robot back onto the desired path.
 The user can refresh the world shape space during exe-
cution to see the robot’s progress on the path and some of
the particle filter’s particles (Figures 2 and 4).

593

 If all plan steps execute without error, the Pilot posts an
event indicating successful completion of the request. Oth-
erwise, the event indicates via an error code what went
wrong. One possibility is planning failure, which can occur
if there is no collision-free path from the start to the desti-
nation, presumably because some object is blocking the
way. Another possibility is that a collision occurred.
 The user can specify what action the Pilot is to take
when a collision is detected. The default is to stop the robot
and report the event. Alternatives include ignoring the col-
lision (useful if we’re trying to push an object), or relocal-
izing and then replanning a path to the desired destination.

Pilot Requests

Users communicate with the Pilot by filling in the fields of
a PilotRequest instance and submitting it for execution. A

 “request type” field that describes the effect to be
achieved, and additional fields supply parameters for the
effect. Table 1 lists the request types, and Table 2 summa-
rizes the major parameters.
 A PilotRequest can include two forms of higher level
information. One is a MapBuilderRequest that the Pilot
should pass to the MapBuilder to tell it what to look for,
e.g., during a visual search. The other is a functor that the
Pilot can call to test whether some condition holds. For
example, the “landmark exit test” tells the Pilot whether it
has acquired enough landmarks to perform a localization,
and the “search exit test” indicates when a visual search
should terminate.

Building a Navigation Application

To encourage user experimentation with the Pilot, we pro-
vide a PilotDemo class from which simple navigation ap-
plications can be built. PilotDemo implements a command
interpreter that allows users to manually construct requests
to move the robot, localize, navigate to a point in space, or

594

manipulate the particle filter. Users can make their own
application, e.g., to test out a particular environment and
landmark configuration, by creating a state machine that
inherits from the PilotDemo class.
 Figure 7 shows sample code that produces the path
shown in Figure 2. The code is written in Tekkotsu’s state
machine language, a convenient mixture of C++ and state
machine shorthand. It is translated into pure C++ by a pre-

processor. In this example, the Figure2Demo behavior in-
herits from VeeTags, a built-in class that defines the world
configuration shown in Figures 1 and 2. (VeeTags in turn
inherits from PilotDemo.) We define a new node class Go-
ToGoal as a subclass of PilotNode. (A PilotNode con-
structs a PilotRequest instance and automatically submits it
to the Pilot for execution.) GoToGoal fills in the PilotRe-
quest with a point shape that specifies the destination.
 The user’s actual state machine contains just three
nodes: an instance of GotoGoal and two SpeechNodes to
announce the result of the navigation action.. One of the
transitions between these nodes, denoted =PILOT=> in
Figure 7, will fire when the Pilot signals completion of the
request submitted by GoToGoal.

The Calliope Robot

The Create/ASUS and Calliope robots (Touretzky et al.
2010) have been the primary testing platforms for the nav-
igation facility. Calliope consists of an iRobot Create mo-
bile base on which is mounted an ASUS Eee PC 1001 net-
book, a “neck” with a pan/tilt mount holding a camera and
IR rangefinder, and an optional arm (Figures 4 and 5). The
Create provides odometry, bump sensors, cliff sensors, and
user-accessible buttons. It communicates with the netbook
via a serial cable. The ASUS netbook has a 1.66 GHz Intel
Atom processor, 1 GB of RAM, and a 250 GB hard drive,
providing plenty of computing power. It runs Ubuntu
Linux. Use of a netbook rather than a simple processor
board has several advantages: the netbook provides both
WiFi and Ethernet networking, speakers for audio output,
and an internal battery to power USB devices. In a pinch
it’s also possible to program the robot directly from the
ASUS keyboard, although it’s usually more convenient to
use an ssh connection from a full-size laptop or work-
station.
 The camera is a Sony PlayStation Eye, whose high
frame rate (up to 125 frames per second) promises to elim-
inate motion blur and allow a future version of the Pilot to
do landmark tracking on the fly. The pan/tilt uses two Ro-
botis AX-12 servos, and the rangefinder is a Robotis AX-
S1 that looks forward, left, and right simultaneously.
 Several arm configurations are being investigated; all
are constructed from Robotis AX and RX series servos.
The arm in Figure 6 is kinematically similar to a Lynx-
motion arm with five degrees of freedom: base yaw, shoul-
der, elbow, and wrist pitch, and wrist rotate, plus two inde-
pendently controllable fingers. A future version of the Pilot
will take the current arm configuration into account when
calculating collision boundaries for path planning.
 Calliopes with just a pan/tilt draw power from the Cre-
ate’s rechargeable battery to drive the servos. Calliopes
with an arm have a separate 5000 mAH NiMH battery in

595

Figure 7.

the Create’s cargo bay. This auxiliary battery not only
powers the arm and pan/tilt, but also serves as an effective
counterweight to the arm.

Discussion

The Pilot offers a high level approach to robot navigation
by combining path planning, localization, and locomotion.
Users can customize the Pilot’s behavior by supplying it
with MapBuilderRequests and exit test functors.
 Other robotics frameworks, such as Player/Stage or
ROS, also provide path planning and localization facilities.
Unique to Tekkotsu is its emphasis on integrating these
components rather than trying to maintain them as inde-
pendent, orthogonal software modules. In addition, Tek-
kotsu emphasizes making vision-based behaviors work on
relatively low cost robots.
 Robotics education at the high school and undergraduate
levels is presently hampered by a lack of affordable robots
with serious vision, navigation, and manipulation capabili-
ties (Touretzky 2010). Platforms such as Calliope, when
supported by the right high-level software, promise to
make sophisticated robotics accessible to a much broader
population of students, and to researchers who want to use
robots in their work without becoming roboticists them-
selves.

Acknowledgments

Ethan Tira-Thompson implemented the particle filter and
Alex Grubb implemented the navigation path planner used
by the Pilot. RoPro Design, Inc. is a co-developer of the
Calliope robot and supplied several key components.
 This work was supported by the National Science Foun-
dation under awards DUE-0717705 and CNS-0742106.

References
Coens, J. 2010. Taking Tekkotsu Out of the Plane. Masters thesis,
Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA. Available online at http://Chiara-
Robot.org/Chess.

Kuffner, J. J. Jr., and LaValle, S. M. 2000. RRT-Connect: An
efficient approach to single-query path planning. Proc. IEEE
International Conference on Robotics and Automation (ICRA-
2000).

Olson, E. 2010. AprilTag: A robust and flexible multi-purpose
fiducial system. Technical report, University of Michigan APRIL
Laboratory, May, 2010.

Touretzky, D. S. 2010. Preparing computer science students for
the robotics revolution. Comm. ACM, 53(8):27-29.

Touretzky, D. S., Halelamian, N. S., Tira-Thompson, E. J.,
Wales, J. J., and Usui, K. 2007. Dual-coding representations for
robot vision in Tekkotsu. Autonomous Robots, 22(4):425-435.

Touretzky, D. S., and Tira-Thompson, E. J. 2010. The Tekkotsu
"Crew": Teaching robot programming at a higher level. First
AAAI Symposium on Educational Advances in Artificial Intelli-
gence. Menlo Park, CA: Association for the Advancement of
Artificial Intelligence.

Touretzky, D. S., Watson, O., Allen, C. S., and Russell, R. 2010.
Calliope: Mobile manipulation from commodity components.
Technical report WS-10-09: Papers from the 2010 AAAI Robot
Workshop. Menlo Park, CA: Association for the Advancement of
Artificial Intelligence.

596

