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Abstract

Augmenting probabilities to conditional logic yields an ex-
pressive mechanism for representing uncertainty. The princi-
ple of optimum entropy allows one to reason in probabilistic
logic in an information-theoretic optimal way by completing
the given information as unbiasedly as possible. In this paper,
we introduce the MECoRe system that realises the core func-
tionalities for an intelligent agent reasoning at optimum en-
tropy and that provides powerful mechanisms for belief man-
agement operations like revision, update, diagnosis, or hypo-
thetical what-if-analysis.

Introduction

When modelling an intelligent agent, elaborate know-
ledge representation and reasoning facilities are required.
For instance, an agent performing medical diagnosis must
be able to deal with pieces of knowledge expressed
by rules such as “If antibiotic A is effective against
the observed bacteria (effect A), the patient will be
healthy (outcome=healthy) with a probability of 80%.”
More formally, such uncertain probabilistic conditionals
can be expressed by (outcome=healthy|effect A)[0.8].
Certain knowledge as in “If the observed bacteria
is resistent to antibiotic A (resistance A), antibi-
otic A cannot be effective” can be formalized by
(¬effect A|resistance A)[1.0]. Furthermore, such an
agent should be able to answer diagnostic questions in the
presence of evidential facts like “Given evidence for the
resistance to antibiotic A, what are the patient’s healing
chances if antibiotic B is given?”

An agent capable of dealing with knowledge bases con-
taining such general conditionals can be seen as an agent be-
ing able to take rules, pieces of evidence, queries, etc., from
the environment and giving back sentences she believes to
be true with a degree of certainty. Basically, these degrees
of belief are inferred from the agent’s current epistemic state
which is a representation of her cognitive state at the given
time. When the agent is supposed to live in an uncertain and
dynamic environment, she has to adapt her epistemic state
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constantly to changes in the surrounding world and to react
adequately to new demands (cf. (Darwiche and Pearl 1997),
(Katsuno and Mendelzon 1991)).

In the following, we will deal with situations where basic
knowledge in the form of quantitative knowledge is avail-
able where each conditional comes with a probability. Given
an initial knowledge base KB of probabilistic conditionals,
the epistemic state of a rational agent accepting KB can be
expressed by a complete probability distribution P over the
involved propositional variables. Any agent aiming to be as
unbiased as possible should not presuppose any additional
information apart from the explicitly given knowledge. Us-
ing an information-theoretic approach, this leads to the well-
established concept of optimum entropy (Paris and Vencov-
ska 1997; Kern-Isberner 1998).

In this paper, we introduce the MECoRe system that pro-
vides the core functionalities for an intelligent agent model
as outlined above. MECoRe realises not only knowledge
representation and inferencing under optimum entropy, but
in particular, it provides powerful mechanisms for know-
ledge management operations like revision, update, diagno-
sis, or hypothetical what-if analysis.

We first provide a very brief introduction to proba-
bilistic conditional logics, before the core functionalities
of MECoRe are described. Afterwards, an overview of
MECoRe is given, followed by a system walkthrough to-
gether with an application example.

Probabilistic Conditional Logic in a Nutshell

We start with a propositional language L, generated by a
finite set Σ of (binary) atoms a, b, c, . . .. The formulas of
L will be denoted by uppercase Roman letters A, B,C, . . ..
For conciseness of notation, we will omit the logical and-
connector, writing AB instead of A∧B, and overlining for-
mulas will indicate negation, i.e. A means ¬A. Let Ω denote
the set of possible worlds over L; Ω will be taken here sim-
ply as the set of all propositional interpretations over L and
can be identified with the set of all complete conjunctions
over Σ. For ω ∈ Ω, ω |= A means that the propositional
formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set
(L | L) = {(B|A) | A, B ∈ L} of (unquantified) condi-
tionals (or rules) over L. (B|A) formalizes “if A then B”
and establishes a plausible, probable, possible etc connec-
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tion between the antecedent A and the consequent B. The
set SenC contains all probabilistic conditionals (or proba-
bilistic rules) of the form (B|A)[x] where x is a probability
value x ∈ [0, 1].

To give appropriate semantics to conditionals, they are
usually considered within richer structures such as epistemic
states. Besides certain (logical) knowledge, epistemic states
also allow the representation of e.g. preferences, beliefs, as-
sumptions of an intelligent agent. Basically, an epistemic
state allows one to compare formulas or worlds with re-
spect to plausibility, possibility, necessity, probability etc.
In a quantitative framework, most appreciated representa-
tions of epistemic states are provided by probability func-
tions (or probability distributions) P : Ω → [0, 1] with∑

ω∈Ω P (ω) = 1. Thus, in this setting, the set of epis-
temic states we will consider is EpState = {P | P :
Ω → [0, 1] is a probability function}. The probability of
a formula A ∈ L is given by P (A) =

∑
ω|=A P (ω),

and the probability of a conditional (B|A) ∈ (L | L) with
P (A) > 0 is defined as P (B|A) = P (AB)/P (A), the cor-
responding conditional probability. Conditionals are inter-
preted via conditional probability. So the satisfaction rela-
tion |=C ⊆ EpState × SenC of probabilistic conditional
logic is defined by P |=C (B|A) [x] iff P (B|A) = x.

Core Functions of the MECoRe-System

Initialization

In the beginning, a prior epistemic state has to be built up
on the basis of which the agent can start her computations.
If no knowledge at all is at hand, simply the uniform epis-
temic state is taken to initialize the system. In our proba-
bilistic setting, this corresponds to the uniform distribution
where each possible world is assigned the same probabil-
ity. If, however, a set of probabilistic rules is at hand to
describe the problem area under consideration, an epistemic
state has to be found to appropriately represent this prior
knowledge. To this end, we assume an inductive representa-
tion method to establish the desired connection between sets
of sentences and epistemic states. Whereas generally, a set
R of sentences allows a (possibly large) set of models (or
epistemic states), in an inductive formalism we have a func-
tion inductive : P(SenC) → EpState such that inductive(R)
selects a unique, “best” epistemic state from all those states
satisfying R.

In the probabilistic framework, the principle of maximum
entropy associates to a set R of probabilistic conditionals
the unique distribution P ∗ = MaxEnt(R) that satisfies all
conditionals in R and has maximal entropy, i.e., MaxEnt(R)
is the unique solution to the maximization problem

arg max
P ′|=R

H(P ′) = −
∑

ω

P ′(ω) log P ′(ω) (1)

The rationale behind this is that MaxEnt(R) represents the
knowledge given by R most faithfully, i.e. without adding
information unnecessarily (cf. (Paris and Vencovska 1997;
Kern-Isberner 1998)). We will illustrate the maximum en-
tropy method by a small example.

Example 1 Consider the three propositional variables s
- being a student, y - being young, and u - being
unmarried. Students and unmarried people are mostly
young. This commonsense knowledge an agent may
have can be expressed probabilistically e.g. by the set
R = {(y|s)[0.8], (y|u)[0.7]} of conditionals. The MaxEnt-
representation P ∗ = MaxEnt(R) computed by MECoRe is:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)
syu 0.1950 syu 0.1758 syu 0.0408 sy u 0.0519
syu 0.1528 syu 0.1378 s yu 0.1081 s y u 0.1378

Querying an Epistemic State

Querying an agent about her beliefs amounts to pose a set
of unquantified sentences and asking for the corresponding
degrees of belief with respect to her current epistemic state.

Example 2 Suppose the current epistemic state is
currState = MaxEnt(R) from Ex. 1, and our question
is “What is the probability that unmarried students are
young?”, i.e. the set of queries is {(y|su)}. MECoRe
returns {(y|su)[0.8270]}, that is, unmarried students are
supposed to be young with probability 0.8270.

New Information and Belief Change

Belief revision, the theory of dynamics of knowledge, has
been mainly concerned with propositional beliefs for a long
time. The most basic approach here is the AGM-theory pre-
sented in the seminal paper (Alchourrón, Gärdenfors, and
Makinson 1985) as a set of postulates outlining appropriate
revision mechanisms in a propositional logical environment.
This framework has been widened by Darwiche and Pearl
(Darwiche and Pearl 1997) for (qualitative) epistemic states
and conditional beliefs. An even more general approach,
unifying revision methods for quantitative and qualitative
representations of epistemic states, is described in (Kern-
Isberner 2001). The crucial meaning of conditionals as re-
vision policies for belief revision processes is made clear by
the so-called Ramsey test, according to which a conditional
(B|A) is accepted in an epistemic state Ψ, iff revising Ψ by
A yields belief in B: Ψ |= (B|A) iff Ψ ∗ A |= B where
∗ is a belief revision operator (see e.g. (Gärdenfors 1988)).

Note, that the term “belief revision” is a bit ambiguous:
On the one hand, it is used to denote quite generally any pro-
cess of changing beliefs due to incoming new information
(Gärdenfors 1988). On a more sophisticated level, however,
one distinguishes between different kinds of belief change.
Here, (genuine) revision takes place when new informa-
tion about a static world arrives, whereas updating tries to
incorporate new information about a (possibly) evolving,
changing world (Katsuno and Mendelzon 1991). Further be-
lief change operators are expansion, focusing, contraction,
and erasure (cf. (Gärdenfors 1988; Dubois and Prade 1997;
Katsuno and Mendelzon 1991)). In the following, we will
use the general approach to belief change developed in
(Kern-Isberner 2001) where belief change is considered in
a very general and advanced form: Epistemic states are re-
vised by sets of conditionals – this exceeds the classical
AGM-theory by far which only deals with sets of proposi-
tional beliefs. Due to space restrictions, we will concentrate
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on the core functionality of updating in this paper. In (Kern-
Isberner 2008) it is shown how belief revision can be based
on such a change operator.

In the probabilistic framework, a powerful tool to up-
date probability distributions by sets of probabilistic con-
ditionals is provided by the principle of minimum cross-
entropy which generalizes the principle of maximum en-
tropy in the sense of (1): Given a (prior) distribution P and a
set R of probabilistic conditionals, the MinCEnt-distribution
P ∗ = MinCEnt(P,R) is the unique distribution that satis-
fies all constraints in R and has minimal cross-entropy Hce

with respect to P , i.e. P ∗ solves the minimization problem

arg min
P ′|=R

Hce(P ′, P ) =
∑

ω

P ′(ω) log
P ′(ω)
P (ω)

(2)

If R is basically compatible with P (i.e. P -consistent, cf.
(Kern-Isberner 2001)), then P ∗ is guaranteed to exist (for
further information and lots of examples, see (Csiszár 1975;
Paris and Vencovská 1992; Kern-Isberner 2001)). The cross-
entropy between two distributions can be taken as a di-
rected (i.e. asymmetric) information distance (Shore 1986)
between these two distributions. Following the principle of
minimum cross-entropy means to modify the prior epistemic
state P in such a way as to obtain a new distribution P ∗
which satisfies all conditionals in R and is as close to P as
possible. So, the MinCEnt-principle yields a probabilistic
belief update operator, associating to each probability distri-
bution P and each P -consistent set R of probabilistic condi-
tionals a revised distribution P ∗ = MinCEnt(P,R) in which
R holds.

Example 3 Suppose that some time later, the relation-
ships in the population from Example 1 between students
and young people have changed, so that students are
young with a probability of 0.9. In order to incorporate
this new knowledge, the agent applies an updating op-
eration to modify P ∗ appropriately. The result P ∗∗ =
MinCEnt(P ∗, {(y|s)[0.9]}) as determined by MECoRe is:

ω P ∗∗(ω) ω P ∗∗(ω) ω P ∗∗(ω) ω P ∗∗(ω)
syu 0.2151 syu 0.1939 syu 0.0200 sy u 0.0255
syu 0.1554 syu 0.1401 s yu 0.1099 s y u 0.1401

It is easily checked that indeed, P ∗∗(y|s) = 0.9 (only ap-
proximately, due to rounding errors).

Diagnosis

Diagnosing a given case is one of the most common opera-
tions in knowledge based systems. Given some case-specific
evidence E (formally, a set of quantified facts), diagnosis as-
signs degrees of belief to the atomic propositions D to be di-
agnosed (formally, D is a set of unquantified atomic propo-
sitions). Thus, making a diagnosis in the light of some given
evidence corresponds to determine what is believed in the
state obtained by focusing the current state P on the given
evidence, i.e. querying the epistemic state MinCEnt(P,E)
with respect to D. Thus, here focusing corresponds to con-
ditioning P with respect to the given evidence E.

Example 4 Let currState = P ∗ from Ex. 1. If there is now
certain evidence for being a student and being unmarried

– i.e. E = {su[1]} – and we ask for the degree of be-
lief of being young – i.e. D = {y} –, MECoRe computes
{y[0.8270]}. Thus, if there is certain evidence for being an
unmarried student, then the degree of belief for being young
is 0.8270.

What-If-Analysis: Hypothetical Reasoning

Hypothetical reasoning asks for the degree of belief of com-
plex relationships (goals) under some hypothetical assump-
tions. This is useful, e. g., to exploit in advance the ben-
efits of some expensive or intricate medical investigations.
Note that whereas in the diagnostic case both evidence E
and diagnoses D are just simple propositions, in hypothet-
ical reasoning both the assumptions A (formally, a set of
quantified conditionals) as well as the goals G (formally,
a set of unquantified conditionals) may be sets of full con-
ditionals. However, since its underlying powerful Min-
CEnt-update operator can modify epistemic states by arbi-
trary sets of conditionals, MECoRe can handle hypothetical
what-if-analysis structurally analogously to the diagnostic
case, i. e. by querying the epistemic state focussed state =
MinCEnt(P,A) with respect to G where P is the current
epistemic state. Since this is hypothetical reasoning, the
agent’s current epistemic state remains unchanged.

Example 5 Given currState = P ∗ from Ex. 1 as present
epistemic state, a hypothetical reasoning question is given
by: “What would be the probability of being young under
the condition of being unmarried – i.e. G = {(y|u)} –, pro-
vided that the probability of a student being young changed
to 0.9 – i.e. A = {(y|s)[0.9]}?” MECoRe’s answer is
{(y|u)[0.7404]} which corresponds to the probability given
by P ∗∗ from Ex. 3.

The MECoRe system

Besides providing the core functionalities needed for proba-
bilistic reasoning at optimum entropy, the main objective of
MECoRe is to support advanced belief management opera-
tions like revision, update, diagnosis, or what-if-analysis in
a most flexible and easily extendible way. MECoRe is im-
plemented in Java. In its current version, it uses a straight-
forward, direct implementation of a well-known MinCEnt
algorithm and provides a very powerful and flexible inter-
face.

Computation of MinCEnt
MECoRe computes the distribution P ∗ = MinCEnt(P,R)
in an iterative way. A detailed description of the used al-
gorithm can be found in (Csiszár 1975). In principle, the
algorithm iterates over all rules in R in a cyclical order. In
each iteration step, only one rule is considered and the cur-
rent distribution (starting with P ) is appropriately adjusted
to satisfy the considered rule. It can be shown that this iter-
ative process converges to P ∗.

The current implementation of the algorithm in MECoRe
works on an explicit representation of the whole probability
distribution. Although this representation has to cope with
the exponential size in the number of variables, it is still effi-
cient enough to compute knowledge bases with 20 variables
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in about 30 seconds. Since the algorithm is implemented
independently from the actual representation of the distribu-
tion, the MECoRe system can easily be extended by a more
sophisticated and efficient kind of representation of the dis-
tribution, e. g. by a junction tree (Teh and Welling 2003).

The User Interface

The present version of MECoRe can be controlled by a text
command interface or by scripts, i. e. text files that allow
the batch processing of command sequences. These scripts
and the text interface use a programming language-like syn-
tax that allows to define, manipulate and display variables,
propositions, rule sets and epistemic states. The following
example shows a way to generate an epistemic state using
the initialize and update operators:

//define a set of rules
kb := ((y|s)[0.8], (y|u)[0.7]);
// initialize an epistemic state with these rules
currState := epstate().initialze(kb);
//query and output current belief in the conditional (y|su)
currState.query((y|su));
//update the epistemic state currState by (y|s)[0.9]
currState.update((y|s)[0.9]);

Hence, one is able to use both previously defined rule sets
and rules that are entered just when they are needed, and
combinations of both. The ability to manipulate rule sets, to
automate sequences of updates and revisions, and to output
selected (intermediate) results for comparing, yields a very
expressive command language. This command language is
a powerful tool for experimenting and testing with different
setups. All core functions of the MECoRe system are also
accessible through a software interface (in terms of a Java
API). So MECoRe can easily be extended by a GUI or be
integrated into another software application.

Related Work

There are many systems performing inferences in proba-
bilistic networks, especially in Bayesian networks. One sys-
tem built upon network techniques to implement reason-
ing at optimum entropy is the expert system shell SPIRIT
(Rödder, Reucher, and Kulmann 2006). Graph based meth-
ods are known to feature a very efficient representation of
probability distributions via junction trees and hypergraphs,
while MECoRe works on a model based representation of
probabilities. This is clearly inefficient, but efficiency is not
the point here. The aim of the MECoRe project is to imple-
ment subjective probabilistic reasoning, as it could be per-
formed by agents, making various belief operations possible.
In particular, it allows changing of beliefs in a very flexible
way by taking new, complex information into account. This
is not possible with graph based systems for probabilistic in-
ference, as no efficient methods of restructuring probabilis-
tic networks have been developed to date.

System Walkthrough and Example Application

This example will illustrate how incomplete, uncertain
knowledge can be expressed by a probabilistic knowledge

base. It will also demonstrate how new knowledge can be
inferred and how hypothetical reasoning can be performed.

This (fictitious) example from the medical domain dis-
cusses the general treatment of a patient who suffers from
a perilous bacterial infection. The infection will probably
cause permanent neurological damage or even death if it is
not treated appropriately. There are two antibiotics avail-
able that might be capable of ending the infection, provided
that the bacterial is not resistant to the specific antibiotic. It
must also be considered that each antibiotic might cause a
life-threatening allergic reaction that could be hard to sur-
vive for the already weakened patient. The resistance of the
bacterial to a specific antibiotic can be tested, but each test
is very time-consuming.

Building Up the Knowledge Base

The construction of the knowledge base starts with the def-
inition of some binary variables that describe aspects con-
cerning antibiotic A:
med A: The patient is treated with antibiotic A.
effect A: Antibiotic A is effective against the bacteria.
allergic A: The patient is allergic to antibiotic A.
resistance A: The bacteria are resistant to antibiotic A.
posResTest A: The test result suggests a resistance to
antibiotic A.

Five corresponding variables concerning antibiotic B are
added to the knowledge base as well. A three-valued vari-
able outcome describes the three possible outcomes of the
treatment:
outcome=healthy: The infection is treated success-
fully and the patient is healthy again.
outcome=impaired: The patient overcomes the infec-
tion but suffers a permanent damage to the nervous sys-
tem.
outcome=dead: The infection is not treated effectively
and the patient dies.

The available knowledge summarizing the previously made
experiences about the infection and the two antibiotics is
modeled by the following probabilistic rules:

R1 : (¬effect A|¬med A ∨ resistance A)[1.00]
R2 : (¬effect B|¬med B ∨ resistance B)[1.00]
R3 : (effect A ⇔ med A|¬resistance A)[1.00]
R4 : (effect B ⇔ med B|¬resistance B)[1.00]
R5 : (allergic A)[0.10]
R6 : (allergic B)[0.20]
R7 : (resistance A)[0.01]
R8 : (resistance B)[0.09]
R9 : (med A ∧ med B)[0.00001]
R10: (outcome=dead|¬med A ∧ ¬med B)[0.10]
R11: (outcome=healthy|¬med A ∧ ¬med B)[0.10]
R12: (posResTest A|resistance A)[0.97]
R13: (¬posResTest A|¬resistance A)[0.99]
R14: (posResTest B|resistance B)[0.90]
R15: (¬posResTest B|¬resistance B)[0.80]
R16: (outcome=dead|med A ∧ allergic A)[0.99]
R17: (outcome=dead|med B ∧ allergic B)[0.40]
R18: (outcome=healthy|effect A)[0.8]
R19: (outcome=healthy|effect B)[0.7]
R20: (allergic A|med A)[0.10]
R21: (outcome=dead|effect B)[0.09]
R22: (outcome=healthy|med B ∧ allergic B)[0.001]
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The first four rules express very obvious correlations be-
tween the variables: R1 and R2 say that if a certain antibiotic
is not administered or the bacteria are resistent to it, then this
antibiotic has no effect. R3 and R4 assure that if the bacteria
are not resistant to a certain antibiotic, then this antibiotic
is effective if – and only if – it is administered. The facts
R5 to R9 integrate statistical information available for an-
tibiotic A and antibiotic B, i. e. some a priori probabilities,
into the knowledge base: Antibiotic B is twice as likely as
antibiotic A to cause an allergic reaction (R5, R6); and the
resistance to antibiotic B is nine times higher compared to
antibiotic A (R7, R8). It has occurred very rarely that some-
body administers both antibiotics to the patient (R9). R10

and R11 model the prognosis for the patient if no antibiotic
is administered. The result of a resistance-test, testing the
resistance of the bacteria to an antibiotic, always includes
some error, but the test regarding antibiotic A is very reli-
able (R12, R13); whereas the test concerning antibiotic B
has a somewhat lower sensitivity (R14) and a considerably
lower specificity (R15).

The rules R16 to R19 express special knowledge about
antibiotic A and antibiotic B, respectively: The allergic re-
action caused by antibiotic A is most likely lethal (R16),
whereas the chance of surviving an allergy to antibiotic B
is more likely than to die of it (R17). If antibiotic A is
effective, then the patient’s has a good chance to become
healthy again (R18), whereas the effectiveness of antibiotic
B is somewhat lower (R19). The following knowledge is
available for antibiotic A only: R20 makes clear that the a
priori probability of an allergy to antibiotic A (expressed by
R5 with equal probability) is not affected by the administra-
tion of antibiotic A. There is also some exclusive knowledge
about antibiotic B: If antibiotic B is effective, there still re-
mains some risk to die of the infection (R21). If the patient
survives an allergic reaction caused by antibiotic B, it is very
unlikely that he will become healthy again (R22).

The rules R1 to R22, i. e. the rules which make up the
knowledge base, are assigned to a named rule set medKB to
make them directly accessible for knowledge processing op-
erations.

Knowledge Processing

Initialization Once all knowledge rules have been de-
fined, the computation of an epistemic state incorporating
this knowledge can be started by the following command:

(1) currState := epstate.initialize(medKB);

The calculated epistemic state currState represents the
(incomplete) knowledge expressed by medKB inductively
completed in an entropy-optimal way.

A closer look at medKB reveals that some additional rules
can be logically deduced from the existing rules since they
hold in all models satisfying medKB. For instance, a literal
of the three-valued variable outcome makes up the con-
clusion of several rules. Hence, two rules with identical
premise and an outcome literal as conclusion directly im-
ply a corresponding third rule, e. g. R10 and R11 imply
(outcome=impaired|¬med A ∧ ¬med B)[0.8]. Likewise,
the knowledge that is available for antibiotic B in rules R19

and R21 implies (outcome=impaired|effect B)[0.21].

Appropriate queries to MECoRe in currState yield these
expected probabilities since reasoning at optimum entropy
is compatible with classical probabilistic consequences.

Query Let us now formulate some questions that we want
to be answered, i. e. inferred from currState. We want
to know the patient’s chances in each case of treatment, i. e.
for each of the four possible options of medical administra-
tion: no antibiotic, antibiotic A only, antibiotic B only, both
antibiotics. These questions are expressed by twelve query
formulas (i. e. conditionals), constructed as follows:

(outcome=healthy|¬med A ∧ ¬med B),
(outcome=impaired|¬med A ∧ ¬med B),
(outcome=dead|¬med A ∧ ¬med B),
(outcome=healthy|med A ∧ ¬med B),
(outcome=impaired|med A ∧ ¬med B),
. . .
(outcome=impaired|med A ∧ med B),
(outcome=dead|med A ∧ med B)

We assign these twelve queries to a query set named
medQueries. Query sets play an important role in belief
processing, as they serve to make relevant beliefs from the
complex epistemic state explicit and usable for the problem
under consideration. An appropriate query set is also helpful
to illustrate the effects of all kinds of belief revision.

The queries in medQueries are evaluated by the follow-
ing command:

(2) currState.query(medQueries);

The MECoRe system calculates the following probabilities:
healthy impaired dead

no antibiotic 0.10 0.80 0.10
antibiotic A only 0.79 0.06 0.15
antibiotic B only 0.65 0.23 0.12

both antibiotics 0.94 0.02 0.04
These results clearly suggest that the combined administra-
tion of both antibiotics would be the best treatment. It offers
a high chance of healing accompanied by a minimal risk of
permanent neurological damage or death.

However, a closer look at the knowledge base reveals that
it contains no knowledge about a possible drug interaction.
Asking for the degree of belief for the conditional

Cint : (dead|med A ∧ med B ∧ ¬allergic A ∧ ¬allergic B)
by performing the query

(3) currState.query(Cint);

yields the inferred drug interaction probability 0.01.
Incorporation of New Knowledge Suppose the doctor
learns to know from an outside source that there is a se-
vere risk (0.25) of a deadly drug interaction between both
antibiotics. Executing

(4) currState.update(medKB, Cint[0.25]);

incorporates this new knowledge into the current epistemic
state as if it had been available already in medKB. In fact,
this kind of belief change is a genuine revision (cf. (Kern-
Isberner 2008)) which in MECoRe can also be more easily
expressed by

(4’) currState.revise(Cint[0.25]);

Now, asking the medQueries again, the probabilities have
changed considerably:

(5) currState.query(medQueries);
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healthy impaired dead
no antibiotic 0.10 0.80 0.10

antibiotic A only 0.79 0.06 0.15
antibiotic B only 0.65 0.23 0.12

both antibiotics 0.70 0.02 0.28
With the knowledge about a deadly drug interaction, the
probabilities show that the administration of antibiotic A
maximizes the patient’s chance to become healthy again.

What-If-Analysis It has to be noticed that in the epistemic
state currState no resistance-tests have been performed,
i. e. for neither of the antibiotics any resistance-test results
are available.

A what-if-analysis can be used to analyze what changes
would occur if a negative resistance-test result concerning
antibiotic B was known. That is, could this test result make
antibiotic B the better choice for treatment? Such a what-if-
analysis is accomplished by the following command:

(6) currState.whatif((¬posResTest B)[1.0], medQueries);

The what-if-analysis delivers this results:
healthy impaired dead

no antibiotic 0.10 0.80 0.10
antibiotic A only 0.79 0.06 0.15
antibiotic B only 0.69 0.21 0.10

both antibiotics 0.76 0.02 0.22
The probabilities show that even a negative resistance-B-test
would not change the general decision to administer antibi-
otic A. This result is, amongst others, caused by the low
resistance-B-test specificity.

Another what-if-analysis can reveal the effects a positive
resistance-A-test would induce:

(7) currState.whatif((posResTest A)[1.0], medQueries);

healthy impaired dead
no antibiotic 0.10 0.80 0.10

antibiotic A only 0.43 0.15 0.42
antibiotic B only 0.65 0.23 0.12

both antibiotics 0.32 0.05 0.63
This shows that a test-result suggesting the resistance to an-
tibiotic A would change the situation: In this case, a treat-
ment with antibiotic B becomes the only that offers a re-
alistic healing-chance. This is not surprising, because a
resistance-test result concerning antibiotic A is very reliable.
So it is clearly advisable to perform the time-consuming
resistance-A-test.

In case of a positive resistance-A-test result, would it also
be helpful to test the resistance to antibiotic B? That is, could
an additional positive resistance-B-test change the decision
to administer antibiotic B?

(8) currState.whatif(((posResTest A)[1.0],

(posResTest B)[1.0]), medQueries);

healthy impaired dead
no antibiotic 0.10 0.80 0.10

antibiotic A only 0.43 0.15 0.42
antibiotic B only 0.54 0.26 0.20

both antibiotics 0.20 0.04 0.76
The what-if-analysis shows that even a positive resistance-
B-test would not change the decision to administer antibiotic
B. So it is not helpful to perform a resistance-B-test in any
situation, since its result would never change the decision
that had been made without knowing the test-result.

Conclusions and Further Work
The main objective when developing MECoRe was to pro-
vide the core functionalities needed for probabilistic rea-
soning at optimum entropy and to support advanced belief
management operations in a most flexible and easily ex-
tendible way. After having reached these goals, our current
work includes using factorizations of the probability distri-
butions for an optimized internal, graph-based representa-
tion, to complement MECoRe’s expressive text and script
based interface by a graphical user interface, and to study
further example applications.
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