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Abstract

Knowledge compilation is a common technique for propo-
sitional logic knowledge bases. A given knowledge base is
transformed into a normal form, for which queries can be an-
swered efficiently. This precompilation step is expensive, but
it only has to be performed once. We apply this technique to
knowledge bases defined in the Description Logic ALC. We
discuss an efficient satisfiability test as well as a subsumption
test for precompiled concepts and Tboxes. Further we use the
precompiled Tboxes for efficient Tbox reasoning. Finally we
present first experimental results of our approach.

Introduction
Knowledge compilation is a technique for dealing with the
computational intractability of propositional reasoning. It
has been used in various AI systems for compiling knowl-
edge bases offline into systems, that can be queried more ef-
ficiently after this precompilation. An overview about tech-
niques for propositional knowledge bases is given in (Dar-
wiche and Marquis 2002).

There are several techniques for Description Logics
which are related to knowledge compilation techniques. An
overview on precompilation techniques for Description Log-
ics such as structural subsumption, normalization and ab-
sorption is given in (Horrocks 2003). To perform a sub-
sumption check on two concepts, structural subsumption al-
gorithms (Baader et al. 2003) transform both concepts into
a normal form and compare the structure of these normal
forms. However these algorithms typically have problems
with more expressive Description Logics. Especially gen-
eral negation, which is an important feature in the appli-
cation of Description Logics, is a problem for those algo-
rithms. In contrast to structural subsumption algorithms, our
approach is able to handle general negation without prob-
lems. Normalization (Balsiger and Heuerding 1998) is a pre-
processing technique for Description Logics, which elimi-
nates redundant operators in order to determine contradic-
tory as well as tautological parts of a concept. In many
cases this technique is able to simplify subsumption and
satisfiability problems. Absorption (Tsarkov and Horrocks
2006) is a technique which tries to eliminate general inclu-
sion axioms from a knowledge base. Both absorption and
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normalization have the aim of increasing the performance
of tableau based reasoning procedures. In contrast to ab-
sorption and normalization, our approach extends the use of
preprocessing. We suggest to transform the concept into a
normal form called linkless graph which allows an efficient
consistency test. For this consistency test a tableau proce-
dure is not necessary.

In the context of Description Logics, knowledge com-
pilation has firstly been investigated in (Selman and
Kautz 1996), where FL concepts are approximated by
FL−concepts. More recently, (Bienvenu 2008) introduces
a normal form called prime implicate normal form for ALC
concepts which allows for a polynomial subsumption check.
However up till now, prime implicate normal form has not
been extended for Tboxes yet. In contrast to prime implicate
normal form, our approach is able to precompile Tboxes.

In this paper we will consider the Description Logic ALC
(Baader et al. 2003) and we adopt the notion of linkless for-
mulas, as it was introduced in (Murray and Rosenthal 1993;
2003). In the first section we recall the basics of the Descrip-
tion Logic ALC and ALE . The second section introduces
the idea of our precompilation. After that we discuss an effi-
cient satisfiability test for precompiled concepts and Tboxes.
Further we introduce a method to efficiently answer certain
subsumption queries from both precompiled concepts and
Tboxes. At the end of this paper we present first experimen-
tal results of the implementation of our approach.

Preliminaries

First we introduce syntax and semantics of both the Descrip-
tion Logics ALE and ALC. Complex ALE concepts C and
D are built up from atomic concepts and atomic roles ac-
cording to the following syntax rule:

C, D → A | � | ⊥ | ¬A | C � D |∃R.C | ∀R.C

where A is an atomic concept and R is an atomic role. ALC
has the additional rules C, D → ¬C| C � D. Next we con-
sider the semantics of ALC concepts. An interpretation I
is a pair 〈ΔI , ·I〉, where ΔI is a nonemty set which is the
domain of the interpretation and ·I is an interpretation func-
tion assigning to each atomic concept A a set AI ⊆ ΔI and
to each atomic role R a binary relation RI ⊆ ΔI × ΔI .
We extend the interpretation function to complex concepts
by the following inductive definitions:

39

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



�I = ΔI ⊥I = ∅ (¬C)I = ΔI \ CI

(C � D)I = CI ∩ DI (C � D)I = CI ∪ DI

(∃R.C)I = {a ∈ ΔI | ∃b (a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I = {a ∈ ΔI | ∀b (a, b) ∈ RI → b ∈ CI}
A concept C is satisfiable, if there is an interpretation I with
CI �= ∅. We call such an interpretation a model for C. Fur-
ther a terminological axiom has the form C � D or C ≡ D
where C, D are concepts and an axiom C � D (C ≡ D)
is satisfied by an interpretation I, if CI ⊂ DI (CI = DI).
A Tbox consists of a finite set of terminological axioms and
is called satisfiable, if there is an interpretation satisfying all
its axioms. Given an axiom A � B and a Tbox T we often
want to know if A � B holds w.r.t. T , which we denote by
A �T B and call it a query to the Tbox T . Further A �T B
holds, if A � B is true in all models of T . Another way
to show that A �T B holds is to show that T together with
A � ¬B is unsatisfiable. In the following, unless stated oth-
erwise, by the term concept, we denote ALC concepts given
in NNF, i.e., negation occurs only in front of concept names.
By concept literal, we denote a concept name or a negated
concept name. Further by literal we denote a concept lit-
eral or a concept of the form ∃R.C or ∀R.C. The size of a
concept C is the number of concepts, roles and connectives
used in C. For example the size of A � ∃R.¬B) is 5.

Precompilation of ALC Concept Descriptions

The precompilation technique we use for an ALC concept C
consists of two steps. In the first step we remove all so called
links occurring in C. The notion of a link was firstly intro-
duced for propositional logic (Murray and Rosenthal 1993).
Intuitively links are contradictory parts of a concept which
therefore can be removed preserving equivalence.

In the second step of the precompilation process we con-
sider role restrictions. Given for example C = ∃R.B �
∀R.D. According to the semantics of ALC it follows from
x ∈ CI that there is an individual y with (x, y) ∈ RI and
y ∈ (B�D)I . The concept B�D is precompiled in the sec-
ond step of the precompilation. This is repeated recursively
until all concepts of reachable individuals are precompiled.
Definition 1. For a given concept C, the set of its paths is
defined as follows:
paths(⊥) = ∅
paths(�) = {∅}
paths(C) = {{C}}, if C is a literal
paths(C1 � C2) = paths(C1) ∪ paths(C2)
paths(C1 � C2) = {X ∪ Y |

X ∈ paths(C1) and Y ∈ paths(C2)}
The concept C = ¬A � (A � B) � ∀R.(E � F ) has

the two paths p1 = {¬A, A,∀R.(E � F )} and p2 =
{¬A, B,∀R.(E�F )}. We typically use p to refer to both the
path and the conjunction of the elements of the path when
the meaning is evident from the context. We call a path in-
consistent, if the conjunction of its elements is inconsistent.
Further for a set of paths P , the set of minimal paths in P is
defined as minimal(P ) = {q | q ∈ P and ¬∃p ∈ P p ⊂ q}
Definition 2. For a given concept C a link is a set of two
complementary concept literals occurring in a path of C.

Definition 3. A concept C is called linkless, if C is in NNF
and there is no path in C which contains a link.

A link means that the formula has a contradictory part.
Further if all paths of a formula contain a link, the formula
is unsatisfiable. The special structure of linkless formulas
in propositional logic allows us to consider each conjunct
of a conjunction separately. Therefore satisfiability can be
decided in linear time and it is possible to enumerate models
very efficiently.

Removing Links

In propositional logic one possibility to remove links from
a formula is to use path dissolution (Murray and Rosenthal
1993). The idea of this algorithm is to eliminate paths con-
taining a link. The result of removing all links from a propo-
sitional logic formula F is called full dissolvent of F . Fur-
ther path dissolution simplifies away all occurrences of �
and ⊥ in a formula. Note that in the worst case, the re-
moval of links can cause an exponential blowup. Path dis-
solution can be used in the context of Description Logics as
well. For this purpose we define a bijection between con-
cepts and propositional logic formulas, which maps a con-
cept C to a propositional logic formula prop(C). This bi-
jection maps each concept name A to a propositional logic
variable a, further � (�) to ∧ (∨), � (⊥) to true (false)
and QR.C to a propositional logic variable Q r c with
Q ∈ {∃, ∀}. After mapping a concept C to a proposi-
tional formula prop(C) we construct the full dissolvent of
prop(C). We then use prop−1 to map the full dissolvent
back to a concept. By linkless(C) we denote the result of
this. Note that if prop(C) is unsatisfiable, linkless(C) = ⊥.
Theorem 4. Let C be a concept. Then linkless(C) ≡ C.

Theorem 4 follows from the fact [Murray & Rosenthal
93], that path dissolution preserves equivalence in the propo-
sitional case.

Handling Role Restrictions

A linkless concept can still be inconsistent. Take ∀R.B �
∃R.¬B as an example. So it is not sufficient to remove links
from a concept. Therefore, in the second step of the precom-
pilation we consider role restrictions.
Definition 5. Let C be a linkless concept, p a path in
C. Further let {∀R.B1, . . . ,∀R.Bn} ⊆ p be the (possi-
bly empty) set of all universal role restrictions w.r.t. R in
p. Then the concept C ′ ≡ B1 � . . . � Bn is called poten-
tially R-reachable from C. If further ∃R.A ∈ p, the concept
C ′′ ≡ A�B1� . . .�Bn is called R-reachable from C. Fur-
ther p is called a path used to reach C ′′ (potentially reach
C ′) from C.

Note that it is possible that a concept is (potentially)
reachable from another concept via several paths. Since the
removal of links preserves equivalence, we call both C ′′ and
linkless(C ′′) R-reachable from C. A concept C ′ is called
(potentially) reachable from a linkless concept C, if it is (po-
tentially) R-reachable from C for some role R. Further (po-
tentially) reachable∗ is the transitive reflexive closure of the
relation (potentially) reachable.
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For example the following linkless concept:
C = (∃R.(D�E)�A)�∀R.¬D�∀R.E�B which has the
two different paths p1 = {∃R.(D � E),∀R.¬D,∀R.E, B}
and p2 = {A,∀R.¬D,∀R.E, B}. The concept C ′ ≡ (D �
E)�¬D�E is reachable from C via path p1 using {∃R.(D�
E),∀R.¬D,∀R.E}.

Since a path p is inconsistent, if the conjunction of its
elements is inconsistent, it is clear that p is inconsistent, iff
there is a concept literal A with A ∈ p and A ∈ p or there is
an inconsistent concept which is reachable from C using p.

In the second step of the precompilation we precompile,
i.e. remove all links from, all (potentially) reachable∗ con-
cepts. The precompilation of all potentially reachable∗ con-
cepts is necessary when we want to answer queries. For
example the concept ∀R.¬D � ∀R.¬E does not have any
reachable concepts since no existential role restriction w.r.t.
the role R is present. Asking a query to this concept can
introduce the missing existential role restriction and can
make a concept reachable. For example asking the query
∀R.¬D � ∀R.¬E � ∀R.(¬D � ¬E) leads to checking the
consistency of ∀R.¬D � ∀R.¬E � ∃R.(D � E) which has
a reachable concept.

Result of the Precompilation Process

The result of the precompilation of a concept C is a rooted
directed graph (N, E) i.e a directed graph with exactly one
source. The graph consists of two different types of nodes:
path nodes PN and concept nodes CN . So N = CN ∪PN .
Whereas each path node in PN is a set of paths in C and
each node in the CN is a linkless concept. The set of edges
is E ⊂ (CN×PN )∪(PN×CN ). Since the concepts which
are (potentially) reachable from a concept via a path p only
depend on the role restrictions occurring in p, we regard all
paths containing the same set of role restrictions as equiva-
lent. A concept node Ci has a successor node for each set
of equivalent paths in Ci and further there is an edge from
each path node to the concept nodes of (potentially) reach-
able concepts. These edges are labeled by the role restric-
tions used to (potentially) reach the respective concept. Fur-
ther each path node has exactly one preceding concept node,
whereas a concept node can have more than one preceding
path node.
Definition 6. The precompilation of a concept C is a rooted
directed graph (N, E), called linkless graph, with root
linkless(C) and for each set Pi of equivalent paths in C
there is a subsequent path node. There is an edge from a
path node Pi to the linkless graph of concept node C ′, if
C ′ is (potentially) reachable from C via one of the paths in
Pi. This edge is labeled by the set of role restrictions used
to reach C ′ from C. Further for all path nodes P holds:
|{C ′|〈C ′, P 〉 ∈ E}| = 1.

Consider for example the linkless concept:

C ≡ (B�¬E)�((B�¬A�(∃R.A�A))�∃R.E�∀R.¬A)

Its linkless graph with root C is depicted in Fig. 1. C has
four paths p1 = {B,¬E}, p2 = {B,∃R.E, ∀R.¬A}, p3 =
{¬A,∃R.E, ∀R.¬A} and p4 = {∃R.A,A, ∃R.E, ∀R.¬A}.
There are three sets of equivalent paths: {p1}, {p2, p3} and

(B � ¬E) � ((B � ¬A � (∃R.A � A)) � ∃R.E � ∀R.¬A)

{{B, ¬E}} {{B, ∃R.E, ∀R.¬A},
{¬A, ∃R.E, ∀R.¬A}}

E � ¬A ¬A

{{∃R.A, A, ∃R.E, ∀R.¬A}}

⊥

{{¬A}}{{E, ¬A}}

{∃R.E,
∀R.¬A}

{∃R.E,
∀R.¬A} {∀R.¬A} {∀R.¬A} {∃R.A

∀R.¬A}

Figure 1: Example for a linkless graph

¬A � (B � ∃R.A)

{{¬A}} {{B, ∃R.A}}

A � B � ∃R.A

{{A, B, ∃R.A}}

{∃R.A}

{∃R.A}

Figure 2: Example for a precompiled Tbox

{p4}. For each set of equivalent paths, there is a succes-
sor path node. In the next step, reachable concepts are con-
sidered: for instance the concept E � ¬A is reachable via
the paths in the second set of paths using the role restric-
tions {∃R.E, ∀R.¬A}. Therefore there is an edge from
the second path node to the concept node E � ¬A with
label(〈{p2, p3}, E �¬A〉) = {∃R.E, ∀R.¬A}. In the same
way, the precompilation of all (potentially) reachable con-
cepts are combined with the path nodes.

Precompilation of General Tboxes

When answering queries with respect to a general Tbox it is
necessary to restrict reasoning such that only models of this
Tbox are considered. As described in (Baader et al. 2003)
we transform a given Tbox T = {C1 � D1, . . . , Cn � Dn}
into a metaconstraint M = (¬C1�D1)� . . .�(¬Cn�Dn).
The idea of the linkless graph can be directly extended to
represent precompiled Tboxes. We simply construct the lin-
kless graph for M, but instead of just considering the con-
cept nodes, each concept node C must also fulfill M. So
whenever there is a (potentially) reachable concept C, we
precompile C � M instead of just C. Note that the pre-
compilation of a Tbox typically contains cycles. For exam-
ple the Tbox T = {A � B � ∃R.A} can be transformed
to MT = ¬A � (B � ∃R.A). In Fig. 2 the result of the
precompilation is depicted. There are two different paths
in MT , which constitute the two subsequent path nodes.
The path node {{B,∃R.A}} can be used to reach the con-
cept A � MT which is equivalent to the linkless concept
A � B � ∃R.A, which therefore labels this concept node.
Since A � B � ∃R.A has the path {{A, B,∃R.A}}, the
graph contains a cycle. In the worst case there can be expo-
nentially many reachable∗ concepts. Given r different roles
each with n existential role restrictions, m universal role re-
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strictions which are all nested with depth d, in the worst case
the number of reachable∗ concepts is r ·m · 2n · d. However
in real world ontologies the number of reachable concepts is
smaller. Furthermore precompiling a Tbox never increases
the number of reachable concepts, contrariwise it usually de-
creases it. For example for the amino-acid 1 ontology r = 5,
d = 1, m = 3 and n = 5. So in the worst case, there
are 480 reachable∗ concepts. But in reality, before the pre-
compilation there are 170 and after the precompilation 154
reachable concepts.

Next we will give an efficient consistency check for pre-
compiled concepts and Tboxes.

Consistency

Definition 7. Let C be a linkless concept and (N, E) its
linkless graph. We call (N, E) inconsistent, if C = ⊥ or for
each P with 〈C, P 〉 ∈ E there is a concept node C ′ which is
reachable from C via one of the paths in P and the subgraph
with root C ′ is inconsistent.

Theorem 8. Let C be a concept and (N, E) its linkless
graph. Then holds: C is inconsistent iff (N, E) is incon-
sistent.

By adding a label to each concept and path node in the
linkless graph, it can be ensured that the consistency can
still be checked in the presence of cycles.

Checking consistency of a linkless graph corresponds to
searching in AND/OR graphs. (Mahanti, Ghose, and Sad-
hukhan 2003) presents a polynomial algorithm which is able
to search AND/OR graphs in the presence of cycles.

Using the Linkless Graph to Answer Queries

In this section we will show that, given the precompilation
of a concept C, subsumption queries C � D with ¬D an
ALE concept can be answered very efficiently.

In (Darwiche 2001) an operator called conditioning is
used as a technique to answer queries from a precompiled
knowledge base. The intuition of the conditioning operator
is to consider C � α for a concept literal α and to simplify
C according to α. Given for example C = (B�E)�D and
α = ¬B, C � α can be simplified to E � D � ¬B. We will
transfer the idea of this operator to linkless graphs.

Definition 9. Let C be a linkless concept description, A be
a consistent set of concept literals and α ∈ A. Then C con-
ditioned by A, denoted by C|A, is the concept description
obtained by replacing each top level occurrences of α (α)
in C by � (⊥) and simplifying the result according to the
following simplifications:
� � C = C � � C = � ⊥ � C = ⊥
⊥ � C = C ∃R.⊥ = ⊥ ∀R.� = �
Since this conditioning operator corresponds to the condi-

tioning operator introduced in (Darwiche 2001), it is linear
in the size of the concept C. From the way C|α is con-
structed, it follows that C|α � α is equivalent to C � α and
obviously C|α � α is linkless.

1http://www.co-ode.org/ontologies/amino-
acid/2006/05/18/amino-acid.owl

In the following we understand an ALE concept a set of
its conjuncts. We now want to combine a precompiled con-
cept with an ALE concept using the conditioning operator.
For this it is essential to know how conditioning changes the
set of paths in a concept.
Definition 10. Let P be a set of paths and A a consistent
set of concept literals. Then P|A is defined as:

P|A = {p\A′ | p ∈ P ∧p∩A = A′∧¬∃α ∈ p with α ∈ A}
Proposition 11. Let C be a linkless concept and A a set of
consistent concept literals. Then holds:

minimal(paths(C|A)) = minimal(paths(C)|A)

Next we give an algorithm for the conditioning operator
for an arbitrary node of a linkless graph.
Algorithm 12. Let (N, E) be a linkless graph, C ∈
N a concept node, B an ALE concept and β a lit-
eral. Then C conditioned by B w.r.t. (N, E) denoted by
condset((N, E), C,B) is the linkless graph calculated as
follows:
condset((N, E), C,B) =

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

condelem((N, E), C, β), if B = {β}
condset((condelem((N, E), C, β), C|β � β,B′),
if β is a concept literal and B = B′ ∪ {β}.
condset((condelem((N, E), C, β), C � β,B′),
otherwise (with B = B′ ∪ {β}).

Further condelem((N, E), C, β) is the linkless graph
calculated as follows:

1. If β is a concept literal, substitute C|β�β for C. Further
for each P with 〈C, P 〉 ∈ E substitute minimal(P|β)
for P and add β to all paths in minimal(P|β). If
minimal(P|β) = ∅, remove its node and all its in- and
outgoing edges. Return the resulting graph.

2. If β = QR.D with Q ∈ {∃, ∀}, substitute C � QR.D
for C and for each P with 〈C, P 〉 ∈ E add QR.D to all
paths in P . Further:

(a) For all P whose paths do not contain a role restriction
w.r.t. R except for QR.D: Create the linkless graph for
D, add an edge from P to its root and label the edge
with {QR.D}.

(b) For all P whose paths contain role restrictions w.r.t. R
unlike QR.D:

i. For all P whose paths do not contain a universal role
restriction w.r.t. R except for QR.D: Create the link-
less graph for D, add an edge from P to its root and
label the edge with {QR.D}.

ii. For all edges 〈P,C ′〉 ∈ E whose label contains a role
restriction w.r.t. R unlike QR.D,
• If Q = ∀, add ∀R.D to the label of 〈P,C ′〉. Let

(N ′, E′) be the graph, resulting from the previous
steps. If C ′ has only one ingoing edge, continue with
the result of condset((N ′, E′), C ′, D).

• If Q = ∃ and label(〈P,C ′〉) contains only univer-
sal role restrictions or Q = ∀ and C ′ has more
than one ingoing edge then: Copy C ′, producing a
new concept node C ′′ and create an edge 〈P,C ′′〉
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labeled with label(〈P,C ′〉) ∪ {QR.D}. For all P ′

with 〈C ′, P ′〉 ∈ E, copy P ′ to a new path node P ′′

and create an edge 〈C ′′, P ′′〉. Further for each C ′P ′
with 〈P ′, C ′P ′〉 ∈ E, create an edge 〈P ′′, C ′P ′〉, la-
bel it with label(〈P ′, C ′P ′). If Q = ∀ remove the
edge 〈P,C ′〉. Let (N ′, E′) be the graph, resulting
from the previous steps. Continue with the result of
condset((N ′, E′), C ′′, D).

iii. Return the resulting graph.

Algorithm 12 shows how to gradually condition a linkless
graph by an ALE concept. However it is also possible to
simultaneously calculate parts of the conditioning. If for ex-
ample the ALE concept is A�B�¬C then the conditioning
of a linkless graph with this concept can be calculated in one
step since the literals all occur at the same level and therefore
change the same parts of the linkless graph.

During the calculation of condelem((N, E), C, β) the
depth of nested role restrictions in β decreases, hence the
calculation always terminates. If the role restrictions are
nested with maximal depth d, the conditioning only affects
concept nodes which are reachable in d steps from the root.

Case 2a corresponds to the precompilation of a part of the
query, which in general can not be done in polytime. How-
ever it is reasonable to expect the query to be much smaller
than the Tbox. Therefore it is not too harmful to do this
precompilation during query time.

In order conjunctively combine a precompiled concept C
with an ALE concept, we just have to condition the root
node of the linkless graph for C with the ALE concept. We
adapt our notation to Def. 9 and denote by (N, E)|B the
result of condset((N, E), root(N, E), B).

Lemma 13. Let C be a linkless ALC concept, (N, E) its
linkless graph and B an ALE concept. Then (N, E)|B is
consistent, iff C � B is consistent.

Theorem 14. Given a concept C, its linkless graph (N, E)
and a subsumption query C � D with ¬D an ALE concept.
Then C � D holds, iff (N, E)|¬D is inconsistent.

Theorem 14 follows directly from Lemma 13, since C �
D holds iff C � ¬D is inconsistent.

Let’s now consider the concept C whose linkless graph
is presented in Fig. 1. Asking the query C � B � ∃R.E
leads to conditioning the linkless graph with ¬B � ∀R.¬E.
The result is the linkless graph depicted in Fig. 3, which is
inconsistent. Therefore the subsumption query holds.

The linkless graph of a given Tbox T can be easily used
to do Tbox reasoning. Let A be an ALE concept and B be a
concept in NNF which is constructed only using the connec-
tives disjunction and atomic negation. If we want to check
whether a subsumption A �T B holds, we have to check
the consistency of A�¬B�M where M denotes the meta-
constraint of T . Assuming that we have the linkless graph
for M, we only have to condition it with A � ¬B. By per-
forming a consistency check for the resulting graph, we can
decide if the subsumption holds. Since in Tbox reasoning
many queries are asked to the same Tbox, it is worthwhile
to precompile the Tbox into a linkless graph.

∀R.¬E � ¬B � (A � (∃R.A � A)) � ∃R.E � ∀R.¬A

{{¬B, ∀R.¬E, ¬A
∃R.E, ∀R.¬A}}

⊥

¬E � ¬A

{{¬E, ¬A}}

{{¬B, ∃R.A, A, ∃R.E,
∀R.¬A, ∀R.¬E}}

⊥{∃R.E,
∀R.¬E,
∀R.¬A}

{∃R.E,
∀R.¬E,
∀R.¬A}

{∀R.¬E,
∀R.¬A}

{∀R.¬E,
∀R.¬A} {∃R.A

∀R.¬E,
∀R.¬A}

Figure 3: Result of conditioning the linkless graph from Fig.
1 by ¬B � ∀R.¬E.

Complexity of Query Answering

As described above, we transfer the query A �T B into an
inconsistency test of A � ¬B � M. We construct the link-
less graph for M and use conditioning to answer the query.
The way the structure of the query is restricted, ensures that
we know A � ¬B to be an ALE concept. Since the consis-
tency of ALE concepts with respect to the empty Tbox can
not be answered in polytime, we have to state the complex-
ity of query answering using the linkless graph of a Tbox
depending on the query.
Theorem 15. Given a linkless graph of a Tbox T and a
query A �T B such that A � ¬B is ALE , then holds: If
A�¬B does not contain any role restrictions, the query can
be answered in time linear to the size of the linkless Tbox
and to the number of concept nodes in T ’s linkless graph.

We owe this property to the fact in this case it’s not nec-
essary to extend the existing linkless graph.

In order to ease the investigation of the complexity of
query answering for queries containing role restrictions,
we assume that the Tbox under consideration is flattened
(Rudolph, Krötzsch, and Hitzler 2008) i.e. all nested role re-
strictions are removed. This is done by replacing each occur-
rence of ∃R.C (∀R.C) in an axiom by ∃R.C ′ (∀R.C ′) with
C ′ a new concept name. Further we add the axioms C ′ � C
and C � C ′. We repeat this transformation recursively until
no nested role restrictions are left and for all role restriction
∃R.B or ∀R.B, B is a newly introduced concept. This en-
sures that only concepts of the form A � linkless(M) are
(potentially) reachable, where A is a conjunction of newly
introduced concept names and further that every concept
which is reachable in more than one step is also reachable
in exactly one step.
Theorem 16. Let T be a flat Tbox, (N, E) its linkless
graph and n be the number of path nodes, which follow
root(N, E). Further let A �T B be a subsumption query
such that A � ¬B is an ALE concept. Then holds: If
A � ¬B contains m role restrictions at the topmost level,
each with a nesting depth d, then compared to (N, E), the
graph (N, E)|A�¬B in the worst case has m ·

∑d
i=1 ni =

−m + m · 1−nd+1

1−n (for n > 1) additional concept nodes.

In this case exponentially many new concept nodes are
added to our graph. However this result is not too harmful
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Ribosome 133 1 354 19 32 7
Nautilus-ex. 208 2 717 40 9 3
Koala 272 5 362 19 18 9
Amino-acid 1215 5 11024 130 154 88

Figure 4: Result of precompiling different ontologies.

since the number of concept nodes added is only exponen-
tial in the nesting depth of the query and it is reasonable to
expect the nesting depth of the query to be low.

Implementation and Experiments

Based on the precompilation of Tboxes described above,
we have implemented a prototypical knowledge compila-
tion system. The implementation first flattens the Tbox as
described in the previous section. We used different ontolo-
gies from the literature (Foodswap1, Ribosome 2, Nautilus-
exceptions 3, Koala 4 and Amino-acid 5) to test our imple-
mentation. Some of the ontologies we used are not ALC, but
in order to be able to use them anyway, we ignore features
not belonging to ALC. Our implementation is not yet able to
precompile the Dice 6 ontology, because of its size. But we
are planning to optimize the removal of links as described in
(Murray and Rosenthal 1993) in order to change that. Fur-
ther, our system is able to answer queries from the linkless
graph of a given Tbox. Since the removal of links from a
Tbox in the worst case produces an exponential blowup, it
is crucial to find out, if this blowup occurs when precom-
piling real ontologies. Fig. 4 gives information on that and
shows that we removed 11 links form the Foodswap ontol-
ogy, which caused the ontology only to grow from size 130
to 159. Further we removed 19 links from the Ribosome on-
tology which caused the Tbox size only to reduplicate. As
Fig. 4 shows, for none of the precompiled ontologies, the
feared exponential blowup occurred. Another point which
is interesting is the number of different (potentially) reach-
able concepts depending on the number of different roles
occurring in an ontology. Fig. 4 shows that, for the ontolo-
gies we considered, the number of reachable and potentially
reachable worlds is manageable. Since the performance of
query answering depends on the size of the linkless graph,
our experiments confirm the fact, that the precompilation of
a Tbox into a linkless graph is worthwhile.

1http://www.mindswap.org/dav/ontologies/commonsense/food/
foodswap.owl

2http://www.co-ode.org/ontologies/bio-tutorial/Ribosome.owl
3http://www.co-ode.org/ontologies/bio-tutorial/Nautilus-

exceptions.owl
4http://protege.stanford.edu/plugins/owl/owl-library/koala.owl
5http://www.co-ode.org/ontologies/amino-

acid/2006/05/18/amino-acid.owl
6http://www.mindswap.org/ontologies/dice.owl

Conclusion and Future Work

We introduced a knowledge compilation technique for ALC
concepts as well as for ALC Tboxes together with a query
mechanism. We implemented our approach and first experi-
ments led to promising results. Up till now we are only able
to precompile ALC ontologies. One could argue that ALC
is not expressive enough. This is why we want to investigate
how to extend our approach to more expressive Description
Logics like for example SHOIN . Further we want to com-
pare the performance of query answering from a precom-
piled Tbox by our implementation to existing DL reasoners.

Uniform interpolation is a helpful technique when differ-
ent Tboxes have to be combined. Since linkless concepts are
closely related to a normal form which allows efficient uni-
form interpolation, we expect the linkless graph of a concept
to have this property too. When constructing the uniform in-
terpolant for an ALC Tbox, things get more complicated,
since uniform interpolants for ALC Tboxes need not exist.
We are planning to focus our research on this area as well.
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