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Introduction

Classically, system analysts consider the physical world as
an collection of components and their approximately lin-
ear interactions. This assumption allows studying a system
by reductionism (bottom-up understanding of decomposed
components and then aggregating the partitions) to analyze
the whole system behaviors. Today, holism evidences that
the sum of components fails to describe systems comprised
of myriad interoperabilities between agents. Emergent, evo-
lutionary, and adaptive behaviors of the real-world depict a
fruitful source of inspiration for modeling behavior of com-
plex adaptive systems (CAS). Traditional mathematical and
engineering modeling of CASs (such as equilibrium or game
theory models) are still incomplete and fragmented. They
are usually unable to study real characteristics of agents and
their decision behaviors. Complexity theory and concepts
are well studied in the literature (Couture 2007) and (Cou-
ture 2006b). Also, researchers tried to present mathemati-
cal methods and measures to study CASs (Couture 2006a),
(Bar-Yam 2004b), (Bar-Yam 2004a), and (Bar-Yam 2000).

This research aims to define a novel framework and
platform to employ engineering and mathematical models
to study adaptive dynamics in certain engineered complex
adaptive systems (ECAS). We analyze a class of decentral-
ized heterarchial complex systems to infer emergent behav-
ior of the components, evolution processes, and adaptations
of the whole systems. While the US electric power system
will be utilized for demonstration and validation, the frame-
work has applicability to the general class of ECASs. Condi-
tioned on parameterization of the framework, a theorem will
be presented to calibrate current situation and predict future
behaviors of an ECAS.

The huge growth of the US power system (3.7 billion
KWh consumption in 2009 i.e. 13 times greater than 1950
and expected growth to 4.88 billion KWh by 2035 (EIA ),
consumer-interactive controls, time dependency of the mar-
ket, and complexity in its network topology are main reasons
to consider the US power system as an ECAS. Locational
Marginal Price (LMP) of electricity vary by time, location,
and consumer type (e.g. Fig 1 provides the LMP contour
map of the Midwest ISO (MISO ) in April 26,2011 at 17:25
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that may change totally in the next 5 minutes). This adap-
tive complexity in consumer behavioral level motivates us
to study the interrelationships between consumers, their in-
teroperability, and willingness to cooperate or compete in
the system. Some previous studies considered other parts of
the US power market, e.g. physical level or business issues,
as an ECAS (Li and Tesfatsion 2009), (Conzelmann et al.
2004), (ANL ), (Barton et al. 2000), and (Wildberger and
Amin 1999).

Figure 1: LMP contour map of the Midwest ISO

Applying this integrated model has the following benefits
for the US power system:
• Reduction of dis-uniformity in electricity consumption to

reduce investment in new generators, transmission and
distribution infrastructure.

• Communicates energy information to encourage people to
change their behavior in high stress times or vulnerabili-
ties (e.g., specific weather, high demand days, and acci-
dent or fault in power lines or generators).

• Allows analyzing changes in the behaviors by increasing
the effectiveness of the dynamic pricing strategies.

Engineered CASs Framework
A multi-profile descriptive framework is developed to cali-
brate the current structure of an ECAS and to predict its dy-
namic behaviors. Four-tuple profiles of ECASs, their charac-
teristics, and the proper measures are presented in Table 1.

Complex Adaptive Systems: Energy, Information and Intelligence: Papers from the 2011 AAAI Fall Symposium (FS-11-03)

76



Components have both individual features and interoperabil-
ities. Systems have traits such as resilience that contribute to
adaptability and the potential to learn.

Table 1: Profiles of the framework for ECASs
Profile Characteristics Indicators
Features Decomposability,

Willingness
Diversity vs.
Compatibility

Interoperabilities Synchronization,
exchangeability

Autonomy vs.
Dependency

System Traits Resilience,
Agility

Categories

Learning Flexibility,
Robustness

Performance

At an aggregate level, we describe the system complexity
with dissection of features (Entropy, E), interoperabilities
(sensitivity and interrelationship to neighbors, R), system
traits, and learning (milestones for changes in the system
performance i.e. Evolution Thresholds, τ ). In addition a
system may have a goal. In our case, it is to minimize dis-
uniformity of electricity consumption. Entities (consumers)
in the system are classified into behavioral types defined by
patterns of daily consumption.

Notation:
i = 1, ..., n: set of patterns of behaviors,
Xi(t): population of pattern i at period t,
Pi(t): proportion of entities with pattern i at period t,
bi: fitness rate of pattern i (static in different periods),
Ct

i (w): electricity consumption of pattern i at time w for
period t.

Short term cyclic time w may correspond to the hours of
a day while t refers to months or seasons. We remove t’s in
the following formulas except when necessary to compare
different periods to increase readability.

Features Dissection

Assume the population Xi grows exponentially by Eq. 1
where, ΔXi

Δt = biXi.

Xi(t+ 1) = bi.Xi(t) +Xi(t), i = 1, ..., n. (1)

Then the growth of entropy, E = −∑
Pi log2 Pi, follows

Eq. 2 where, Pi =
Xi∑
Xi

.

ΔE

Δt
=

∑
biPi(

∑
Pi log2 Pi − log2 Pi), i = 1, ..., n.

(2)

The dis-uniformity variation of pattern i by time is shown in
Eq. 3 where, Ct

i =
∫ w
0

Ct
i (w)dw

w .

Di(t) =

∫ w

0

(Ct
i (w)− Ct

i )
2dw, i = 1, ..., n,

w � t

(3)

One part of the decision objective is to minimize the total
dis-uniformity, Eq. 4 (consumers cooperate to have less fluc-
tuations in the total consumption in different times for peak

reduction or load balancing).

D =

∫ w

0

(
(
∑

i Ci(w)Xi)−
∫ w
0

∑
i Ci(w)Xidw

w∑
i Xi

)2dw, (4)

We define behavior i dominates behavior j (i � j) if
Di ≤ Dj . Table 2 defines other possible types of domi-
nance in the patterns of behaviors conditioning on values
and signature of variation in short-term pattern of behaviors,
σ(w) where, σ(w) = C(w) − C. For example i exhibits
Strict Positive Dominance over j if |σi(w)| ≤ |σj(w)| and
sgn(σi(w)) = sgn(σj(w)) for all w. To control decom-
posability and willingness of components of a CAS in all
dominance cases we can apply the theorem of mechanisms
of component, defined as follows.

Table 2: Definition of dominance possibilities
Dominance symbol |σi(w)| sgn(σi(w)), ∀w

Strict Positive i � j ≤ |σj(w)|∀w = sgn(σj(w))
Positive i � j > |σj(w)|∃w = sgn(σj(w))

Strict Negative i � j ≤ |σj(w)|∀w �= sgn(σj(w))
Negative i � j > |σj(w)|∃w �= sgn(σj(w))

where, σi(w) = Ci(w)− Ci

Theorem (mechanisms of components): Consider
the case where i � j and

∑
Xi

∫
σi(w)dw <∑

Xj

∫
σj(w)dw. Dis-uniformity of the system is then de-

creasing in time if the Entropy increases in time when
− log2 Pi > E or if the Entropy decreases in time when
− log2 Pi < E.

This theorem is a result of analyzing detailed dominance
that is summarized in Table 3 (see (Haghnevis and Askin
2010) for proofs). It shows how E and D are decreasing
(↓) or increasing (↑) in time for all dominance cases (i :
j) conditioning on fitness rates (bi : bj) and the entropy
situations (log2 Pi : E). For example assume n different
patterns of behavior (i = 1, ..., n) in population S, bk ≥ 0,
∀k ∈ S and i � j, for i ∈ S′ and j ∈ S − S′. Then
E < − log2 Pi (

∑
i∈S Pi log2 Pi > log2 Pi) and bi > bj for

i ∈ S′ and j ∈ S − S′ iff E is increasing in time (E ↑)
and D decreases in time (D ↓).

Interoperabilites cause Emergence

We consider four classes of agents based on interoperabili-
ties, the abilities of agents to connect and effect each other in
a decision network; Influencers(INF), Early Followers(EF),
Late Followers(LF), and Isolated(ISO). The four classes ex-
hibit descending rank of interoperabilities on the basis of
their influences and ascending rank on the basis of their fre-
quency in the decision network.

Let Ic represent interoperability between agents in differ-
ent classes. There can be other interoperabilities in a sys-
tem such as interoperability between pattern types. I gen-
erally shows the interoperabilities between properties of
agents. We measure the interrelationship (R) between agents
by the interoperability (Ic) matrix and their classification.
min(Ic) = 0 when two classes are independent (autonomic)
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Table 3: Details of mechanisms of component
− log2 Pi > E − log2 Pi < E

bi > bj bi < bj bi > bj bi < bj
i � j E ↑ ∧ D ↓ E ↓ ∧ D ↑ E ↓ ∧ D ↓ E ↑ ∧ D ↑
i � j E ↑ ∧ D ↓ E ↓ ∧ D ↑ E ↓ ∧ D ↓ E ↑ ∧ D ↑
i � j E ↑ ∧ D ↓ if (1), D ↑ if (2) E ↓ ∧ D ↑ E ↓ ∧ D ↓ if (1), D ↑ if (2) E ↑ ∧ D ↑
i � j E ↑ ∧ D ↓ if (1), D ↑ if (2) E ↓ ∧ D ↑ E ↓ ∧ D ↓ if (1), D ↑ if (2) E ↑ ∧ D ↑

(1)
∑

Xi

∫
σi(w)dw >

∑
Xj

∫
σj(w)dw, (2)

∑
Xi

∫
σi(w)dw <

∑
Xj

∫
σj(w)dw.

and max(Ic) = 1 when they follow each other (identical).
We use Eq. 5 to calculate interrelationship of Agent υ with
its neighbors (interrelated) in Pattern i.

Rυi =

∑
δν

θυδν .I
c
δυδν

.Xδνi∑
δν

∑
i Xδνi

,

i = 1, ..., n, υ = 1, ...,
∑
i

Xi,
(5)

where, Icδυδν is the interoperability of the agent in Class
δυ with agent in Class δν . Xδνi

is the number of connected
agents (neighbors) to Agent υ in Class δν with Pattern i. Av-
erage self-preference, 0.5 ≤ θυδν ≤ 1, lets two agents, from
a same set of classification, have different interoperability
with a specific agent.

To select an appropriate pattern for evolving, we use Eq. 6
here, switchυt is the patten that Agent υ chooses to evolve
in time t.

switchυt = argi{max(Rυi)}, Rυi > Υi, ∀i, (6)

where, Υi is the required support (motivation or profit) for
switching i. To avoid evolving to similar patters we may use
Eq. 7 instead of Eq. 6.

switchυt = argi{max(Rυi)}, Rυi > Υi,

∀i �= Pattern(υ).
(7)

Updates and adjustments cause Evolution

The probability that a system possesses attribute λ, such as
willingness to adjust consumption pattern for a specific cost
saving, is:

φ(λ, t0) =

{
1, if Mλ(t)∑

i Xi(t)
≥ τλ, ∃t0 ∈ [0, t],

0, if Mλ(t)∑
i Xi(t)

< τλ, ∀t0 ∈ [0, t],

(8)
where, τλ is the threshold for property λ and Mλ(t) is the
number of patterns which have the attribute λ.

Let Φ(t) = (φ(λ, t);λ = 1, ..., λ0) be a vector of 0 and
1’s where, its λth position is 1 if φ(λ, t) = 1. The sys-
tem evolves when ∃t′ > t,Φ(t) ∈ Ψ(or Ψ′) & Φ(t′) ∈
Ψ′(or Ψ). Where, Ψ(t) is a predefined finite set of Φ’s at
time t and Ψ′ is all other possible combinations of 0 and 1
for Φ’s that are not in Ψ (i.e. complement of Ψ).

For example, in a power system agents are consumers of
electricity. Each follows one of n different daily consump-
tion patterns with probability Pi. These probabilities define

entropy of features. A preferential attachment of a social net-
work of consumer defines the interoperabilities Ic where, its
edges depict the interrelationships R. The nodes of the net-
work grow by fitness rate bi where, the node degree distri-
bution follows power law (scale-free network (Barabasi and
Bonabeau 2003)). Statistical analysis of the system presents
the initial bi’s that may change based on behavioral charac-
teristics of consumers (they may be persuaded to migrate to
other patterns by motivators such as dynamic pricing and at-
tractiveness) and cause the emergence. Here, required data is
gathered manually and simulated for future behaviors. Elec-
tricity regulators strive to balance the workload or reduce
the peak time by defining evolution thresholds and sets in
respond to demand fluctuations. They seek to control con-
sumer behaviors by providing incentives and social educa-
tion.

Conclusions and Future Research

The proposed framework enables us to model characteristics
and behaviors of agents within a system and examine their
correlations and responses to environmental changes. Our
model allows studying hallmarks of CASs and helps us to
analyze complexity in a system without complex modeling.
This study can help us to define new measures for ECASs.

In the future, agent-based modeling and simulation of
the dynamic system can support the mathematical model-
ing of this paper. We can improve the decision mechanisms
in evolution by adding statistical or optimization learning
algorithms. Moreover, we can study behavior of the sys-
tem based on different complex decision network topologies
(e.g. scale-free and single-scale networks). Some other char-
acteristics of consumers such as irrationality (information,
pricing, and communal benefit) or effect of externalities in
their decisions may give closer results to the real cases. Here,
we tried to minimize the dis-uniformity. However, control-
ling or predicting dis-uniformity is a more general objective
that can be studied in the future under the presence of addi-
tional factors in the model such as price incentives.
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