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Abstract

The new scenarios of contemporary adaptive robotics seem
to suggest a transformation of the traditional methods. In
the search for new approaches to the control of adaptive au-
tonomous systems, the mind becomes a fundamental source
of inspiration. In this paper we anticipate, through the use
of simulation, the cognitive and behavioral properties that
emerge from a recent prototype robotic platform, EcoBot, a
family of bio-mechatronic symbionts provided with an ‘arti-
ficial metabolism’, that has been under physical development
during recent years. Its energy reliance on a biological com-
ponent and the consequent limitation of its supplied energy
determine a special kind of dynamic coupling between the
robot and its environment. Rather than just an obstacle, ener-
getic constraints become the opportunity for the development
of a rich set of behavioral and cognitive properties.

Introduction

During the last two decades, robotics has increasingly redi-
rected much of its traditional emphasis on precision, speed
and controllability towards three new objectives: adaptivity,
learning and autonomy (Pfeifer, Iida, and Bongard 2005). In
its initial formulation, the problem has been mapped neatly
onto the traditional domain of engineering methods, in par-
ticular their natural evolution towards system and control
theory (e.g. see (Brogan 1990)). After mastering the arti-
ficially protected environment of the technological factory,
though, the scenario for the robots to come reveals the world
in its least structured form: the exploration of inhospitable
and unexplored territories, participation in search and rescue
actions, and the social context in robot-robot and human-
robot interactions. The uncertain, sometimes the unknown,
potentially (and often) described by limited, inconsistent and
unreliable information, characterizes the likely setting for
most of these activities. The environment requires contin-
gent adaptation to temporal and spatial features and, at the
same time, underdetermines the appropriate robot behavior.
The environmental intrinsic dynamics express an inertia that
the robot has often no power to influence directly (e.g. the
case of a marine tidal stream for a small robotic explorer
or a hostile and non-collaborative human interlocutor for a
service robot). The robot has to adapt by synchronizing to
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exogenous dynamics, thus operating under time pressure.
Furthermore, an autonomous robot is expected to manage
and provide for its own energetic needs by finding in its sur-
roundings the means for its energetic autonomy, whilst op-
erating with limited or no human intervention.

Within this complex scenario, a certain level of autonomy
in the context dependent selection of the behavior might
be crucial to boost performance. The search for the so-
lution to the contemporary problem of robotics seems to
suggest the need of a methodological hiatus. The atten-
tion of many researchers has moved to the one system that,
to our knowledge, masters the new objectives: the (bio-
logical) mind, as an invaluable source of inspiration. Un-
fortunately, to date, science lacks a satisfactory theory of
the mind, as we are still struggling in order to find the
right perspective and set of methods to dissipate its mys-
tery. The early cyberneticists, pioneers of this field, read-
ily developed minimalist robotic or dynamic models that
drew attention to the emergence of the mind as a com-
plex interplay of brain, body and environment (Ashby 1960;
Walter 1950; 1951; 1963; Braitenberg 1984). Despite the
fact that mainstream artificial intelligence has deployed a
representation-centric view of the mind, several lines of
research have rejected representationalism and have reno-
vated the original cybernetic intuition. Neurophysiologists
and cognitive scientists have shown that the methods of dy-
namic system theory can be effectively applied to interpret
and model biological cognition (Skarda and Freeman 1987;
Freeman 2000; Kelso 1995; Thelen and Smith 1994; Thelen
et al. 2001). The dynamic system approach to cognitive sci-
ence has been explored at the theoretical level (Beer 1995;
1997; 2000; Van Gelder 1995; 1998; Chemero 2009), whilst
cognitive tasks of minimal cognitive relevance have been
synthesized and analyzed as robotic models (Beer 1996;
Slocum, Downey, and Beer 2000; Beer 2003; Nolfi and Flo-
reano 2000; Tani 2003; Tani and Ito 2003). Recently it has
been argued that despite the fact that a metaphysical rejec-
tion of representations is hardly defensible, an epistemolog-
ical analysis might reveal that dynamic system models of
cognition offer a richer description and explanation of cog-
nitive phenomena (Chemero 2009).

An embodied cognitive science, i.e. a cognitive science
where the body plays a foundational cognitive role, has
emerged quite naturally within this more systemic view of
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the mind. The body of the robotic agent is not simply a pas-
sive framework that relocates in space and time the agent’s
interface with its world. The body actively redefines the
cognitive problem by pre- and post-processing information
(Chiel and Beer 1997; Pfeifer and Bongard 2006). The mind
emerges from the causal interweaving of coupled body, brain
and environment (Beer 2000). Increasingly, embodied cog-
nitive science inspires current robotics. To date, though, the
role of the body in cognition has mostly been studied in
terms of dynamics that take place along the surface of the
body. We are starting to suspect that deep, non-neural bod-
ily dynamics of biological cognitive agent (e.g. homeostatic
bodily regulation and metabolic processes) might play a cru-
cial role too.

In this perspective, relatively recent work revitalized
William James’ classical somatic theories of emotions
(James 1890), in the light of neuroscientific evidence
(Damasio 2000; 2003). According to Damasio, a hierarchy
of bodily processes (metabolic regulation, basic reflexes, im-
mune responses, pain and pleasure behaviors, drives and
motivations), triggered by emotionally relevant stimuli, de-
termine the constitutive substrate for emotion proper. On
top of that, the conscious or unconscious perception of
the bodily state dynamics determine the physical founda-
tion for feelings. These ideas become relevant to robotics
if we follow some authors who argue that the complex sys-
tem of bodily processes might be a crucial key to a gen-
eral understanding of biological cognition (Parisi 2004), and
a powerful organizational principle for the deployment of
robots with extended capacity for adaptivity and autonomy
(Ziemke 2008; Ziemke and Lowe 2009).

Similarly, contemporary robotics has almost entirely ne-
glected energy, unless as a corollary annoyance that sets
a strong and undesirable constraint over the robot’s auton-
omy. Nevertheless, the role of biological metabolism is not
limited to the assimilation and synthesis of the basic mate-
rial needed for the continuous organismic self-production.
It also makes available a net amount of energy that can be
used to supply sensory, motor and nervous activity. An ex-
periment in evolutionary robotics, elegantly straightforward
in its simplicity, has shown how energy constraints could
effectively inform interesting cognitive properties and be-
havioral dynamics (Floreano and Mondada 1996). We can
take this result as the starting point of our journey. In the
remainder of this paper we will try to show how energy lim-
itation, in parallel with its traditional role as constraint for
autonomous robots, can also be interpreted as an unexpected
source of behavioral diversity. First, we will introduce the
prototype robotic version of a sustainable technology for en-
ergy generation, namely oxygen-diffusion cathode microbial
fuel cells, and its computationally inexpensive mathemati-
cal model. This will constitute our experimental reference.
Then, we will explore a number of interesting cognitive and
behavioral consequences deriving from the intrinsic proper-
ties of this experimental setup.
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Figure 1: Schematic of an oxygen-diffusion cathode MFC.

A robot with a living core

Oxygen-diffusion cathode microbial fuel cells

During the last decade, researchers at the Bristol Robotics
Laboratory have been working on the development of a pe-
culiar family of prototype robots, EcoBot (Melhuish et al.
2006; Ieropoulos et al. 2005; 2010). Its source of power de-
pends entirely on the availability of water and biodegradable
mass. In fact the energy that is supplied for the robot’s sens-
ing, actuation and control derives from a robotic variation of
the microbial fuel cell (hereafter MFC) technology.

In the anodic compartment of a MFC, an anodophilic pop-
ulation of bacteria in tight adhesion with the anodic elec-
trode makes available electrons by oxidizing the biomass
contained in a liquid substrate (Fig. 1). In MFCs that do
not make use of exogenous consumables, the electron trans-
fer from the bacterial intracellular space to the anodic elec-
trode can take place via endogenously produced mediators,
direct membrane-electrode contact or nanowires (Rabaey
and Verstraete 2005; Logan et al. 2006). The anodic bac-
terial population, as long as provided with fresh substrate to
maintain a well buffered and healthy environment, tends to
reach a stationary yet metabolically active growth dynamic.
The substrate can be fed by refined renewable biomass,
e.g. sucrose, acetate, starch (Rabaey and Verstraete 2005;
Logan et al. 2006), but also by unrefined biomass, e.g. rotten
fruit, flies, green plants, wastewater (Melhuish et al. 2006).

A semipermeable membrane separates anolyte and
catholyte, at the same time preventing any flux of O2 to
the anode and allowing the migration of H+, a byproduct of
oxidation in the anodic compartment, to the cathode. Since
the robot prototype is intended to be an autonomous sys-
tem, the (more efficient) exhaustible chemical electrolyte
based cathodes, traditionally used in MFC research, have
been replaced by oxygen-diffusion cathodes, partly open to
the external atmosphere and, for the remaining part, filled
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with water. This choice translates into a self-sustained elec-
trochemical process. Hereafter, we will specifically refer to
this configuration as oxygen-diffusion cathode microbial cell
(ODC-MFC). In an ODC-MFC (Fig. 1), H+ ions reduce at
the cathode by combining with O2 and accepting electrons
to endogenously produce a little quantity of water (normally
insufficient to compensate the loss due to evaporation), thus
closing the electric circuit. The presence of a continuous
flow of highly oxygenated water would support the cathodic
chemical dynamics, promoting optimal efficiency. As this is
not an option for autonomous terrestrial robots, the instant
level of water present in the cathode and of the chemical en-
ergy in the substrate are the two crucial parameters for the
system.

We can conceive the ODC-MFC powered robot as a bio-
mechatronic symbiont, where each of the two hybrid com-
ponents not only benefits, but depends on the other for its
own survival (Melhuish et al. 2006). To date, the power
density produced by MFCs in general, and even more so
by ODC-MFCs, is admittedly extremely low. Nevertheless,
this technology has been proved sufficient to substantially
support the energy demands of important applications, e.g.
wastewater treatment and mobile robot platforms (Haber-
mann and Pommer 1991; Wilkinson 2000; Melhuish et al.
2006; Ieropoulos et al. 2010). Both theoretical and experi-
mental results demonstrate that MFC miniaturization might
lead to higher levels of power density (Ieropoulos, Green-
man, and Melhuish 2010) and that miniaturization might be
pushed to microscopic levels (Kim et al. 2003). Prospec-
tively, this indicates that MFC technologies are in principle
capable of supplying the robots with a significantly higher
power once a large number of miniature MFC units, in ap-
propriate stack configurations, would be integrated on the
robotic platform.

A mathematical model of ODC-MFC

We can readily anticipate the future of the ODC-MFC tech-
nological evolution in simulation. For this reason we devel-
oped a mathematical model of ODC-MFC (Montebelli et
al. 2011). Differently from other models of MFC currently
available in the scientific literature, its high level of abstrac-
tion, which omits the details down to the physical-chemical
level, allows its use as a platform-independent plug-in that
can be easily integrated within standard computer robot sim-
ulations, with extremely limited computational overhead.

We developed a simple resistance-capacitance electric
model (Fig. 2). Both the electromotive force (V0) and in-
ternal resistance (Ri) of the ODC-MFC depend on the level
of hydration at the cathode and on the chemical energy in
the substrate. The functional relations for these crucial pa-
rameters were identified by using energy generation data ex-
tracted from the physical ODC-MFC powered robot proto-
type (Montebelli et al. 2011). An external capacitance (C)
transiently stores the available energy. Its presence is a de-
sign choice, due to the strong power constraints imposed by
the physical sensors and actuators for robotic applications.
A hysteresis cycle ensures that the tension supplied to the
robot (the resistive load in Fig. 2) remains within a reason-
able range. When the tension across the capacitor exceeds a

0

Figure 2: Model of ODC-MFC energy generation. The
lumped parameters V0, Ri and C schematically represent our
platform independent model. A dashed rectangle represents
the robot as a resistive load.

given upper threshold, the accumulated energy is distributed
to the robot. When a lower threshold is reached, the switch
S in Fig. 2 opens and the distribution is inhibited, while
the capacitor recharges its energy. The relations that math-
ematically describe the system parameters (V0 and Ri) and
their physical interactions, constitute the platform indepen-
dent model of energy generation. To the contrary, the distri-
bution of the available energy must be estimated on the basis
of the actual robot in use. For the reader’s convenience the
model’s equations are reported in the appendix.

The levels of cathodic hydration and chemical energy in
the anodic substrate determine the instant rate of energy
(power) that is generated by the ODC-MFC. In other words,
well hydrated and fed robots recharge faster and therefore
have more energy for their actuation. A more detailed de-
scription is available in (Montebelli et al. 2011). What is im-
portant to the current discussion is that the model produces
realistic ODC-MFC energy generation dynamics.

In simulation, sources of ‘water’ and ‘food’ can be easily
introduced, and the desired modality of interaction between
them and the robot (ranging from more realistic to heavily
abstract) implemented. In principle, the implementation of
analogous mechanisms for direct access to the environmen-
tal resources (although not yet implemented) are possible
for the physical prototypes. Observe that both the hydration
level and the chemical energy in the substrate are subject
to temporal decay. This models the spontaneous evaporation
from the cathode and (undesired) biochemical processes that
degrade the substrate in the digester.

Behavioral and cognitive consequences

As mentioned before, by using the ODC-MFC we can read-
ily anticipate the technological developments of the MFC
technology for robotic applications, whilst maintaining re-
alistic energy generation dynamics. Free from physical lim-
itations, we can extend to our will the number of on-board
ODC-MFCs in any arbitrary number of stack configurations.
We can easily reach the point where the characteristic power
limitations of ODC-MFCs cease to pester the robotic sys-
tem, i.e. where the ODC-MFCs can supply the robot with
any amount of power it may require over an extended period
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of time. Nevertheless, each level of energy constraints that
we are about to explore, from the most stringent to the most
relaxed, will imbue the ODC-MFC powered robotic system
with characteristic properties.

At a more abstract level, the role of the ODC-MFCs in
a similar setup is twofold. First, we can interpret it as an
artificial metabolism that relates energy to the two crucial
variables of the system (level of hydration and of chemi-
cal energy in the substrate). This provides the system with
a set of metabolic signals that are directly connected to
the intrinsic ‘well being’ of the robot. We could character-
ize these signals as low frequency, as compared to the the
sensorimotor dynamic that typically emerges from robot’s
sensors and actuators during the interaction with its en-
vironment. Second, the living bacterial colony in the an-
ode provides the system with a component that imbues a
certain level of biological causal powers (Di Paolo 2003;
Ziemke 2008). These observations have important cognitive
and behavioral implications that we are about to explore.

State of the art ODC-MFCs

Current physical ODC-MFCs powered robots don’t actually
display surprising behavioral dynamics. The different gener-
ations of EcoBot scaled up from 8 to the current 48 on-board
ODC-MFCs. Each ODC-MFC provides around 0.1 mW to
its load at about 0.2 V. The energy demand of the actua-
tion of a robot like EcoBot-III should not be overlooked. In
parallel for the actuation of its motors, the available energy
supplies the pumps that periodically rehydrate the cathode
and recirculate the substrate from a central digester to the
anodic chambers of the MFCs. Despite a careful morpho-
logical design and the use of low-power electronic solutions
for the robot’s actuation, sensing and control, a few seconds
of activity require several minutes of recharge. Therefore,
the extremely low generated power limits the robot behavior
to cycles of full charge and discharge of the energy accu-
mulated across the capacitor. Nevertheless, despite the fact
that the physical prototype robot currently relies on human
support, it is rather close to achieving energy autonomy, the
capacity to provide for its own energetic needs with no hu-
man intervention.

A foreseeable future

Now imagine scaling up the number of ODC-MFCs units
that currently power EcoBot-III by a factor 10. In simulation
we can power, for example, a simple e-puck robot, whose
energy demand can be estimated on the basis of the physi-
cal characteristics of its actuators (Montebelli et al. 2010).
This maintains the robot in a situation of mild energy con-
straint while it operates under dynamical engagement with
its environment. Within its environment the robot can find
sources of food and water. Since the ODC-MFC system is
its only source of energy, the maintenance of a high level of
hydration and chemical energy in its (virtual) digester allows
for a higher available power. A deficit in water and food in-
take (remember that both hydration and energy content in
the substrate are subject to decay), entails the incapacity for
further movement or to further support the anodic bacterial
ecology (death).

Also imagine that the robot is controlled by an artificial
neural network (ANN). Its synaptic weights can be adapted
by evolutionary algorithms (Goldberg 1989). In virtue of this
choice, we abandon a rigid control over the adaptive process.
By doing this, we can avoid the injection of our own per-
ception of the task and of the required steps for its solution
(Nolfi and Floreano 2000). In other words, we can renounce
our own ontological perspective of the problem by using a
very generic fitness function to drive the evolutionary algo-
rithm. In fact, given the constraints that are implicitly set
on the possible dynamics of the system, the fitness function
could be in the form: ”live as long as you can”. This leaves
maximal freedom to the system under study to self-organize
its solution to a high degree (Nolfi 1998).

Energy limitations and biological causal powers induced
by the use of ODC-MFCs concur, with specific conse-
quences, during the simulated evolutionary process:

• They promote adaptation towards behaviors that most ef-
fectively trace and exploit the environmental resources
(food and water).

• In case the body morphology could also be adapted
by evolutionary algorithms (Pfeifer, Iida, and Bongard
2005), this would be synergistic to the evolution of the
neurocontroller.

• The variables that are essential to the viability of the sys-
tem (food and water levels) work as its control parameters
(Kelso 1995). In an experiment, we clamped their values
and left a successfully evolved robot free to roam in its
environment. By a systematic exploration of several com-
binations of the parameters’ value, we showed how their
current values reconfigured the phase space of the dy-
namic system constituted of the robot’s body, neurocon-
troller and environment. This mechanism implemented a
self-organized dynamic action selection mechanism that
elicited the subset of behavioral attractors as appropriate
to the current context. This constitutes a form of moti-
vational autonomy, the agent’s capacity to independently
select the behavior that is functional to its own viability
(McFarland 2008). In a simplified setup, where energy is
the only control parameter, we classified a set of 8 behav-
ioral attractors, and we demonstrated their distribution as
a function of the energy level (Montebelli, Herrera, and
Ziemke 2008). A simplified illustration of this distribu-
tion is exemplified in Fig. 3. Three ‘exploratory’ behav-
iors were selected to find energy sources in the environ-
ment when the robot was in the condition of energy deficit
(type A behaviors); four were local behaviors, typically
selected to remain close to the potential energy source for
high levels of energy (type C); finally, two were hybrid
behaviors, at the same time sharing characteristic with
both exploratory and local behaviors and selected for in-
termediate levels of energy (type B). The selection of the
particular behavioral attractor followed the normal laws
of dynamic systems: falling on one behavioral attractor
rather than another depended on the robot’s starting po-
sition and on the integrated effects of noise. In a more
recent and preliminary experiment, with both hydration
level and energy in the substrate as control parameters,
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we found a similar mechanism (Montebelli et al. 2010).
In this case, water and food areas were the focus of two
basins of attraction. In clamped conditions, the control pa-
rameters modulated the ratio of access to water with re-
spect to food resources, i.e. the probability of a transition
from one to the other basin of attraction.

Figure 3: Lower panels: Sample spatial trajectories for the
three classes of behaviors observed in clamped conditions
after transient exhaustion. Exploratory behaviors (panel A),
local behaviors (panel C) and hybrid forms (panel B). Poten-
tial energy rechargers (i.e. the position of the light sources)
are indicated by red stars. For a better resolution, the icons
representing each class of trajectories zoom on the area of
main interest surrounding the light sources. Top panel: The
intensity of the pixels for each column (corresponding to at-
tractors belonging to classes A-C, as specified by their labels
on the top row) represents the relative frequency of the be-
havioral attractor as a function of the energy level. For exam-
ple, an energy level of 0.7 leads to the expression of attractor
C”’ (in 70% of the replications), C’ (20%) or B’ (10%). For
energy levels in the interval [0.0, 0.4] we can observe a clear
dominance of attractors in class A. A similar dominance in
the energy interval [0.7, 1.0] is shown by attractors in class
C. The hybrid forms in class B characterize intermediate en-
ergy levels. Adapted from (Montebelli, Herrera, and Ziemke
2008).

• The interaction of more complex controllers and mor-
phologies tends to develop energy efficient behaviors. For
example, a less energetically demanding ocular actuation
might be selected for an initial screening of the environ-
ment before a direct engagement in action (Lowe et al.
2010). A similar strategy might involve abstract planning

Figure 4: Top panels: examples of continuous (green) and
pulsed (red) robot trajectories. In each panel, on entering the
higher/lower circle the robot receives hydration/fresh sub-
strate. Lower panels: motor activation (top) and energy level
(bottom) for continuous (continuous green plot) and pulsed
(dotted red plot) behavior. Adapted from (Montebelli et al.
2010).

and thought.

• Depending on the environmental conditions, the viable
robot could rely on bursts of maximal power activation,
leading to cycles of full energy recharge and distribution,
or on more conservative, sub-maximal motor activation
that would tend to maintain an instant balance between
the generated and utilized power. In other words, pulsing
and continuous actuation would be two qualitative behav-
ioral options in front of an identical quantitative energy
balance. This result, reminiscent of the different behav-
ioral strategies of wolves and cheetahs (where the former
tend to cover very long distances at low speed during their
daily roaming and the latter can run at surprisingly high
speed for a few seconds, but need a few hours of recovery
afterwards), is clearly demonstrated in (Montebelli et al.
2010), and reported here in Fig. 4.
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• More sophisticated sets of sensors (e.g. electronic noses)
might integrate the robot design for an elementary chem-
ical analysis of the available resources. The robot might
consequently classify the potential food on the basis of
preferences, related to the energy content of the available
resources.

• The substrate that is periodically excreted from the anodic
chamber in order to be substituted with fresh substrate
from the digester is expected to have fertilizing properties.
The robot might learn how to spatially organize areas ded-
icated to its foraging and excretions, and temporally rotate
them in order to achieve more prosperous harvests.

• The meaning of the labels ‘water’ and ‘food’ is grounded
in the viable dynamics of the robot. Following Varela:
“There is no food significance in sucrose except when
a bacteria swims upgradient and its metabolism uses the
molecule in a way that allows its identity to continue.”
(Varela 1997)

A long-term prospective

Finally, imagine increasing the number of on-board ODC-
MFCs further, so that they could promptly cover virtually
any power demand by the robot they serve. Under these
conditions, would the described system differ in any sig-
nificant way from robots powered by more conventional
sources of energy? We could answer by pointing to the in-
trinsic thermodynamic irreversibility of, for example, com-
mon rechargeable batteries. On the other hand, in principle,
the bacterial colony in the MFCs’ anode constitutes a rather
robust and dynamically self-sustained system. Furthermore,
and most importantly, consider a population of ODC-MFCs
powered robots. Each member of the population still cru-
cially depends on the resources at hand in its environment.
It is viable as long as its behavior promotes a balanced and
sustained relationship with its environment within the space-
time horizon of this robotic species. Behaviors that are dis-
ruptive of the ecological balance would be irreconcilable
with its collective long-term viability. In other words, the
viable robot would be ecologically grounded in its environ-
ment and their specific form of autonomy would be con-
strained by the maintenance of its ecological balance. By
ecological autonomy we mean a collective form of energy
and motivational autonomy that is crucially constrained by
the demands of the agent’s viable integration in its natural
environment over time.

Conclusions

In the present paper we have presented a robotic system sub-
ject to energetic limitation that can capitalize on this restric-
tion in order to develop, through its adaptive process, a rich
behavioral diversity. The simulated agent in our experiments
constitutes a bio-mechatronic hybrid. A conventional e-puck
robot derives the energy for its actuation from a stack of
ODC-MFCs, mathematically modeled on the basis of an ac-
tual physical prototype. In our simulated robotic setup, the
ODC-MFC energy generation system represents a basic ab-
straction of a metabolic system, thus allowing the study of

the interaction between sensorimotor and deep bodily dy-
namics. The use of simulation offers the opportunity for the
systematic study of different scenarios, where the energy
constraints can be increased or relaxed at will. The living
bacterial colony in the ODC-MFC cathode endows the sys-
tem with biological causal powers that are unprecedented in
robotics.

Energy restriction and biological causal powers play a
fundamental role during the robot’s adaptation and endow
the robot with characteristic and peculiar properties. They
create a powerful pressure that tends to select effective (in
the sense of viable) energy-efficient behaviors and mor-
phologies. They determine the conditions for a rich collec-
tion of behaviors and behavioral strategies. The metabolic
signals, directly connected to the basic needs for the viabil-
ity of the system, can be readily interpreted as its control
parameters, the crucial variables that dynamically select the
subset of behaviors that are appropriate to the specific con-
text. In particular, the biological causal powers, due to the
living component of the system, constrain the robot’s auton-
omy to behaviors that promote an ecologically balanced in-
tegration in its environment and the grounding of meaning,
relatively to the aspects of the environment that are most
salient to the robot viability.

Under a cognitive perspective, the importance of the
simple metabolic system implemented in our simulations
should not be overlooked. Indeed, the relatively high-
frequency sensorimotor signals that characterize the agent-
environment interaction constitute a solid basis for the
study of perception and action. Nevertheless, low -frequency
metabolic signals associate the contingent sensorimotor flow
with the non-negotiable essence of adaptivity: the agent’s
well being. Blindness to this primary fact amounts to pur-
suing a myopic perspective on cognitive science, trapped in
contingent and local dynamics, whilst ignoring that cogni-
tion amounts to nothing but the deployment of a sophisti-
cated strategy for survival.

Appendix: Equations of the ODC-MFC model

We report below the set of equations for the ODC-MFC
model, as throughly described in (Montebelli et al. 2011).
The values for the parameters that appear in the equations
are reported in Table 1. Observe that the form of the model
used in (Montebelli et al. 2010) differers from the one de-
scribed here. The former model can be interpreted as the
local linearization of the following equations.

a) Electric charge balance With reference to node α in
Fig. 2:

V0 −VC

Ri
=C

dVC

dt
(1)

b) Dependence on substrate

subst = 1− ts
τs

(2)

where subst represents the current level of biochemical en-
ergy in the anodic substrate and ts is the time from the last
replenishment of the anodic chamber with fresh substrate.
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parameter equation numeric value physical dimension
C 1;8 0.0282 F
τs 2 60000 min

qV0 3 3.2 V
mV0 3 -0.00000667 V/min
qRi 4 550 Ω
mRi 4 0.0442 Ω/min
β 5 0.2 -
αp 5 1.9 -
αn 5 0.85 -
γp 5 0.0055 1/min
γn 5 0.031 1/min
δp 5 710 min
δn 5 600 min
αV0 6 0.18 V
αRi 7 320 Ω

Table 1: Suggested values for the parameters.

V0max = qV0 +mV0ts (3)

Rimin = qRi +mRits. (4)

c) Relation time-hydration

hyd = β +
αp

1+ eγp(th−δp)
− αn

1+ eγn(th−δn)
(5)

where hyd represents the current level of hydration in the
cathode and th is the time from the last hydration.

d) Relation hydration-Ri and hydration-V0

V0 =V0max −αV0 +
αV0

1−hyd∗ (hyd −hyd∗) (6)

Ri = Rimin +
αRi

1−hyd∗ (1−hyd). (7)

e) Energy stored in the capacitor

ε =
1
2

CV 2
C . (8)
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