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Abstract

Human wayfinding operates very very differently from
traditional deterministic algorithms owing to a) restric-
tions in working memory resulting in subjective region-
alized maps, and b) flexible adoption of different nav-
igation strategies. While a number of cognitive strate-
gies have been proposed for human wayfinding, these
have been hard to evaluate thoroughly owing to a lack
of computational simulation. In this work, we propose
a stochastic approach for capturing these aspects, and
argue for a memoryless, stationary implementation. In
two longitudinal experiments on the same group of sub-
jects, we first estimate the subjective regionalized maps
for each subject on the same familiar spatial domain.
Later, based on their wayfinding responses, we can es-
timate the stationary probabilities for different strate-
gies. We apply this algorithm to evaluate three wayfind-
ing strategies proposed in the literature, and repudiate
the previously held suggestion that they are followed
equiprobably.

Introduction

Humans frequently navigate paths in large-scale fa-
miliar spaces, and the cognitive mechanisms underly-
ing such wayfinding have been studied over several
decades (Golledge 1995; Dry et al. 2006; M. J., A., and
H.A. 2004). Experimental techniques used include sketch-
ing (Passini 1984), ordering of sites based on recall (Hirtle
and Jonides 1985), navigation paths on virtual scenes (M. J.,
A., and H.A. 2004), linguistic interactions (Spiers and
Maguire 2008; Dalton 2003), as well as brain FMRI (Spiers
and Maguire 2006). From the results of these studies, one
observes two aspects in which cognitive approaches dif-
fer from traditional deterministic computational algorithms.
First, space is not represented monolithic whole but hier-
archically organized into regions. This regionalized map
is acquired from experience and the representation of the
same region can vary substantially between individuals. This
structure helps decision-making within the same region, and
is also conducive to restrictions in working memory. Sec-
ondly, there appear to be several heuristic strategies that ex-
plain various aspects of human navigation ability, such as the
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fine-to-coarse strategy (Wiener and Mallot 2003), the clus-
ter method (Gallistel and Cramer 1996), the least decision
load (ONeill 1992), the least-angle strategy (Dalton 2003)
etc. Unlike deterministic algorithms, multiple strategies may
be deployed by the same individual in different situations or
at different times. This brings in a stochastic nature to the
wayfinding process.

While these analyses are based on the psychological ev-
idence, thorough testing of cognitive theories increasingly
depends on simulation. Here the computational computa-
tional models that are available adopt approaches such as
path-cost minimization (Gärling and Gärling 1988; Bailen-
son, Shum, and Uttal 2000), the Traveler (Leiser and Zilber-
shatz 1989) adopts the hypothesis that one goes first to the
centroid of the present region, then from there to the centroid
of the target region and thence to the target, completing the
navigation process in three stages.

Another group of computational models approaches the
problem by constructing plans that are tested via mobile
robot navigation (Stober, Fishgold, and Kuipers 2009) Some
approaches (Chee K. Wong 2007) also attempt to capture
the notion of fragmentary (incomplete) plans, but it is essen-
tially the first part of a Dijkstra-like optimal path based on a
global map. While these models miss many relevant aspects
to human computation, the dialogue between cognition and
computation has nonetheless been effective. For example,
the suggestion in (Chown, Kaplan, and Kortenkamp 1995)
that paths are initially planned at higher abstraction levels,
though it leads to contradictions in cognition (M. J., A., and
H.A. 2004), is also the basis for the coarse-to-fine heuristic,
a strategy that emerges as one of the more probable ones in
our analysis below. On the whole, the computational model
proposed so far are not realistic for cognitive way-finding,
primarily because a) they fail to incorporate the regional-
ized maps and the subjectivity associated with it, and b) each
model tends to incorporate only a single heuristic.

In this work, we combine a model for an acquired (sub-
jective) hierarchical map of familiar spaces, along with a
local search mechanism, which is stochastic, to model hu-
man way-finding behavior. That such a tool can be used to
evaluate navigational strategies is demonstrated by consider-
ing three strategies described in (M. J., A., and H.A. 2004),
where it was suggested that perhaps these three strategies are
followed equiprobably. Using the approach outlined next,
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we show that within the three suggested approaches, the
coarse-to-fine strategy is more likely to be selected than the
others.

The Proposed Model

The model we propose emulates human way-finding behav-
ior in very familiar environments. Examples of such environ-
ments include the place one lives in, or the place of work, or
college campus for students–essentially a place where a per-
son wouldn’t need navigational help. An example of such a
navigational task would be to decide which stores to go to
first and which path to follow when you are going shopping
with a predefined set of destinations. Our model doesn’t in-
corporate human navigational behavior in unknown terrains.
In the description that follows, we establish the claims the
model is based on, and elaborate on them:

CLAIM 1: Human wayfinding operates very differently
from traditional computational graph-based approaches.

While wayfinding has been related to well-studied algo-
rithmic problems such as human capabilities in solving the
traveling salesman problem (Dry et al. 2006; Golden et al.
1980), it differs in three important aspects. First, the en-
tire space is not available visually, so that working memory
constraints come into play. Secondly, the large spaces in-
volved call for granularity at different scales, and both rep-
resentations and operations on these are considerably differ-
ent (Wiener, Ehbauer, and Mallot 2009). And finally, it has
the flexibility of adopting different navigation strategies, op-
portunistic modification, partial plans etc.

CLAIM 2: Familiar environments are hierarchically
stored in the spatial memory, i.e. they are regionalized and
the regionalization is subjective.

A way-finding task in a familiar terrain implies we are not
using any navigational help like maps etc. So, while deciding
on the path to take for a certain number of targets, we are es-
sentially representing the whole environment in our working
memory so that we can find an optimal path going through
all the target points. Considering that working memory has
a limited capacity, it is much more computationally efficient
to just have a detailed representation of all the landmarks in
the region one is in (for navigation in the immediate vicin-
ity), while farther landmarks can be grouped into their rep-
resentative regions. The subject, a cognitive miser, thereby
defers the exact plan-out for targets in those regions till the
time they actually get in there.

In fact, what we are proposing here is not a radical idea,
but a well-established one. There is abundant evidence that
such spaces are represented in spatial memory not as a
single-level map, but as a hierarchy with nested levels of
details ((Tversky 2005; Hirtle and Jonides 1985)). The hi-
erarchical model of spatial memory suggests that space is
organized into a graph-like representation based on personal
biases and spatial characteristics. Such a model has been ar-
gued for based on errors in distance and direction judgement
(Stevens and Coupe 1978; Hirtle and Jonides 1985), as well
as limitations of working memory (Tversky 2005).

We further argue that the hierarchical representation is
subjective, so that it may differ considerably from user to

user, based on their personal history of spatial experiences,
personal biases, as well as aspects of the geographic area.
Works by (Hirtle and Jonides 1985; Montello et al. 2003)
assert as much. Our assumption about subjective hierarchi-
cal structuring of space can thus be considered reasonably
valid.

Algorithm 1 Subjective Model Estimation
Input :

1. Set of strings containing recalled landmarks: S =⋃
i{Ti}, Ti ε {permute(a1, . . . , an)}.

2. Set of training task objectives: A =
⋃

i{Ai}; Ai =
{Targetsi : {ai1, . . . , aik}, Sourcei : {bi},Responsei :
{b1, a′i1, . . . , a′ik}}
3. A repository of heuristic-functions: H =
{H1, H2, . . . , Hm}

Pseudocode :
1. Tree = orderedTreeTechniqueOTT(S);
2. G < V,E > = hierarchicalRegionalizedGraph(Tree);
3. Training:
for Ai in A

for ∀{π1, π2, . . . , πm} �∑
j πj = 1

source′ = bi;
target′ =copy(targeti); resp

′ = source;
while target′ �= Φ begin

start at source;
r = rand(0, 1);

if rε(
∑

j<s−1 πj ,
∑

j<s πj) nextTarget = fol-
lowHeuristic (Hs, source,G < V,E >);

source = nextTarget;
resp′ =append(resp′, source);
target′ = target′ − nextTarget;
navigate to source;

endWhile
similarity ({πj}) = JaroWrinkler(respi, resp

′);
endFor
({πj})i = centroid({Distribution({πj})| similarity >

0.7 }); endFor
Output: ({πj}) = average{({πj})i }

CLAIM 3: No single way-finding heuristic is adequate
in accounting for human behavior. In fact, the human
subject has, at its disposal, a repository of navigational
heuristics to choose from, and the preponderance of those
heuristics vary on a subject-to-subject basis.

The Introduction of this write-up asserts that humans fol-
low myriads of different heuristics for way-finding tasks.
Navigation methods based on computational graph manip-
ulation alone are inadequate to faithfully reproduce human
behavior (Claim 1). One might argue that different but spe-
cific heuristics are followed in different environments, or by
different subjects under different conditions. But (M. J., A.,
and H.A. 2004) have shown that they needed as many as
three heuristics to properly explain way-finding behavior un-
der exactly the same conditions.

It can thus be argued that any computational model em-
ulating human behavior needs to have a repository of em-
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pirically proven heuristics, instead of relying on any sin-
gle method. For our model, we limit ourselves to the three
strategies of fine-to-coarse, cluster, and least-decision load,
described in (M. J., A., and H.A. 2004). These three strate-
gies have also been used as the basis for a number of other
evaluations (Spiers and Maguire 2008; Wiener, Ehbauer, and
Mallot 2009), and appear to have gained considerable ac-
ceptability as cognitive approaches for planning routes in a
regionalized environment. Using particularly these three en-
ables us to investigate their relative preponderance through
experimentation, and at the same time validate/repudiate the
authors’(M. J., A., and H.A. 2004) claim that they are fol-
lowed equally likely. We defer the detailed description of
these strategies till next section, where we describe how
they have been implemented in the operationalization of the
model.

CLAIM 4: A human subject switches between a set of
heuristics during a way-finding task, and this behavior can
be modelled through a memoryless stochastic process.

Humans are hardly deterministic in nature while planning
something. (Holscher et al. 2007) asserts that some subjects
plan the whole route before setting out whereas some make
just partial plans. Considering navigation as a discrete pro-
cess which goes on till all the targets are exhausted and
not something that gets fixed or determined at the very out-
set, it is likely that the navigator will change their naviga-
tion strategy mid-way. In fact, existing literature supports
this hypothesis (Golledge 1995; Werner and Long 2003;
Spiers and Maguire 2008).

We, therefore, assume that any particular heuristic is not
followed throughout a single navigation task. Let’s define an
“episode” to be a plan fragment, which typically includes a
sequence of targets in a region; more generally, it may be
any subsequence of a plan. In our present work, exhausting
all targets in a region constitutes an episode. We assume that
an episode is conducted according to a particular heuristic.
When a subject has exhausted all the targets in a particular
region (the episode is over) and is at the last target for that
region, they will start the process of path planning all over
again, with the present location as the starting point and the
remaining target points as the set of destinations.

The above description parallels that of a memoryless
stochastic process, which restarts after each event (episode)
is completed. The decision to choose a particular heuristic
out of the repository at this point will be assumed to have no
relation to their previously followed strategy ( thus memory-
less). 1 In other words, we assume that strategy for episode
n is independent of episode n− 1. That is, if

A = {a1, a2, · · · , ak} (repository of k-heuristics)

and
Xn = Heuristic chosen in episode n

1This is a safe assumption for most of the daily life situations
like shopping etc. In such scenarios, the time and attention given to
the task at hand is enormous and when one is done with one objec-
tive and starts route planning again, it is theoretically not different
from what they would have done had they started at the same point
with the same set of target destinations that they now have.

then

Pr(Xn = ai|Xm = aj) = Pr(Xn = ai)

∀ i, j and ∀m < n.

We further claim that the probability of choosing a
method out of the repository doesn’t change from episode
to episode during a task. The path following heuristic might
change based on many factors; but the probability of choos-
ing one method over the other reflects a subject’s propensity.
And that is usually inherent in the subject and not very heav-
ily influenced by environmental factors. Formally, the prob-
ability of choosing a particular strategy ai at any episode n
is independent of n.

Pr(Xn = ai) = Pr(Xm = ai)∀ n,m.

This thus leads to a stationary model. 2 While we are looking
at the whole path finding process as a stochastic process, one
might just concentrate on the episodes, and then the episodes
can be looked upon as i.i.d. random variables.

We must make it clear though that dynamic effects (e.g.
situations where the original objectives may be altered as the
plan is being executed viz. opportunistic planning, or some
serious unforeseen environmental anomaly that forces the
subject to choose a path heuristic that they otherwise avoid)
can’t be accounted for in this model. Anyway, such anoma-
lies can not be predicted in a general model. Therefore, even
though the process isn’t strictly speaking a stationary one,
it can be approximated with a stationary process, a practice
which is prevalent in statistical methodologies.

For the model at hand, k = 3, with {a1, a2, a3} ≡
{fine-to-coarse, cluster, least-decision-load}, and Pr(Xn =
ai) = α, β, and γ respectively for i = 1, 2 and 3. We also
have α+ β + γ = 1.

CLAIM 5: The present computational approach permits
simulation of complex situations that was not possible until
now.

While a number of strategies have been proposed for
wayfinding (Introduction), these have not had the scope of
being tested computationally. One of the challenges is that
spatial representation models are regionalized, vary across
subjects and are difficult to deal with. Given a memory rep-
resentation, and a scope for incorporating different heuristics
in a repository, the relative preponderance of the methods
can be statistically evaluated. In fact in the two experiments
we will describe presently, we considered the responses of a
group of subjects for wayfinding in a familiar domain, and
by fitting their responses to the model, we were able to com-
pare the aforementioned three wayfinding strategies.

2One might argue that while we have divided episode based on
regions, they might indeed have quite flexible boundaries. The best
way we can think of to model that would be to treat the wayfind-
ing as a Markov process, where the probability of choosing the
next heuristic would be dependent on the previous one, there by
accounting for dynamic episode boundaries. But as described in
the previous footnote, the complexity of the task might leave such
a complex model inefficient.
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Implementation

We try out the model with the IITK campus as the natu-
ral familiar region, in which the way-finding tasks are to be
perfomed. A map of the campus with the concerned target
place-set is shown in Figure 1. In subsequent subsections,
we chalk out the implementation of whatever was described
in the previous section.

Hierarchical Graph Using OTT

We try to build subjective working memory representations
of the campus, following Claims 1 and 2. The regionalized
representation of the campus for each test subject was cre-
ated by the ordered tree technique (OTT) proposed by (Re-
itmann and Rueter 1980), and used for similar purposes by
(Hirtle and Jonides 1985)3. Once the ordered tree is formed
for every subject, the regions based on this organization are
fed into the following model, so that the model is individu-
alized.

The landmarks/targets are implemented as topologi-
cally connected nodes of a graph, with their parent
nodes(supernodes) representing the regions. When a token
(person) is in a node, it can access all its siblings and repre-
sentations of the other supernodes, to emulate the fact that
when it’s in a region, it can view that region in detail, but
has to see other regions as a single entity (viz. the spot in the
region visited most often or having the highest significance–
centroid). 4 This is subjective, and was found out for each
subject through interview. The edge weights are determined
according to the heuristic followed.

The Three Strategies

Following arguments in Claim 3, we included three tech-
niques presented in (M. J., A., and H.A. 2004) in our repos-
itory and we explain their implementation in detail. Fine-
to-coarse method The heuristic asserts that the present re-
gion is represented finely, with every detail, and the rest are
represented by points(coarse), and a shortest path is found
to all the targets. For example, for [region{landmarks}]
representation [A{a1, a2, a3}, B{b1, b2, b3}, C{c1, c2, c3}],
targets {a2, b2, b3, c3}, source a1, the algorithm tries to
find a minimum spanning tree (Dijkstra’s) from a1 to
[a2, B, C](regions, not landmarks) through the hierarchical
graph. Once the token is in the first node of the nearest
region/supernode(say C), having eliminated targets of the
present region(A), the process restarts with new targets and
the new source.5 The edge weights are actual distance be-

3We use the modified technique of (Naveh-Benjamin et al.
1986)

4Other forms of region representation are mid-points (obviously
flawed), or anchors(Couclelis et al. 1987; Golledge, , and Spector
1978), which are hard to define(Couclelis et al. 1987), and non-
operationalizable.

5Unlike in (Leiser and Zilbershatz 1989), the token does not
go to the centroid of the target region, but just uses the centroid
to decide which region to go to and then takes the topologically
shortest path from start to target place.

Figure 1: IIT Kanpur Map with the dots showing the 20
places being investigated

tween landmarks (or in case of supernodes, distance between
a landmark and a centroid).
Cluster Based Decision The technique(Gallistel and
Cramer 1996), assumes we first visit the region with the
maximum number of targets, irrespective of its distance
from the present location. So, the token, having exhausted
the targets in the present region, jumps to the supernode with
maximum targets(B in previous example), exhausts all the
targets in that region before going through the decision cy-
cle again. Least Decision Load The less number of deci-
sions one has to take, the less likely he is to get lost (irre-
spective of distance). In a familiar environment, such as in
a college campus, the decision load simply translates to the
number of turns one takes while navigating and the num-
ber of decisions one has to take at each turn. In fact this
crude method of complexity was used by (M. J., A., and
H.A. 2004), where they simply added up the possible move-
ment decisions along the path. This algorithm is therefore
easily implemented by just changing the edge weights to the
number of turns one has to take while going from, say a1 to
B.
Stochastic Modeling When targets in the present region
are exhausted, the strategy to be followed next is randomly
choosen from the heuristics repository according to prob-
abilities α, β, γ, as explained before. These parameters for
each individual are found through Experiment 2.

To create the ordered tree of spatial information, we used
the TIGER program by (Hirtle and Jonides 1985; Hirtle ).
The rest of the program was implemented in JAVA.

Experiments

Two experiments were conducted, to figure out the subjec-
tive hierarchical representation of spatial memory for each
individual, and their propencity for any particular heuristic
(Claim 5).

Subjects Ten male IIT Kanpur undergraduates (seniors),
in the age group of 20 to 24 years, participated in the exper-
iment. All subjects had spent the last 3.5 years on the cam-
pus, in one of the halls of residence, and the primary mode
of travel they followed was either walking or cycling.
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Expt 1: Subjective Region Determination The subjects
were first asked to put down as many different places inside
the campus as they could remember. Because of the length
of the task, only 20 most recurring places of the responses
were taken into consideration (refer to Figure 1, where these
landmarks have been marked).

The landmarks were then regionalized, the regions being
tailored for each subject, by providing the recall procedure
output described in (Naveh-Benjamin et al. 1986) 6 as the
input to the OTT.

Expt 2: Parameter Estimation After a gap of five days,
the subjects were presented with ten way finding tasks. In
each of the tasks, the subjects had to start at a specified place
7, visit a certain number of places, that varied from a min-
imum of five to a maximum of ten in number, do a hypo-
thetical job that lasts from 5 to 10 minutes, and return back.
Given this hypothetical situation, the subjects were asked to
note down the sequence of places they would visit to accom-
plish the objective optimally in each of the situations.

From the above, ten strings from each subject were ac-
quired. Eight of them were given as input to the way finding
algorithm, to train the model and find the optimal subjec-
tive α, β and γ (i.e. {π1, π2, π3} in Algo 1). The algorithm
varies α and β, with γ being automatically determined since
α+β+γ = 1. Based on the values of the parameters in each
loop, it determines the expected route to be taken by each
subject, outputting a string consisting of the same destina-
tions as were given in the experiment. This expected route-
string is compared with the one got from the subject during
the experiment, and their similarity index, found using the
Jaro Wrinkler distance metric 8 , is plotted against α and β
(refer to Figures for graphs pertaining to this). Heuristi-
cally, for a particular subject and a particular test string, the
parameters corresponding to the centroid of the region de-
fined by “the region where similarity index is greater than
0.7” are chosen as α, β and γ for that particular string. The
same process is carried out for all the eight training strings
for a particular subject, and their average is taken as the rep-
resentative α, β and γ for that particular subject. This sub-
jective model estimation is presented formally in Algorithm
1.

Once these parameters for all the subjects have been
found out, for each subject, employing these parameters, the
expected route for the test-case destinations is found out.
These are compared with the two test strings (of the ten
strings per subject found from the experiment, as explained
before, eight were used to train the model and the rest two

6Please refer to original paper for a detailed description of the
procedure.

7One of the 20, usually the hall of residence they resided in, to
better approximate real way finding scenario of shopping etc.

8String metrics have been abundantly used in DNA sequence
matching and data mining, and as such, they seem a natural choice
to gauge the similarity between modelled and experimental data.
The Jaro-Wrinkler metric is very efficient for matching of small
strings (the number of destinations is less than 10, leading to strings
of length less than 10), and (Cohen, Ravikumar, and Fienberg
2003) assert that it is one of the best string metrics available.

Figure 2: Regionalization Subject 3: The figure represents
the ordred tree algorithm output for this subject.

Figure 3: Focal Representation for Subject 3: Regions are
defined based on previous figure. For a way finding task with
H1 being the start point , this is the focal representation.

for testing it), and the similarity index is determined to vali-
date the working of the model.

Results and Discussions

The aim of the experiments was to validate the computa-
tional model and to find out the trend in the tendency to
support one navigation scheme over the other. While (M. J.,
A., and H.A. 2004) conjectured that way finding is a linear
combination of all the three methods with equal weights, our
experiments revealed a general tendency to favor the fine-to-
coarse method over all else.

In the recall tasks, as was expected, the region boundaries
varied from subject to subject. For example, Subject 1 had
the following grouping of regions: (H1, H2, H3, H5, TC),
(H7, HC, CF), (HC, KV), (MT, AS, EB) and (WL, LH, FB,
CC, AD, SC, LB). On the other hand, Subject 3 considered
CF as a separate region all by itself. He also considered (CC,
AD, SC) as a separate region while the rest were grouped
as in Subject 1’s output. Figure 2 shows the output of the
ordered tree algorithm for Subject 3, and Figure is the cor-
responding hierarchical organization when the way finding
task starts from H1– so that that region is completely laid
out, with further regions being considered as a single node.

We may now make a few observations on the patterns
emerging here (please refer to Fig. 1 for the locations). The
subjects were undergraduates who mostly frequent the resi-
dential halls and the Academic Area, which is a walled sub-
region in the map (the square region containing the nodes
WL, LH, FB, LB and CC). Now note that of these nodes,
four are in one of the regions, but CC is in another region
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with AD (Audi) and SC. This is despite the fact that there
is a wall between Audi and the CC. This has arisen be-
cause the paths from H1 to the FB/LB/LH etc. use a dif-
ferent gate on the walled area, near H1, whereas the CC is
accessed through a gate in the wall closer to AD. Thus, the
separate association between the CC and AD is quite natural
and several subjects exhibited this clustering. Also, AS and
EB are separated by a separate wall, but they have a gate
between them. Both are less frequented places. So are the
Health Center (HC) and KV. Thus, we notice that, the least
frequented places are grouped in larger regions, i.e. there is
less detailed regionalization for less frequented places. Thus,
MT and Airstrip are grouped in the same region even though
they are very far away, and same is the case with KV and
HC. Also, though the EB seems close to CC, the path be-
tween these is considerably longer than the euclidean dis-
tance, and also very few students visit the EB from the CC,
so this is an extremely infrequent routing. Thus, though the
EB and airstrip (AS) seem far apart, they may be subjec-
tively viewed as belonging to the same, infrequently visited
region.

We also note that Subject 1 includes the cricket field in a
region far away from it spatially. This was true of two other
subjects. This may be because these subjects had a predis-
position towards including the cricket field with the hockey
field since these two spaces are conceptually associated. To
eliminate any consequences of this anomaly on the parame-
ter estimation in our experiment, the set of targets given to
the subjects never included the cricket field.

The experiments helped in finding out the parameters for
each of the subjects individually, on a subjective basis. For
the ten subjects, the optimal average α lied between 0.4 and
0.9, while β and γ were in the interval (0.1, 0.6) and (0.0,
0.3) respectively, with the average value for the three over
all the subjects being 0.55, 0.35 and 0.10 respectively. The
average string similarity index for each subject lied between
0.76 and 1.0 (for perfect match), with the average over all
the ten being 0.84.

For example, for Subject 1, after training over the eight
train-strings, the optimal α, β and γ were found out to
be 0.5, 0.45 and 0.05 respectively. Figure 4(a) shows the
similarity index for the first input of the training set([TC,
EB, WL, LB, CC, AD, KV] traversed in that order by the
subject). As can be seen, the central point of the region
where similarity index is greater than 0.7 is approximately
(α, β, γ) ≡ (0.7, 0.2, 0.1). Similarly, the 3-tuples for each
one of the eight strings was determined, and their average is
what has been mentioned as the optimal parameters for this
subject. These were set as the parameters for the model for
the test run (refer to Table 1). From Figure 4(b) also we no-
tice that when the model predicts primarily least-decision-
load based way finding (γ ≈ 1) while the subject has fol-
lowed primarily the fine-to-coarse method for that particular
string (the experimental string is [LH, MT, AS, H7, HO, HC,
KV] for Subject 3, which can easily be verified to adhere to
fine-to-coarse methodology), the similarity index is close to
0.2. Similar trends have been seen in other train-strings also,
and this justifies the use of the string metric as an acceptable
measure of the models efficiency. When the model is known

to predict the wrong outcome (based on the wrong parame-
ters), the similarity index of the outcome and the train-string
are very low. And correct prediction has a high similarity
index greater than 0.65. So the heuristic of taking any sim-
ilarity greater than 0.7 as a good approximation is justified.
Similarly also, a high similarity index between the output
of the model and a test string truthfully reflects the validity
and prediction capability of the model. As such, an average
similarity index of 0.84 over all the test cases from the ten
subjects is testimonial to the fact that our model is very good
at predicting individual way-finding behaviour.

(M. J., A., and H.A. 2004) conjectured that the weights
for all the three way finding techniques are equal, i.e. we
are equally likely to follow any one of the three techniques.
If that were the case, ideally, the optimal value of α, β and
γ would have been 0.33 or some number very close to the
value. But as was seen in the above discussion, the optimal
values came out to be (α, β, γ) ≡ (0.55, 0.35, 0.1), showing
a prevalent tendency among the folks to follow the fine-to-
coarse method of way finding, at least inside the regional-
ized IIT Kanpur campus.

Here, it is also worth noting that, the tendency to follow
any one method is highly subjective. As mentioned, while
most of the subjects were primarily biased towards a fine-to-
coarse strategy of way finding, the decision on following any
one method varied from person to person and also from trial
to trial. For example, Subject 5 showed a predisposition to-
wards the cluster strategy alone, visiting those regions which
had the highest number of targets in succession irrespective
of the distance, in 7 out of the ten tasks. Figure 4(c) shows
the graph for one of such trials and we can easily see that
the highest similarity index occurs for (α, β, γ) = (0, 1, 0).
The fluctuation in the tendency to follow a method is also
apparent in the responses of the subjects. For example, Sub-
ject 2, while given the destinations of [WL, AS, SC, AUDI]
and [SC, CF, EB, MT, AS], chose to traverse the first list in
[WL, AS, AUDI, SC] and the second in [AS, MT, EB, CF,
SC]. As can be easily ascertained, the first response is in ad-
herence to fine-to-coarse method, while the second follows a
cluster method. Similarly, even though Subject 1 essentially
followed a fine-to-coarse method of way finding, whenever
Airstrip was included in the target set and the start point was
Hall 1, the subject invariably went there first, showing a ten-
dency to follow least-decision-load or ISS strategy ((Bailen-
son, Shum, and Uttal 2000)).

Explanation We might begin to interpret this trend in the
following way. Given a set of target points, if the subject
follows the fine-to-coarse method, in addition to the hier-
archical representation, the only other information that he
needs to store in his working memory is that of which tar-
get regions to visit. Once he visits the regions by taking the
shortest path, he can later worry about which exact target
places to visit in that region, the detailed map of which he
can access once he gets there. On the other hand, if he is
inclined to use the cluster method, in addition to storing the
target region information, he would also have to store how
many target places are there in each region to optimally visit
and execute the way finding task This, added with the ten-
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(a) Similarity matching for train data
(TC, EB, WL, LB, CC, AD, KV) for
Subject 1

(b) Similarity matrix base case justi-
fication

(c) Primarily cluster based wayfind-
ing tendency of Subject 5

Figure 4: Graph for Similarity index vs. α and β for a few cases. The parameters for fine-to-coarse and cluster strategies have
been varied, with that for the least decision load being 1−α−β. The similarity indices between model output and user/subject
string has been plotted for all possible variation of these three parameters.

Subject-string Model output Similarity Index
[KV, HC, MT, WL, LHC, AUDI] [HC, KV, MT, LHC, WL, AUDI] 0.89

[LHC, WL, FB, CC, H7, HO, MT] [MT, LHC, WL, FB, CC, H7, HO] 0.90

Table 1: Comparison of subject response and model output for Subject 1

dency to minimize path length, might what prompt a sub-
ject to be more inclined towards the fine-to-coarse method.
According to the same logic, the least-decision-load should
have been followed the most, as it demands the least bur-
den on the working memory. However, the subjects, even
though they are cognitive misers and would prefer to take
minimal decisions, also have the goal of optimally complet-
ing the task in the least possible time, and given the fact that
a path of least decision does not usually (or logically - log-
ically since fine-to-coarse and cluster methods can guaran-
tee the best possible optimal path, while least-decision-load
method just defers the decision to a later time, thereby lead-
ing to the possibility of going through a suboptimal path as
far as time and effort are concerned) achieve that goal, this
might be the reason for its being followed the least.

On another note, the least-decision-load strategy usually
comes into play when we have alternative paths for the same
target location and one path is much more complex than the
other. However, as is evident from the campus map, the path
between the places selected are hardly complex and most
of the time the alternative path is as complex as the initial
path. This reduces the tendency to fall back on the least-
decision-load strategy. In fact, this can be an indication that
this heuristic is less likely to be followed in highly structured
and uncomplicated environments (e.g. rural areas) and might
only come into play in large urban areas where two places
can be connected in myriads of different and complicated
ways, thereby necessitating a minimization of the number
of decisions to be taken.

Conclusion and Future Work

In this work we proposed a stochastic memoryless pro-
cess approximation to human navigational behavior in fa-
miliar environments. The claims the model was based upon

were validated through literature survey and experiments on
human subjects. We looked into the three heuristics from
(M. J., A., and H.A. 2004), and in the process, found evi-
dence that contradicts the authors’ claim that all three are
followed equiprobably. We found that subjects preferred the
fine-to-coarse method over the other two. Even though the
exact method followed varied from subject to subject and
task to task, nonetheless, an overall tendency to favour the
fine-to-coarse over the other two was clearly evident. We
also tried to provide an explanation based on working mem-
ory hypothesis and the properties of the regionalized envi-
ronment like the college campus to explain this trend, though
this needs to be validated.

A number of factors skew the responses of humans
in way-finding tasks. These include vagueness of region
boundaries, distance and direction distortion across regions,
subjective bias in way-finding heuristics, random change in
the particular heuristic being followed within a task from
one location to another, etc – which we have attempted to in-
clude in the present model, albeit in a primitive way. Thus,
this model, though it captures some of the salient aspects,
much work remains in terms of understanding cognitive pro-
cess of wayfinding. For want of any better available heuris-
tics that are well received and validated, we have employed
only the three proposed by (M. J., A., and H.A. 2004). How-
ever, assuming that the hierarchical nature of spatial memory
for way finding tasks would not be contested, when a new
and valid heuristic needs to be implemented, it can easily be
incorporated in the present model through minor tweaks in
the edge-weights.

At this point, we have only considered familiar environ-
ments. However, it is possible to encode initial regions in
terms of a clustering algorithm, and hold great potential for
guiding the design of information for new spaces, or other
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tasks of relevance to spatial navigation. Furthermore, while
we have assumed the process to be memoryless, it might so
happen that based on how much time one spends at a tar-
get, the next heuristic selection might be dependent on the
present one, leading to a first-order Markov process. This an-
gle has not been investigated in the present work, and might
lead to further advancements in understanding human be-
havior.
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