
Integrating the Human Recommendations in the Decision Process
of Autonomous Agents: A Goal Biased Markov Decision Process

Nicolas Côté Maroua Bouzid Abdel-Illah Mouaddib
GREYC - CNRS (UMR0672), Université de Caen, Basse-Normandie, ENSICAEN

Boulevard du Maréchal Juin 14032 Caen CEDEX, France

Abstract

In this paper, we address the problem of computing the
policy of an autonomous agent, taking human recom-
mendations into account which could be appropriate for
mixed initiative, or adjustable autonomy. For this pur-
pose, we present Goal Biased Markov Decision Process
(GBMDP) which assume two kinds of recommenda-
tion. The human recommends to the agent to avoid some
situations (represented by undesirable states), or he rec-
ommends favorable situations represented by desirable
states. The agent takes those recommendations into ac-
count by updating its policy (only updating the states
concerned by the recommendations, not the whole pol-
icy). We show that GBMDP is efficient and it improves
the human’s intervention by reducing its time of atten-
tion paid to the agent. Moreover, GBMDP optimizes
robot’s computation time by updating only the nec-
essary states. We also show how GBMDP can con-
sider more than one recommendation. Finally, our ex-
periments show how we update policies which are in-
tractable by standard approaches.

Introduction
Robots become more and more important in the daily low
activity. A robot can perform repetitive or unpleasant tasks
instead of the human, as for example a vacuum cleaner robot
(VC problem). Most of the time, the robot is autonomous.
However, the capabilities of the robot sensors could be not
precise enough to perceive all the obstacles. In that case, the
human can give recommendations about forbidden or dan-
gerous areas. The key issue in this paper is to formalize hu-
man recommendations and how the agent interprets them.

Different approaches dedicated to the full agent’s auton-
omy have been proposed in the literature (S. Thrun 2005).
However, most of them are highly complex. To avoid this
limitation and to increase the reliability, the human-robot in-
teraction (HRI) community integrates human interventions
into the agent’s decision process such as adjustable auton-
omy (Scerri et al. 2002; Cheng and Zelinsky 2001). We fo-
cus, in this paper, on how to introduce the human recommen-
dations in an autonomous agent policy. Such recommenda-
tions are required when the full autonomy is not desired or
not feasible, but an adjustable autonomy is required.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Adjustable autonomy is a concept in which the robot can
share the control with an external entity and a human can
interact with an agent to achieve a mission. The agent has
information about the world dynamics, but it can make some
errors when executing an action. To avoid this, or at least to
make the agent recover faster, the human gives some infor-
mation to the agent about the world model. In this paper, the
agent describes the stochastic world using a Markov Deci-
sion Process, and we discuss how to extend this model to
consider human recommendations.

The idea of human-agent approach based on Goal Biased
Autonomy has been introduced in (Brooks 1986). To our
knowledge, no work has been developed about this idea ex-
cept in (Crandall and Goodrich 2002). The human gives in-
formations to the agent in order to improve its world model
and then to reach its goal. In the VC example, the robot com-
putes a path to reach a place for cleaning while ignoring that
there are roadworks. The human provides his information to
reinforce robustness and adaptability of the robots.

The degree of autonomy is an important parameter for
the quality of the collaboration between the robot and its
human partner. Moreover, in adjustable autonomy, another
important parameter is the number of agents that a human
can manage (it depends on the time required by each agent).
The goal biased principle can be useful when the human has
more than one agent to supervise since giving recommenda-
tion is a lower workload than controlling the robot.

The paper is outlined as follows: first we present some re-
lated works. Second, we develop our approach: goal biased
and Markov Decision Processes. Then, we describe our two
main contributions : giving recommendations to the agent
and optimizing the policy update (according to those recom-
mendations). We explain the two types of recommendations
given by the human and how to use them. Then, we present
experiments showing the benefits of our approach. We show
that we deal with large problems in reasonable time, while
existing approaches suffer from a combinatorial explosion.

Related Works

Developing autonomy for multiple robots in the real world
has attracted the attention of the Artificial Intelligence and
robotics communities. Some issues that need Human-robot
collaboration have been studied (Dorais et al. 1999) where
one describes how we use the adjustable autonomy in real-

2

Robot-Human Teamwork in Dynamic Adverse Environment: Papers from the 2011 AAAI Fall Symposium (FS-11-05)

world. These different papers do not give a general ap-
proach that can be used in multiple robot settings, but only
method applied to specific issues. (A.Mouaddib et al. 2010)
or (Scerri et al. 2001) give framework developed for real
world and take into account the uncertainty of the world
model. In these papers, the agent asks the human for tele-
operation.

The goal biased approach (Brooks 1986) describes some
behavior-based robotic. (Crandall and Goodrich 2002)
presents an implementation of this work where the human
gives waypoints to a robot, guiding it through a maze. The
robot has no ability of reasoning since it is controlled by the
human: it changes its action when the human recommends it.
There are no studies about integrating adjustable autonomy
in the robot decision problem. From those different ideas,
our aim is to show how to give some information to an agent
about the real-world and how the agent takes them into con-
sideration. A fully autonomous agent requires no time from
a human in contrast to a teleoperated agent which requires
the permanent attention of the human. The goal biased is
a middle ground between full autonomy and teleoperation.
The following table summarizes the advantage and draw-
backs of each approach.

Type of autonomy Agent Effectiveness Time required
Fully autonomous poor no time

Teleoperated very good full time
Goal Biased good some time

The neglect time has been studied for how to supervise
more than one agent. (Crandall et al. 2005) studies the ne-
glect time, but not under uncertainty. In the next section, we
present the Markov Decision Process (MDP) and the notion
of goal biased. After this section, we explain how an agent
and a human can interact without teleoperation.

MDP and Goal Biased Autonomy

An MDP (Puterman 1994) is a tuple < S,A,T,R> where (1)
S is a finite set of all possible states, (2) A is a finite set of
all possible actions, (3) T : S×A×S → [0;1] is a transition
function giving for an action a and a state s, the probability
to move to s′, and (4) R : S×A → R is a function giving the
reward associated to an action a taken in a state s. Solving
a problem represented by an MDP means computing an op-
timal policy. Usually, the Bellman equation is used to com-
pute the value V of a state, with 0< γ ≤ 1 the discount factor
: V (s) = R(s,a)+ γ maxa ∑s′ T (s,a,s′)V (s′).

Solving the Bellman equation allows us to compute an
optimal policy π which determines for each state, the best
action to execute. Similarly, Q(s,a) is the expected cumu-
lative value reward received by taking action a in state s.
When the expectation gives a weak reward, the human can
give recommendation to improve the agent’s performances.
The human gives recommendations concerning the environ-
ment. The agent takes into account these recommendations
and updates its optimal policy by updating only some states
due to the recommendations. In the first section, we present
this idea in detail.

The Human Recommendations

The principle of the Goal Biased Autonomy is that a human
gives some recommendations to the autonomous agent. We
distinguish two kind of recommendations :the desirable and
undesirable states. First, we explain how a human expresses
recommendations that are in two types. Second, we explain
how an agent uses the recommendations to update its policy.
Assuming that the human is rational.

Human Recommendations We define two kind of human
recommendations as follows:

• Recommendation expressing a weak constraint : The
human recommends that a state is desirable. The agent
could not follow this recommendation.

• Recommendation expressing a strong constraint : The
human recommends that a state is undesirable and the
agent should never reach this state.

If the human recommends that a state is desirable, it
means that the agent should reach this state before reach-
ing its goal. In the opposite, for unreachable state, an agent
will find another way to reach its goal if the human forbids
some states in its policy. This shows that if a recommenda-
tion is given on a state, it can directly modify the probability
to reach the goal. If there is no path to the desirable state,
the agent asks the human for teleoperation. A state is unde-
sirable if the human forbids the agent to reach this state. As
we are in a stochastic environment, the agent can even reach
this state. In this case, it asks the human for teleoperation.

These two recommendations are really useful for the au-
tonomous agent when meeting difficult situations. In the VC
problem, the human indicates to the agent where it should
never go (stairs, ...) or where it must necessarily go (ground
dirty). An agent can partially update its policy depending on
the human recommendations. It means that we have to find
all the states where the expected value would be affected by
those recommendations. Our aim is to define accurately the
set of states to update. When the agent has this list, it uses
the value iteration algorithm restricted to this list to update
the policy.

Updating the set of undesirable states

The objective is to compute the set of states affected by the
list of undesirable states. The human’s recommendations can
entirely change the policy of the agent. We define an ab-
sorbing state named w. When the agent attains this state,
it can’t move to another state, and its reward is null. More
formally, an absorbing state w is such that: ∀a ∈ A,∀s ∈
S \ {w},T (w,a,s) = 0, T (w,a,w) = 1 and ∀a ∈ A,R(w,a) = 0 . If
the agent reaches the state w, then it would ask the human
for teleoperation.

Let f be a forbidden state given by the human, and let T̂
be the new transition function taking into account the hu-
man recommendations. For each state s, for each action a
the probability to reach f is null. Formally: T̂ (s,a, f) = 0,
T̂ (s,a,w) = T (s,a, f) and ∀s′ �= f ,s′ �= w, T̂ (s,a,s′) = T (s,a,s′)
. To compute the set of undesirable states, we consider the
policy graph of an agent where a state is represented by a
node. Two nodes s1 and s2 are connected if the probability

3

Figure 1: Example of the algorithm 1

to transit from s1 to s2 when following the optimal policy
is not null. We introduce the algorithm 1 which allows the
agent to compute a set of updated states called U . We define
Parent(s,π(s)) = {s′ ∈ S | T (s′,π(s),s) > 0} such that a state
s ∈ U iff s ∈ Parent(f ,π(f)), or s ∈ Parent(s′,π(s′)) (where
s′ ∈U).

Algorithm 1: Undesirable State Dependences Detection
Input: f : the recommended states, G: the policy graph
Data: P: a stack of vertex
Result: U : the set of states to update
P ← f
while P not empty do

sp ← pop(P)
foreach s ∈ Parents(sp,π(sp)) do

if s /∈U then
P ← P∪{sp}
U ←U ∪{sp}

return U

We have to prove that a state s′ /∈ U has a value of the
optimal policy and doesn’t need to be updated because of
the human’s recommendations. For this purpose, let Q̂(s,a)
be the new expected cumulative value reward for an action
a and a state s after the recommendations and V̂ (s) the new
expected cumulative value reward for a state s.

Lemma 1 For any state s /∈ U and any action a ∈ A, the Q
value in the new model is equal or less than the value in the
old model: ∀a ∈ A,∀s /∈U,Q̂(s,a)≤ Q(s,a)

Proof. We assume without loss of generality ∀s,R(s,a)≥
0. By induction, at horizon i :

• i = 0 : Q̂0(s,a) = R(s,a) = Q0(s,a)

• induction hypothesis (IH) : Q̂i(s,a)≤ Qi(s,a).
Q̂i+1(s,a) = R(s,a)+ γ ∑s′ T̂ (s,a,s′)V̂ i(s′)
and (IH) ⇒ V̂ i(s)≤V i(s)
Q̂i+1(s,a)≤ R(s,a)+ γ ∑s′ T̂ (s,a,s′)V i(s′)

= R(s,a)+ γ
[
T̂ (s,a, f)V i(f)+ T̂ (s,a,w)V i(w)

+ ∑
s′ �= f ,w

T̂ (s,a,s′)V i(s′)

]

= R(s,a) +γ ∑
s′ �= f ,w

T (s,a,s′)V i(s′) (1)

≤ R(s,a) +γ ∑
s′

T (s,a,s′)V i(s′) = Qi+1(s,a) (2)

Steps (1) and (2) come from :
(1) T̂ (s,a, f) = 0; V i(w) = 0 and ∀s′ �= f ,w, T̂ (s,a,s′) =

T (s,a,s′)
(2) T (s,a, f) = 0, T (s,a,w) = 0 because s /∈U .

�
Lemma 2 For any state in U, the Q value of the optimal

policy is equal in the old and the new model:
∀s ∈U, Q̂(s,π(s)) = Q(s,π(s))

Proof. We proceed by induction on the horizon i :
• i = 0 : Q̂0(s,π(s)) = R(s,a) = Q0(s,π(s))
• We assume the Induction Hypothesis:

Q̂i(s,π(s)) = Qi(s,π(s))⇒ V̂ (s) =V (s)

Q̂i+1(s,π(s)) = R(s,π(s))

+ γ

[
∑

s′ /∈U
T̂ (s,a,s′)V̂ i(s′)+ ∑

s′∈U
T̂ (s,a,s′)V̂ i(s′)

]

= R(s,π(s))+ γ ∑
s′ /∈U

T (s,a,s′)V̂ i(s′) (1)

= R(s,π(s))+ γ ∑
s′ /∈U

T (s,a,s′)V i(s′)

= R(s,π(s))+ γ ∑
s′∈S

T (s,a,s′)V i(s′) = Qi+1(s,π(s))

Step (1) come from:
(1) ∀s /∈U , T̂ (s,a,s′) = 0; ∀s ∈U , T̂ (s,a,s′) = T (s,a,s′)

�
We show that algorithm 1 selects the good set of states.

Theorem 1 The policy of a state s not belonging to U re-
mains optimal without an update operation.

Proof. We prove ∀a ∈ A,s /∈ U, Q̂(s,π(s)) ≥ Q̂(s,a). By
definition of π , we know that ∀a ∈ A,s /∈ U, Q̂(s,π(s)) ≥
Q̂(s,a). With lemma 2, Q̂(s,π(s)) ≥ Q(s,a) and with lemma
1, Q̂(s,π(s)) ≥ Q(s,a) ≥ Q̂(s,a). Then Q̂(s,π(s)) ≥ Q̂(s,a). We
can deduce that the policy of a state not belonging in U re-
mains optimal without updating. �

If there is more than one recommendation, there is only
one set U of updated states. This set is the union of all the
computed updating sets. Our detection algorithm of updated
states is designed to improve efficiency of the value iteration
algorithm: instead of sweeping all the updated states without
order, we use the order defined by our detection algorithm.
This allows us to optimize the number of iterations for a
state, because in a first step we compute the states that are
highly connected with the other states to update. (Wingate
and Seppi 2006) studies this methods for improving effi-
ciency of the value iteration algorithm. We show the influ-
ence of this method in the experiments section.

4

Figure 2: Example of the algorithm for updating states. The
goal state is bottom left, the state marked as necessarily
available is in middle. We can see the stages of the propaga-
tion of states to update with the algorithm described above.

Updating the set of desirable states

The human recommends a desirable state as a weak con-
straint: this does not affect all the states, but only a subset of
them. In our approach a recommendation of desirable states
has been formalized as a goal-oriented decision process For
a given Desirable State (DS), we compute the set of states U
affected by the DS. First, we don’t add in U the states with
a smaller value than the one of s (the state of the agent).
Those states won’t be visited and don’t need to be updated.
Second, we don’t add states with a bigger value than DS be-
cause their policy will not change.

Let s be a desirable state defined by the human and Rc the
new reward function of the agent. We formalize a recom-
mendation of the human on a state s by changing the reward
to reach s with ∀a ∈ A,Rc(s,a) = R(goal,a) where goal is the
state with the highest reward. A limited number of states
will be affected by this reward. They will be in the set U and
respect the following conditions satisfied:
c1 : Their probabilities to reach s is not null.
c2 : Their expected values are less than the one of s.

To calculate the set U , we search all the states respecting
conditions c1 and c2 as shown in Figure 2. If the probabil-
ity of a state s to reach s′ is null, then its expected value
remains unchanged. Moreover, if a state s′ has a higher ex-
pected value than the one of s, this means that the agent is
closer to a goal in s′ than in s. Then, the agent tries to not
reach s. Then, the list U computed with algorithm 2 contains
all the states which must be updated using these conditions.

We guarantee that the agent does not go to the nearest rec-
ommended state and cycles there forever by not adding the
state f in U . If there is more than one recommendation on
desirable states, we consider them respecting the order of
the recommendation. However, the list U of each state has
to take into account the states already updated. To do that,
we compute the states that respect the previous conditions
and that have not been updated with another recommenda-
tion. After that we execute algorithm 2 and we don’t take
into account the state already updated. If the human gives
contradictory recommendations, we can compute a bad pol-
icy. For example, the human gives two recommendations to
an agent leading to two opposite paths.

Algorithm 2: Desirable States
Input: f : the recommended states, G: the policy graph
Data: P: a stack of vertex
Data: Marked: list of marked vertex
Result: U : the set of states to update
We add to P the vertex marked by the user.
P ← P∪{s}
while P not empty do

s = pop(P)
marked ← marked ∪ s
foreach v ∈neighbor(s) and v /∈ marked do

P ← P∪{v}
if EV (v)< EV (s) then

U ←U ∪{v}

Experimentation

We developed two types of experiments to present the qual-
ity of the solution and the complexity of our two algorithms.
For this purpose, we consider an agent moving in an environ-
ment and which reaches a goal state. It perceives the world
but some walls in the environment are difficult to distin-
guish. When it acts, it has a low probability that the desired
action is not executed as expected. We consider stochastic
actions, left, right, up, down and stay.

The quality of the solution

We implemented the problem with the recommendations
given by the human. First, the human recommended whether
a state is undesirable. Then, we implemented the problem
when the human recommends a state as a desirable state.

The undesirable recommendations We developed sev-
eral experiments depicted in Figure 3. Twenty-one states
have been updated because of the human’s recommenda-
tions. In this example, the policy remains unchanged in only
three states among the set of updated states. In theorem 1,
we stated that the updated policy with this method gives the
optimal policy. Our experiments confirm this statement.

The desirable recommendations Figure 6 shows how
states are updated according to the recommendations.

The gains on computation time

We define a complexity parameter which is the distance
from an agent to the goal. This distance is the Manhattan
distance of a state relative to the objective. It is the average
number of states visited before reaching the goal. There is
10% of the state space with a distance less than 5. In this
part, we show the benefits of using our method to update the
policy according to the human recommendations.

The undesirable recommendations The number of up-
dated states in U depends on two parameters: the number
of recommendations and the distance of the recommended
state to the goal. When there are multiple recommendations,
the set U of each recommendation is merged into one, so the
number of recommendations has a minor impact than the
distance of the updated states. Figure 4 shows the impact of

5

Figure 3: a) Initial policy of an agent. b) The set of updated state. c)The initial policy is updated with human recommendation.

Figure 4: The influence of the distance on the undesirable
recommendations

the distance on the number of updated states. In this prob-
lem, there is a 90 % chance to update less than 60 states. So
the average reduction of state space to update is proportional
to the distance to the goal. Figure 4 also shows the evolution
of the state number where there are several recommenda-
tions.

While updating the policy, each iteration will be at
least 40 percent faster than computing the overall policy.
In the worst case (with a distance of 1 to the goal), the
complexity of the algorithm is in O(| S |2). The complexity
of an iteration pass is O(| A | · | S |2). We develop some
experiments to compare our method to the traditional one.
For the following experiments, we compute (in the worst
case), the number of Bellman backups with 100 iterations,
5 actions and 100 states. The number of backup with the
traditional method is 5000000 with those parameters. With
our method, we obtain:

Recommendation number 1 2 3
backup number 1371500 2027800 2704100

benefits (%) 72.57 59.44 45.91

Experiments in real states space We developed exper-
iments to show how GBMDP is beneficial compared to the
classical approach. To update a policy, the classical approach
consists of a value iteration algorithm applied to all states.
We show with the previous experiments that the number of
updated states for the GBMDP model depends on the posi-
tion of the state. For this experiment, we choose a forbidden

Figure 5: The computation time relative to the states number

state in the middle of the state space (50% from the top and
45% from the left). We use the previous benchmark in which
we extend the size. The differences between our model and
the classical one are described in Figure 5.

Here we show that the GBMDP approach is much faster
than the classical one. On small problem (200 000 states),
the agents updates its policy in 16 seconds with GBMDP
while an agent using a classical approach needs more than 3
minutes and 30 seconds. Moreover, on large instances (up to
1 700 000 states), our approach manages to keep the compu-
tation time under 4 minutes, while the classical approaches
suffer from a combinational explosion (2 hours).

There are two reasons for this difference in computation
times. With the classical methods, the number of updated
states is bigger than the number obtained with the GBMDP
model. Additionally, the iteration number is bigger in the
classical method. In fact, our detection method allowing the
agent to detect the states to update, find all states in specific
order. U is sorted according to the number of states to be
reached with nonzero probability. U is sorted in a decreasing
order of this number. For example, the human recommenda-
tion for 40000 states takes 1 second to update with GBMDP
model and 9 seconds for the classical model. For GBMDP
model, there are 8460 states updated and 54 iterations, and
for the classical model, there are 40000 states updated and
465 iterations. The classical model uses 40 times more Bell-
man backups than the GBMDP model. Morever, the time
needed by GBMDP to detect which states need to be up-

6

Figure 6: a) Initial policy of an agent. b) The set of updated state. c)The initial policy updated with the human recommendation.

Figure 7: The influence of the distance on the desirable rec-
ommendation

dated is negligible (complexity O(|S|).
The desirable recommendations The number of states to
update in U depends on two parameters: recommendations
number and the Manhattan distance of a state relative to the
objective. Those two parameters have a big influence on the
complexity. We developed experiments depicted in Figure 7.

With multiple human’s recommendations, the algorithm
in Figure 2 is executed one time for each recommendation.
For one recommendation, the average number of states up-
dated is smaller than for the undesirable states. In 90 % of
our experiments, we have less than 60 states to update. The
number of recommendations given by the human increases
the size of the list of states to update. When there are several
recommendations, in some case, the solution is not good be-
cause we have to recompute the entire policy. The complex-
ity of the algorithm is in the worst case, O(| S |2)

Conclusion

In this paper, we discussed the problem of introducing hu-
man recommendations in the policy of an autonomous agent
to increase its performances and robustness. Such recom-
mendations are required in situations where the full auton-
omy is not desirable or not feasible. For this purpose, we
present GBMDP where human can give two kinds of recom-
mendations. He can recommend desirable states to the agent
(in order to improve its performance), or undesirable states

to avoid difficult situations which could lead to a major fail-
ure. We presented two algorithms inspired from value itera-
tion where we find the set of states to update and we prove
that the policy remains optimal in the other states. Experi-
mental results show the effectiveness of our approach and
the benefit of its use in terms of solution quality and compu-
tation complexity. Future work will concern a new direction
where the human recommendations can be seen as a partially
defined policy that the agent should optimally complete.

References

A.Mouaddib, S.Zilberstein, A.Beynier, and L.Jeanpierre. A
decision-theoretic approach to cooperative control and ad-
justable autonomy. ECAI, 2010.
Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 1986.
G. Cheng and A. Zelinsky. Supervised autonomy: A frame-
work for human-robot systems development. Springer, 2001.
J.W. Crandall and M.A. Goodrich. Experiments in ad-
justable autonomy. In Systems, Man, and Cybernetics, 2001
IEEE International Conference on, 2002.
J.W. Crandall, M.A. Goodrich, D.R. Olsen Jr, and C.W.
Nielsen. Validating human-robot interaction schemes in
multitasking environments. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 2005.
Gregory A. Dorais, R. Peter Bonasso, David Kortenkamp,
Barney Pell, and Debra Schreckenghost. Adjustable auton-
omy for human-centered autonomous systems. In Proc. of
IJCAI’99 workshop on adjustable autonomy, 1999.
V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja,
R. Vincent, T. Wagner, P. Xuan, and SX Zhang. A multi-
agent system for intelligent environment control. 1999.
M.L. Puterman. Markov decision processes: Discrete
stochastic dynamic programming. 1994.
D. Fox S. Thrun, W. Burgard. Probabilistic Robotics. 2005.
P. Scerri, D. Pynadath, and M. Tambe. Adjustable autonomy
in real-world multi-agent environments. 2001.
P. Scerri, D.Pynadath, and M. Tambe. Towards adjustable
autonomy for real world. JAIR, 2002.
D. Wingate and K.D. Seppi. Prioritization methods for ac-
celerating mdp solvers. Journal of Machine Learning Re-
search, 6:851, 2006.

7

