
Tool Use Learning in Robots

Solly Brown and Claude Sammut
School of Computer Science and Engineering, The University of New South Wales,

Sydney, Australia 2052

Abstract

Learning to use an object as a tool requires understanding
what goals it helps to achieve, the properties of the tool that
make it useful and how the tool must be manipulated to
achieve the goal. We present a method that allows a robot
to learn about objects in this way and thereby employ them
as tools. An initial hypothesis for an action model of tool
use is created by observing another agent accomplishing a
task using a tool. The robot then refines its hypothesis by
active learning, generating new experiments and observing
the outcomes. Hypotheses are updated using Inductive Logic
Programming. One of the novel aspects of this work is the
method used to select experiments so that the search through
the hypothesis space is minimised.

Introduction

Contrary to popular belief, tool use is not a uniquely human
trait. Tool use has been observed in a wide range of both
captive and wild animals: chimpanzees use sticks to extract
termites from termite mounds (van Lawick-Goodall 1970);
Egyptian vultures select appropriately sized stones to crack
open stolen eggs (Goodall and van Lawick 1966); burrowing
owls use mammalian dung to ‘fish’ for dung beetles (Levey,
Duncan, and Levins 2004); and some bottle-nosed dolphins
use sponges on their noses to protect themselves from stings
while foraging on the sea floor (Krützen et al. 2005). Some
creatures such as the New Caledonian crow are even adept
at tool-making and solving novel problems using tools (Hunt
1996; Kenward et al. 2005).

Animals that make use of tools do so in order to enable
or improve their ability to carry out important tasks. The
New Caledonian crow, for example, uses twig and leaf-based
hook tools to extract grubs from crevices, a feat that would
be more difficult or impossible without these tools. By ex-
ploiting objects in the environment, they are able to over-
come the limitations of their effectors and expand the range
of goals they can achieve.

Humans are, of course, more proficient at using tools for
problem solving than other animals. No other creature is
able to exploit objects in its environment more effectively,
or shows as wide-ranging an ability to use tools, as humans.
Tools are so ubiquitous in our everyday lives that there is

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scarcely an activity we perform which does not involve using
one or more objects to make the task possible, or to enable
it to be carried out in a simpler or more efficient manner.

Too use is a kind of behaviour that is exhibited by intel-
ligent organisms and therefore is worthy of study from an
AI perceptive. It is also interesting for machine learning be-
cause of the added complexity of learning when tools are
introduced. This complexity arises from the fact that when
several objects may potentially be used as tools, the robot
must learn to select the appropriate object, taking into con-
sideration the spatial constraints of the environment and the
structural constraints of the tool. Thus, the hypothesis lan-
guage of the learner must be rich enough to express spatial
and structural relations. However, a richer hypothesis lan-
guage entails greater search complexity. As we shall seem
some knowledge of the requirements of tool use can con-
strain this search space, to some extent. In this work, we are
interested in giving a robot the capability of learning to use
tools but we do not attempt to explicitly model human or
animal learning and their cognitive constraints.

We define a tool as an object that is deliberately employed
by an agent to help it achieve a goal that would otherwise be
more difficult or impossible to accomplish. We would like
a robot to be able to learn to use a new tool after observing
it being used correctly by another agent. This observation
results in an initial hypothesis about the properties and use
of the tool. The hypothesis is refined by active experimenta-
tion, selecting different types of objects as the tool and ma-
nipulating them in different ways. By analysing the teacher’s
demonstration and then experimenting, the aim is to learn a
new tool action that will allow the agent to perform varia-
tions of the task.

More precisely, a tool action is an action that involves the
manipulation of an object (the tool), with the effect of chang-
ing the properties of one or more other objects (the targets)
or the agent itself, in a way that helps enable the precondi-
tions of one or more other actions in the agent’s plan library.
The changed properties of the target objects that result from
the tool action are called the sub-goals of the tool action.

There are four things that the robot must learn so that it
consistently solves a tool-use task:

1. what useful effect the tool action achieves,

2. how to identify a good tool (i.e. what object properties are

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

58



Teacher 
demonstration

New tool action

Refined tool
action model

fined t

Explanation

Trial and error 
learning

Action planner

Motion planner

ActuatorsSensors

World state

lanner

Motioon pla

to

on p

en

orld sta

ction Ac

ate

pl

d sta

World

Actuatctuatnsorsnsor

Figure 1: Learning architecture.

necessary),

3. the correct position in which the tool should be placed,

4. how the tool should be manipulated after being placed.

We focus on learning the first three of these. In a robot,
learning is necessarily one component of a larger cognitive
system. The robot must perceive its environment through
sensors and construct a representation of the world. It must
have, or learn, a model of its own actions so that it can plan
a sequence of actions to achieve a goal. Instructions must
be sent to actuators to execute the actions and the execu-
tion must be monitored to ensure that the action is com-
pleted, as planned. The architecture of the system is shown
in Figure 1. It involves a passive learning phase, in which the
robot observes another agent, and an active learning phase,
in which the robot designs, performs and critiques its own
experiments.

Our action models are expressed in first-order logic, there-
fore the learning algorithm uses Inductive Logic Program-
ming (Muggleton 1991) to acquire these models. They are
tested by experimentation, which requires transforming a
plan into an sequence of operational instructions to the
robot. One of the novel features of our work is the com-
bination constraint solving and planning to turn a qualitative
action sequence into a sequence of instructions with quan-
titative parameters. In the following section, we describe
previous work on tool use learning. We then give an ex-
ample of tool use that is used to illustrate the methods de-
scribed in the following sections. We describe our exper-
imental method, followed by our conclusions and sugges-
tions for future work.

Related Work

Tool use has received relatively little attention in Artificial
Intelligence and Robotics research. Bicici et al (2003) sur-
vey early AI research related to the reasoning and function-
ality of objects and tools. Perhaps the first attempt to build

a robot agent specifically tailored towards learning and tool-
use was report by Wood et al., (2005). In this work, an arti-
ficial neural network was used to learn appropriate postures
for using reaching and grasping tools, on board the Sony
Aibo robot platform. Stoytchev (2005) has implemented an
approach to learning tool-using behaviours with a robot arm.
The robot investigates the effects of performing its innate
primitive behaviours (including pushing, pulling, or side-
ways arm movements) whilst grasping different reaching
tools provided by the user. The results of this exploratory
learning are used to solve the task of using the tool to move
an object into a desired location. Later work by Sinapov and
Stotchev (2008) follows up on this approach to learning tool
affordances. Our work is complementary to this in that we
learn tool properties in a form that can be used in by a high-
level planner.

Although there is little other research that directly ad-
dresses tool use learning, work in the area of learning
models of agent actions is relevant to our approach. Gil
(1994) used learning by experimentation to acquire plan-
ning knowledge. Martin and Geffner (2000) and Schmid
and Kitzelmann (2011) also describe a system for learning
plans. The PRODIGY architecture (Veloso et al. 1995) in-
tegrates planning and learning. Benson (1996) used Induc-
tive Logic Programming to learn action models of primi-
tive actions and then combined them into useful behaviours.
In our tool learning, we generate explanations of prob-
lem solving traces. Langley and Choi (2006) describe an
explanation-based method for control programs. Shavlik
(1990) was also able to learn recursive and iterative con-
cepts with explanation-based learning. Other work has since
focused on learning action models for planning in more
complex environments, allowing for stochastic action (Pa-
sula, Zettlemoyer, and Kaelbling 2007) or partial observ-
ability (Amir 2005). Levine and DeJong (2006) also used
an explanation-based approach to acquiring planning opera-
tors. In the present work, we do not address the problem of
uncertainty in sensing and action (Toussaint et al. 2010) but
we discuss this further in the conclusions and future work.
As in our work, Toussaint also combines relational planning
and trajectory planning.

An Example of Learning to Use a Tool
A robot is set the goal of obtaining an object, in this case a
small box, that is placed in a tube lying on the ground. The
tube is open at one end and closed at the other, as shown in
Figure 2. The robot is unable to reach directly into the tube
to pick up the box because the tube is too narrow. The robot
must use a hooked stick tool to pull the box out of the tube
before it can be picked up.

As shown in Figure 2, the robot is provided with a selec-
tion of different objects that can potentially be used as a tool
for accomplishing the task. Some of these objects are clearly
inappropriate since they cannot be inserted into the tube,
lack a suitable “hook” affordance or are not long enough.
However, the robot does not know ahead of time which ob-
jects make good tools. The only information the robot has is
provided by its sensors, i.e. the object’s dimensions and the
relative orientation of its surfaces.

59



Figure 2: Using a tool to reach an object in a closed “tube”.

The robot is also provided with a set of behaviours that
it can use to affect changes in the world. In this example,
the robot is given goto, pickup-object and drop-object be-
haviours. We assume that the agent does not already pos-
sess any sort of pull-with-tool behaviour. Learning this be-
haviour and using it to obtain the box is the objective of the
problem.

The behaviours are represented by action models that de-
scribe how executing each behaviour affects the world. The
action models are written as STRIPS-like operators (Fikes
and Nilsson 1971). These are used by the robot’s planner
to create sequences of behaviours that achieve the robot’s
goals. A robot already competent in solving the tube prob-
lem might construct the following plan:

goto(stick-tool), pickup(stick-tool), goto(tube),
pull-with-tool(stick-tool, box),
drop(stick-tool), pickup(box).

The difficulty for our robot is that not only does it lack the
appropriate tool-using behaviour, pull-with-tool, but it also
lacks the action model of this behaviour. This means that the
agent is initially unable to form a plan of how to achieve
the goal of obtaining the box. It must learn this missing be-
haviour. We simplify learning by providing the agent with an
observation trace of a “teacher” performing the same task.
In the case of the tube, our teacher demonstrates by simply
picking up an appropriate stick-hook and using it to pull the
box from the tube. The robot uses this example to create an
initial hypothesis for the tool action, which is the starting
point for the robot’s experimentation.

In the tube problem the necessary properties of the tool
include having a right-angled hook at the end of the handle
and that the hook is on the correct side of the handle (if the
box is sitting in the left side of the tube, the agent needs a
left-sided hook stick). Learning the type of tool and its pose
requires experimenting with a variety of tools and poses. We
will describe this process after giving details about the action

representation.

Action Representation

Like STRIPS, the robot’s action model includes the precon-
ditions and effects of the action. A pickup action is specified
as:

pickup(Obj)
PRE forall(Tube:tube, ¬in(Obj,Tube)),

empty-gripper,
forall(x:obj, ¬obstructing(x,Obj))

ADD gripping(Obj)
DEL empty-gripper,
PRIMTV fwd, back, rotleft, rotright
MOVING robot

The precondition states that the object must not be in any
tube, the robot’s gripper must by empty and there must not
be any other object obstructing the target object. The addi-
tional lists of primitive motor actions and objects moved by
this action are needed to turn the action into motor com-
mands to the robot.

Action models are abstract and do not specify behaviours
in sufficient detail that they can be executed by the robot.
In the example above, the action model says nothing about
the precise position that the robot must be in after the ac-
tion is executed, nor does it specify the path that the robot
must take to get itself into position. However, the goal pro-
vides constraints for a motion planner. Actions can be made
operational by using a constraint solver to create a range of
acceptable solutions (e.g. any position such that the gripper
surrounds the target object) then a motion planner can output
a set of primitive motor actions to the robot (in this example,
manoeuvring the robot to a position within the bounds set by
the constraint solver). This process is illustrated in Figure 3.

We use the FF planner (Hoffmann and Nebel 2001) to
generate the plans and the constraint logic programming
language, ECLiPSe (Apt and Wallace 2007) to generate
the constraints. A Rapid Random Tree (RRT) path planner
(Kuffner and LaValle 2000) produces the primitive actions
for the robot. RRT requires a set of motion primitives, a
list of the objects that are manipulated by the planner, and
a specification of their relative spatial pose during the ma-
nipulation. This is the reason why we extend the STRIPS
representation to include a list of the objects involved in the
action and a set of robot motion primitives. The motion plan-
ner outputs a path for the objects that leads to the desired
goal state. A simple controller outputs the motor commands
required to follow the path. Brown (Brown 2009) gives a
detailed discussion of the implementation.

The advantage of using a motion planner to generate be-
haviours is that it allows the robot to quickly find solutions
to novel subgoals. The disadvantage is a loss of full gener-
ality and the ability to solve difficult manipulation problems
involving fully closed-loop control. In the present work, we
are interested in learning how and why tools are useful at an
abstract level. Other research has investigated the combina-
tion of planning and reinforcement learning (Ryan 2002) to
also acquire low-level control behaviours. Our architecture

60



Figure 3: Behaviour generation.

can be extended to incorporate these kinds of closed-loop
control learning.

Learning by Explanation

The aim of learning by explanation is to identify novel tool
actions in the teacher’s demonstration and to construct an
action model that describes it. This includes identifying the
sub-goal that the tool achieves and some of the necessary
preconditions for using the tool. It involves the following
steps: (1) watch a teacher using a tool to complete a task;
(2) identify actions in the teacher’s demonstration by match-
ing them against actions stored in the robots plan library; (3)
any sections of the demonstration that cannot be matched
to known actions are labelled as components of a novel ac-
tion; (4) a STRIPS model for the novel action is constructed
by identifying the subset of literals in the action’s start and
end states that are relevant to explaining how the teacher
achieved the goal.

Identifying novel tool actions in the teacher’s
demonstration

To recognise novel behaviours, the robot begins by trying
to explain what the teacher is doing during its demonstra-
tion. The robot constructs an explanation by trying to match
its own set of action models to the execution trace of the
teacher’s demonstration. Gaps in the explanation, where the
agent is unable to match an existing behaviour to what the
teacher is doing, are designated novel behaviours, which the
robot can try to learn.

The first difficulty faced by the learner is in labelling the
parts of the demonstration that it recognises. The demon-

stration trace is provided to the agent as a discrete time se-
ries w1, w2, . . . , wn of snapshots of the low-level world state
taken every tenth of a second. This world state is comprised
of the positions and orientations of each object in the world
at a particular point in time. Note that we do not provide the
learner with a demonstration trace that is nicely segmented
at an abstract level. Rather, the trace is a sampling of a con-
tinuous time series of object poses and the learner must ar-
rive at a segmentation of the trace by itself.

The trace is segmented into discrete actions by applying
an heuristic, that action boundaries occur at points at which
objects start or stop moving. Thus, when the agent grips a
stick-tool and starts moving it towards the tube, an action
boundary is recognised. When the tool makes contact with
the box and causes it to start moving also, another segment
boundary is recognised. In this way, the robot constructs a
very general movement-based description of the actions of
the teacher. In the case of the tube problem, the segments
correspond to the robot moving to pick up the stick, placing
it against the box, pulling the box from the tube, placing the
stick down and finally, moving to pick up and carry away the
box.

Once the learner has segmented the teacher’s trace, it at-
tempts to match segments to its existing set of action models.
Each of the robot’s action models incorporates a STRIPS
model along with a list of the objects that are moved dur-
ing the action. A model is matched to a segment by check-
ing that three conditions are met. The moving objects in the
demonstration match the model. The preconditions of the
model are true at the start of the action segment. The effects
of the model have been achieved by the end of the action
segment. In the unusual case where more than one abstract
action matches a segment, the segment is labelled with the
action that has the most specific set of preconditions. Seg-
ments that cannot be matched to any existing action model
are labelled as components of a novel action. In the tube ex-
ample, this produces the following labelling of the teacher’s
demonstration:

goto(stick), pickup(stick),
novel-action(stick,box),
drop(stick), goto(box), pickup(box).

where novel-action(stick,box) is actually a compound ac-
tion involving two unrecognised actions. In the first, the stick
is moved by the teacher (positioning the tool) and in the sec-
ond, the stick and box are moved together (the actual tool
action that pulls the box from the tube). The learner must
now try to explain how this compound tool action was used
to achieve the goal of acquiring the box. It does so by con-
structing two action models, for positioning and tool use,
that are consistent with the other actions in its explanation
of the demonstration.

Constructing novel action models from
explanations

We use an heuristic that actions occurring before a novel
action should enable the novel action’s preconditions. Sim-
ilarly, the effects of the novel action should help enable the

61



preconditions of actions occurring later in the demonstra-
tion. This heuristic is based upon the assumption that the
teacher is acting rationally and optimally, so that each ac-
tion in the sequence is executed in order to achieve a nec-
essary sub-goal. The program constructs a STRIPS model
by examining the start and end states of the novel action and
identifies relevant literals in the actions executed prior to and
after the novel action. The effects of the novel action are de-
fined as any state changes that occur during the action that
support an action precondition later in the demonstration.

In the case of the tube problem, ¬in(box,tube) becomes
true during the novel action segment. This effect enables the
preconditions of the pickup(box) action that occurs later in
the demonstration. In general, there may be many irrelevant
effects. However, this explanation-based reasoning allows us
to eliminate all but the effects that were important for achiev-
ing the goal.

The preconditions of the novel tool action are constructed
by a similar argument. The learner examines the world state
at the start of the novel action and identifies the subset of
state literals that were produced by the effects of earlier ac-
tions. The effect gripping(stick) occurs before the novel ac-
tion and is still true at the start of the action. Since it is a
known effect of the pickup(stick) action, it is considered a
relevant literal to include in the novel action preconditions.

A common pattern for many tool-use problems is that
there is a positioning step, followed by the application of the
tool. We use this as a template for constructing two action
models for the tube problem. The preconditions and effects
identified in the demonstration are converted to literals with
parameters by simply substituting each instance of an object
with a unique variable.

position-tool(Tool,Box)
PRE in-gripper(Tool), gripping,
ADD tool-pose(Tool,Box), obstructing(Tool,Box)
DEL –

The first action represents the robot getting itself into the
correct position so that the tool can be applied. Note that we
have not yet determined what that position is. The predicate
tool-pose(Tool,Box), which expresses this position, will be
learned in the experimentation stage. A side-effect of this
action is that the tool is obstructing the object. Later, when
the robot tries to pick up the object, this side-effect will have
to be undone. The tool action is:

pull-from-tube(Tool,Box,Tube)
PRE tool-pose(Tool,Box),

gripping(Tool), in-tube(Box,Tube)
ADD: –
DEL: in-tube(Box,Tube)

The tool-pose(Tool,Box) effect of the position-tool action
becomes a precondition of the tool action. There is only one
subgoal of the tool action in this case, corresponding to an
object being removed from the tube. This model becomes
the starting point for learning the tool-pose(Tool,Box) pred-
icate, which we describe next.

Figure 4: Examples of tools for pull-from-tube task.

Learning by Experimentation

The robot must learn the tool pose state, i.e. the state in
which the correct object has been selected as the tool and
the pose in which it can be applied successfully. It does so by
testing a variety of tools and tool poses in a series of learning
tasks. Thus, trial-and-error learning has two components:
generating new learning tasks and updating the robot’s hy-
pothesis for the description of the tool-pose concept depend-
ing on the outcome of the experiment. The process for learn-
ing the concept describing the tool pose state is as follows:

1. Select a tool that satisfies the current hypothesis for the
type and pose of the tool and place it in a pose defined
by the hypothesis. Generate a motion plan that solves the
task from this state and execute it, observing whether the
action sub-goal is achieved.

2. If the action achieves the desired sub-goal, label the initial
state as a positive example. If the action fails to achieve
the desired sub-goal, label it as a negative example.

3. If the example is positive, generalise the hypothesis. If the
example is negative specialise the hypothesis.

4. If the current task has been successfully solved, a new
learning task is generated and presented to the robot. If
the robot has failed, the current task is reset.

5. The robot continues its experimentation until the agent is
able to solve a pre-defined number of consecutive tasks
without failure.

The robot’s world contains a selection of tool objects avail-
able for solving the problem. The dimensions and shapes of
the tools are chosen randomly according to a type definition
specified by the user. Figure 4 shows some tools that are
available for the tube task. Only the two hook tools, on the
left of the figure, are suitable for solving the task.

Incremental learning begins with an initial hypothesis for
the concept being learned and successively generalises or
specialises that hypothesis depending on whether a new
training example is positive or negative. When the algorithm
encounters a positive example that is not covered by its cur-
rent hypothesis, the hypothesis must be generalised to cover
the new example. If the example is negative and is covered
by the current hypothesis, it must be specialised to exclude
the negative example.

There are different ways in which we can represent the
current hypothesis. One way is to store a clause in first-order
logic and generalise or specialise it, as required. An alterna-
tive method, first introduced by Mitchell (Mitchell 1982),
is to maintain a version space, which is the set of all possi-
ble hypotheses that are consistent with the training examples

62



Figure 5: Positive and negative examples of tool use.

seen so far. We do not have to explicitly store all hypotheses.
Instead, we only need to keep the most general boundary and
the most specific boundary of this set. A generality ordering
on expressions in the representation language then allows us
to construct all the hypotheses, if needed. The most-specific
and most-general hypotheses are represented as clauses of a
logic program:

hS ← saturation(e0).
hG ← true.

e0 is the initial example derived from the teacher’s demon-
stration. The saturation of e0 is the set of all literals in e0
plus all literals that can be derived from e0 and the robot’s
background knowledge. The most-general clause, initially,
covers ever possible instance of the hypothesis space. Now,
when a new positive example is found not to be covered by
hS , hS is generalised by finding the least general generali-
sation of hS and the new example (Plotkin 1970). When a
new negative example is encountered that is covered by hG,
hG is specialised by borrowing literals from hS in such way
as to create the minimal specialisation that will exclude the
example.

The training examples are generated by the robot itself
when it conducts an experiment to test a new hypothesis. If
it creates a training example that is not too different from
previous positive examples, it is more likely to also be posi-
tive. So a conservative method of learning is to test examples
that are close to the most-specific boundary. This process
is divided into two. The tool pose hypothesis incorporates
both structural literals (describing the physical composition,
structure, and shape of the tool) and spatial literals (describ-
ing how the tool should be placed relative to other objects).
We first select a tool that best matches hS and then try to
select a tool pose that matches as closely as possible that
specified in hS . To select a tool, each available tool object is
scored for suitability according to the number of literals in
hS it satisfies. It must also satisfy all of the structural con-
straints in hG. In a similar way, pose attempts to maximise
the number of satisfied literals in hS . In this case, however
we are interested in satisfying the greatest number of spatial
literals. This will allow the agent to place its selected tool in
a pose that is as similar as possible to the previous positive
examples it has observed.

Once the tool and pose have been selected, a plan is gen-
erated and executed by the robot. Figure 5 shows three ex-

� ��� ��� ��� ��� ���� ���� ���� ����

�	
���	

	���
���
��

�	
���	

	��

	���
��

	�� � �� 	��

�	
���	

	���
��

Figure 6: Robot and object motion during the teacher’s
demonstration. Units are 10ths of seconds.

amples generated for the tube problem. If the plan succeeds,
we have a new positive example, which is used to generalise
hS . If it fails, hG must be specialised to exclude the new
negative example.

The most-specific clause is built using only positive ex-
amples. We use a constrained form of least general gener-
alisation (Plotkin 1970) to find the minimal generalisation
that covers the positive examples. The most-general clause
is built by generalising the most-specific clause. Negative-
based reduction is used to simplify the most-specific clause
without covering additional negative examples. This is a
process of successively eliminating literals that do not
change the coverage of the clause. We use negative-based
reduction to recreate hG when a new negative example ar-
rives.

The algorithm borrows heavily from GOLEM (Muggle-
ton and Feng 1992). The main difference is that GOLEM’s
bias is to learn the shortest, most-general hypothesis possi-
ble. In contrast, we maintain both a most-specific and most-
general boundary on the hypothesis space. The algorithm is
rerun after each example is received and the current hypoth-
esis is rebuilt.

Evaluation

This system has been implemented and tested on several
learning problems using the Gazebo robot simulator (Koenig
and Howard 2004). The code is mostly written in Prolog
with low-level control written in C++. The robot is a Pio-
neer 2, equipped with a simple gripper. Although this robot
is quite limited in its ability to manipulate objects, it clearly
demonstrates the idea that tools can enhance the range of
problems that a robot is able to solve. Indeed, robots with
limited effectors often have a lot to gain by using tools
to overcome these limitations. In this section, we trace the
robot’s learning on the pull-from-tube-task.

After the robot observes the trainer’s demonstration, the
first step is to segment the trace of the trainer’s behaviour
into discrete actions. Figure 6 shows the results of clustering
object motions, as described earlier.

We describe the primitive state of the world in terms of
positions and orientations of all the objects. From this rep-
resentation, the robot builds an abstract state description
that represent the properties and relationships that exist be-
tween objects and agents in the world. The abstract state
description is expressed in first-order logic and is gener-
ated from a set of definitions provided to the agent as back-

63



Table 1: Explanations of teacher’s demonstration.

Seg Moving objects Explanation
1 robot put in gripper(hookstick)
2 gripper grip(hookstick)
3 robot, hookstick recognise carry obj(hookstick)
4 robot, hookstick, ??

box
5 robot, hookstick move obstacle(hookstick,box)
6 gripper ungrip(hookstick)
7 robot remove from gripper(hookstick),

put in gripper(box)
8 gripper grip(box)
9 robot, box recognise carry obj(box)

ground knowledge. Note that these definitions could also be
acquired through learning but we do not attempt that here.

The robot can construct an explanation of the teacher’s
activities (Table 1) by matching abstract action models to
the motion segments it has identified. An abstract model
matches a segment if the action preconditions are true at the
beginning of the segment and the effects have been achieved
by the end of the segment. The moving objects in the seg-
ment must also match the moving objects named in the cor-
responding action model.

At this point, the explanations are turned into the incom-
plete action models position-tool and pull-from-tool. The
robot now enters its experimentation phase in which it con-
structs hG and hS for the definition of the tool-pose predi-
cate. Each new example causes the learner to update the ver-
sion space. The sequence of experiments is show in figure 7.
After twelve experiments, the hG is:

tool-poseG(Tool,Box,State) ←
in-tube-side(Box,Tube,Side,State),
attached-side(Tool,Hook,Side),
touching(Hook,Box,back,State),
attached-angle(Tool,Hook,rightangle),
attached-end(Tool,Hook,back).

This states that the tool must have a hook attached at a right
angle and be on the same side as the target object in the tube.
The hook must be touching the back of the object.

We evaluate the robot’s performance by the number of
experiments required before it can consistently solve a new
task. Twelve experiments were required to learn pull-from-
tube. A similar task, learning to extract an object from an
open tube by pushing it through the tube, requires between
10 and 15 experiments, depending on random variations in
the tools made available to the robot for its experiments. A
third experiment was the classic Shakey problem of pushing
a ramp up to a platform so that the robot can push a block off
the platform. Between 9 and 13 experiments were required
to learn that the ramp can be used as a tool to mount the
platform.

Conclusions and Future Work

This research contains several novel features. We integrate
tool-use learning and problem solving in a robot that learns

Figure 7: Examples generated during learning by experi-
mentation.

new tool actions to help it solve a planning problem. We
have devised a novel action representation that integrates
symbolic planning, constraint solving and motion planning.
The system incorporates a novel method for incremental
learning that uses relative least general generalisation but
adopts a version-space representation. This is the basis for
a new method for generating examples in an incremental
setting where cautious generalisation is desirable. Our ap-
proach is based upon sampling near the most-specific hy-
pothesis boundary in the version space. In addition, our
robot is able to infer the approximate form of a new action
model by observing a teacher and examining the context of
the plan in which it is executed. The robot also uses trial-
and-error to refine this approximate model.

There are several important issues that we do not address
here. Some tool-use behaviours require complex non-linear
control of the tool or target object. Learning these types of
behaviours is a field of research in itself. We have avoided
them by choosing tasks that require simple manipulation that
can be achieved with a generic controller. The learning tasks
we attempt are restricted to those that can be easily imple-
mented in a rigid-body simulation. Problems involving liq-
uids or deformable bodies are not considered. Nevertheless,
the general learning system is intended to be applicable to
a wide range of scenarios. We do not try to handle learning
by analogy. For example, using a ladder to reach a light bulb
and using a stick to reach an object on a shelf are conceptu-
ally similar problems.

Another issue that we have avoided is uncertainty in sen-
sors and actuators. Real sensors always have measurement
errors and real actuators are never perfectly accurate. We
can handle actuation errors to some extent by using reactive

64



controllers to implement the planners actions. However, a
more robust solution may require systems capable of learn-
ing probabilistic representations, as in statistical relational
learning or incorporating aspects of relational reinforcement
learning.

References

Amir, E. 2005. Learning partially observable deterministic
action models. In International Joint Conference on Artifi-
cial Intelligence (IJCAI 2005), 1433–1439.
Apt, K. R., and Wallace, M. G. 2007. Constraint Logic
Programming using ECLiPSe. Cambridge University Press.
Benson, S. 1996. Learning action models for reactive au-
tonomous agents. Ph.D. Dissertation, Department of Com-
puter Science, Stanford University.
Bicici, E., and St Amant, R. 2003. Reasoning about the
functionality of tools and physical artifacts. Technical Re-
port 22, NC State University.
Brown, S. 2009. A relational approach to tool-use learning
in robots. Ph.D. Dissertation, School of Computer Science
and Engineering, The University of New South Wales.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3-4):189–208.
Gil, Y. 1994. Learning by experimentation: Incremental re-
finement of incomplete planning domains. In International
Conference on Machine Learning.
Goodall, J., and van Lawick, H. 1966. Use of tools by egyp-
tian vultures. Nature 212:1468–1469.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:2001.
Hunt, G. 1996. Manufacture and use of hook-tools by New
Caledonian crows. Nature 379:249–251.
Kenward, B.; Weir, A.; Rutz, C.; and Kacelnik, A. 2005.
Tool manufacture by naive juvenile crows. Nature 433(121).
Koenig, N., and Howard, A. 2004. Design and use
paradigms for Gazebo, an open-source multi-robot simula-
tor. In International Conference on Intelligent Robots and
Systems, volume 3, 2149–2154.
Krützen, M.; Mann, J.; Heithaus, M. R.; Connor, R. C.; Be-
jder, L.; and Sherwin, W. B. 2005. Cultural transmission of
tool use in bottlenose dolphins. Proceedings of the National
Academy of Sciences 102(25):8939–8943.
Kuffner, J., and LaValle, S. 2000. RRT-Connect: An ef-
ficient approach to single-query path planning. In Interna-
tional Conference on Robotics and Automation.
Langley, P., and Choi, D. 2006. Learning recursive control
programs from problem solving. Journal of Machine Learn-
ing Research 7:493–518.
Levey, D.; Duncan, R.; and Levins, C. 2004. Use of dung as
a tool by burrowing owls. Nature 431:39.
Levine, G., and DeJong, G. 2006. Explanation-based acqui-
sition of planning operators. In ICAPS, 152–161.

Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In KR’00,
667–677.
Mitchell, T. 1982. Generalization as search. Artificial Intel-
ligence 18:203–266.
Muggleton, S., and Feng, C. 1992. Efficient induction of
logic programs. In Muggleton, S., ed., Inductive Logic Pro-
gramming. Academic Press. 281–298.
Muggleton, S. 1991. Inductive logic programming. New
Generation Computing 8:295–318.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29:309–352.
Plotkin, G. 1970. A note on inductive generalization. In
Meltzer, B., and Mitchie, D., eds., Machine Intelligence. Ed-
inburgh University Press.
Ryan, M. R. K. 2002. Using abstract models of be-
haviours to automatically generate reinforcement learning
hierarchies. In Sammut, C., and Hoffmann, A., eds., Interna-
tional Conference on Machine Learning, 522–529. Sydney:
Morgan Kaufmann Publishers Inc.
Schmid, U., and Kitzelmann, E. 2011. Inductive rule learn-
ing on the knowledge level. Cognitive Systems Research
12(3-4):237 – 248. Special Issue on Complex Cognition.
Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39–70.
Sinapov, J., and Stoytchev, A. 2008. Toward autonomous
learning of an ontology of tool affordances by a robot. In
National Conference on Artificial Intelligence.
Stoytchev, A. 2005. Behaviour-grounded representation of
tool affordances. In International Conference on Robotics
and Automation.
Toussaint, M.; Plath, N.; Lang, T.; and Jetchev, N. 2010.
Integrated motor control, planning, grasping and high-level
reasoning in a blocks world using probabilistic inference. In
ICRA, 385–391. IEEE.
van Lawick-Goodall, J. 1970. Tool-using in primates and
other vertebrates. In Lehrman, D.; Hinde, R.; and Shaw, E.,
eds., Advances in the Study of Behaviour, volume 3. London:
Academic Press. 195–249.
Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; and Blythe,
J. 1995. Integrating planning and learning: The PRODIGY
architecture. Journal of Experimental and Theoretical Arti-
ficial Intelligence 7(1):81–120.
Wood, A.; Horton, T.; and St Amant, R. 2005. Effective tool
use in a habile agent. In Systems and Information Engineer-
ing Design Symposium. IEEE. 75–81.

65




