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Abstract

We present a bi-threshold model of complex contagion in net-
works. In this model a node in a network can be in one
of two states at any time step, and changes state if enough
of its neighbors are in the opposite state, as determined by
“up-threshold” and “down-threshold” parameters. This dy-
namical process models several types of social contagion
processes, such as public health concerns and the spread of
games on online networks. Motivated by recent literature
calling for the investigation of peer pressure to reduce obe-
sity, which can be viewed as a control problem of population
dynamics, we focus on the computational complexity of find-
ing critical sets of nodes, which are nodes that we choose
to freeze in state 0 (a desirable state) in order to inhibit the
spread of an undesirable state 1 in the network. We define
a minimum-cost critical set problem and show that it is NP-
complete for bi-threshold systems. We show that several ver-
sions of the problem can be approximated to within a factor
of O(log n), where n is the number of nodes in the network.
Using the ideas behind these approximations, we devise a
heuristic, called the Maximum Contributor Heuristic (MCH),
which can be used even when the diffusion model is proba-
bilistic. We perform simulations with well-known networks
from the literature and show that MCH outperforms the High
Degree Heuristic by several orders of magnitude.
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1 Introduction

Problems related to contagions on social networks are be-
ing increasingly studied. We define a contagion as any en-
tity, such as trust, a fad, or news that can spread through
a population. Contagion processes studied in the litera-
ture include viral marketing and effects of referrals, forma-
tion of online communities, spread of online games, and
trust propagation, among others (Domingos and Richardson
2001; Richardson and Domingos 2002; Guha et al. 2004;
Leskovec, Adamic, and Huberman 2007; Habiba et al.
2008). All of these contagions, at their core, involve the
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spread of information, be it verbal as in word-of-mouth mar-
keting or nonverbal as in adopting a fad because one ob-
serves many people doing so.

One mechanism used to describe the propagation of social
contagions is based on a threshold. A simple contagion
is a contagion in which an agent requires only one neigh-
bor to possess it in order for the agent itself to acquire it.
In this case, the threshold t is 1. For example, the spread
of news through blogspace has been modeled as a simple
contagion (Gruhl et al. 2004). A complex contagion re-
quires two or more neighbors to possess it before an agent
will acquire it; this corresponds to a threshold value t ≥ 2.
Examples include the adoption of risky new technologies
and participation in social movements (Granovetter 1978;
Centola and Macy 2007). See (Watts 2002) for a discussion
of how threshold models are often utilized, even when more
involved decision-making processes are available. Also,
most of these studies focus on ratcheted (or progressive)
2-state systems, where an agent can be in state 0 or 1, but
the only permissible state transition is from 0 to 1. An agent
may not transition from state 1 to 0.

A threshold, in its most basic form, is a criterion de-
scribing the amount of local influence a node requires to
change state: if a minimum number t of one’s friends or ac-
quaintances behave in a particular way, then one will adopt
the same convention. Interestingly, whether one smokes, is
obese, or is a heavy drinker—the three behaviors contribut-
ing most to chronic health conditions (Sturm 2002)—are
all heavily influenced by peer behavior (Borsari and Carey
2001; Hoffman et al. 2006; O’Loughlin et al. 2009). These
behaviors are also costly; e.g., the annual health care cost of
obesity is $147 billion (Finkelstein et al. 2009). Finally, and
important for this work, these behaviors can be repeatedly
started and stopped. In the case of obesity, for example, it
is well-known that dieters engage in cycles of dieting and
non-dieting over time, a phenomenon referred to as “yo-yo
dieting” (Atkinson et al. 1994). Thus, ratcheted models of
behavior are inadequate to investigate these phenomena. A
model that describes back-and-forth transitions between two
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states is required. Further, investigations into the feasibility
of using peer influence to dissuade undesirable behaviors is
called for in (Lopez 2008) in connection with obesity.

Reducing levels of chronic illnesses represent special
problems because they require modifying people’s ingrained
habits such as over-eating. Hence, the difficulty in halting
undesirable behavior may be greater than that of starting the
behavior; i.e., a start threshold may be less than a threshold
to stop. Particularly relevant for addictive behavior is the
notion of self-efficacy, stemming from social cognitive sci-
ence, which describes an addict’s perceived ability to change
her behavior. The greater a person’s self-efficacy, the more
empowered she feels to conquer an addiction. Furthermore
two of the four factors that produce self-efficacy are peer-
driven: observations of others and verbal persuasion. These
ideas are summarized in (Rosenstock, Strecher, and Becker
1988). The points are: (i) self-efficacy can be modeled as
an internal threshold phenomenon and (ii) that it is driven
significantly by peer influences.

Back-and-forth models are useful beyond health care is-
sues. The spread of games like FarmVille on the Face-
book social network may be considered a complex con-
tagion. Many other social phenomena that can be mod-
eled as threshold-based back-and-forth systems are given in
(Schelling 1978; Bischi and Merlone 2009).

Our objectives are to understand bi-threshold dynamics
and how to inhibit an undesirable behavior for a range of
network structures. The bi-threshold model is defined by
two threshold values at each node, where the up-threshold
is the number of neighbors in state 1 required for an agent
to change from state 0 to state 1, and the down-threshold is
the number of neighbors in state 0 required for an agent to
change from state 1 to state 0. The model is formally dis-
cussed in Section 2, where we also discuss the use of peer
influence as a mechanism to reduce or halt undesirable be-
havior; investigations of this type are explicitly called for by
Lopez (2008). Specifically, we seek a set of peers (called a
“critical set,” defined formally later) that will drive a popula-
tion away from an undesirable behavior. Following related
work in Section 3, we introduce in Section 4 a theoretical
framework for computing a critical set, which we call “the
minimum cost critical set problem.” We show that the prob-
lem is NP-hard in general, and this necessitates the use of
heuristic approaches. We offer one in Section 5, abbrevi-
ated MCH, that is suited to deterministic and stochastic con-
tagion dynamics. To evaluate the behavior of bi-threshold
systems, we ran extensive simulations on three social net-
works from the literature and used an aggressive approach
to tax MCH, as described in Section 6. Deterministic and
probabilistic simulation results for bi-threshold models and
for using peer influence to inhibit undesirable behaviors are
presented in Section 7. Conclusions are given in Section 8.
Summary of results. Our results are summarized as follows.

1. We show that the minimum cost critical set problem is
NP-hard for both simple and complex contagions. For
simple contagions, we show that the problem can be ap-
proximated to within a factor of O(log n), where n is
the number of nodes in the network and that no asymp-
totic improvement in performance guarantee is possible

unless P = NP. For complex contagions, we show that a
restricted version of the problem (see Section 4.3 for de-
tails) can be approximated to within a factor of O(log n).
Even for this restricted version, we show that no asymp-
totic improvement in performance guarantee is possible
unless P = NP.

2. Based on the approach used in the above approximation
algorithms, we present a heuristic, called Maximum Con-
tributor Heuristic (MCH), for finding critical nodes to pre-
vent nodes from switching to state 1. We show that MCH
outperforms the High Degree Heuristic (i.e., setting high-
est degree nodes as critical) by multiple orders of magni-
tude.

3. Over a large parameter input space, we show that MCH
will halt diffusion and that the required number of critical
nodes is dependent on network structure, thresholds, and
seeding in complicated ways.

As this is the first work of its kind (see Section 3, Re-
lated Work), we study fundamental behaviors to understand
bi-threshold systems and control of system dynamics under
various conditions. A detailed practical application of the
basic bi-threshold model to adolescent smoking is discussed
in a companion work (Kuhlman et al. 2011).

2 Model Description and Problem Statement

2.1 Definition of the Bi-threshold Model

We model the propagation of contagions over a social net-
work using discrete dynamical systems (DDSs) (e.g. (Bar-
rett et al. 2006)). Let B denote the Boolean domain {0,1}. A
Synchronous Dynamical System (SyDS) S over B is spec-
ified as a pair S = (G,F), where
(a) G(V,E), an undirected graph with n nodes, represents

the underlying social network over which the contagion
propagates, and

(b) F = {f1, f2, . . . , fn} is a collection of functions in
the system, with fi denoting the local transition function
associated with node vi, 1 ≤ i ≤ n.
Each node of G has a state value from B. Each function fi

specifies the local interaction between node vi and its neigh-
bors in G. We use the convention that node is not a neighbor
of itself. In this paper, function fi at node vi (1 ≤ i ≤ n) is
a bi-threshold function, characterized by two non-negative
integer values denoted by tup(vi) and tdown(vi). A precise
definition of the function fi is as follows.

(a) If the state of vi is 0, then fi is 1 if at least tup(vi) of
the neighbors of vi are in state 1; otherwise, the value of
fi is 0;

(b) If the state of vi is 1, then fi is 0 if at least tdown(vi) of
the neighbors of vi are in state 0; otherwise, the value of
fi is 1.
Thus, tup(vi)(tdown(vi)) called the up (down) threshold

of vi, represents the minimum number of neighbors of vi
that must be in state 1 (0) for vi to change from 0 to 1 (1
to 0). A SyDS in which each node has a bi-threshold tran-
sition function is called a bi-threshold SyDS, denoted by
BT-SyDS.
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A configuration C of a SyDS at any time is an n-vector
(s1, s2, . . . , sn), where si ∈ B is the state of vi. A single
SyDS transition from one configuration to another can be
expressed by the following pseudocode.
for each node vi do in parallel

(i) Compute the value of fi. Let s′i denote this value.
(ii) Update the state of vi to s′i.

end for

Thus, in a SyDS, nodes update their state synchronously.
Other update disciplines (e.g. sequential updates) for DDSs
have also been considered (Barrett et al. 2006).
Example: Consider the BT-SyDS whose underlying graph
is shown in Figure 1. Suppose for each node vi, the function
fi is the bi-threshold function with tup(vi) = tdown(vi) =
1, 1 ≤ i ≤ 6. In the initial configuration, v1 is in state 1
and all other nodes are in state 0. During the first time step,
the state of node v1 changes to 0 (since v1 has a neighbor
whose state is 0) and that of v2 changes to 1 (since v2 has a
neighbor whose state is 1); the other nodes remain in state 0.
In the second time step, it can be verified that v1 changes to
1, v2 changes to 0, v3 changes to 1, v5 changes to 1 and the
other two nodes remain in state 0. Continuing this process,
it can be seen that from time step 2 onwards, the BT-SyDS
cycles between the two configurations (1, 0, 1, 0, 1, 0) and
(0, 1, 0, 1, 0, 1).

If a SyDS has a transition from configuration C1 to config-
uration C2, we say that C2 is the successor of C1 and that C1

is a predecessor of C2. A configuration C is called a fixed
point if the successor of C is C itself.
Model extensions. As defined above, the SyDS model is de-
terministic. One can also define a probabilistic version by
specifying two non-negative numbers pup(vi) and pdown(vi)
with each node vi. In such a case, pup(vi) (pdown(vi)) de-
notes the probability that vi changes from 0 to 1 (1 to 0)
when the number of its neighbors in state 1 (0) is at least
tup(vi) (tdown(vi)). Also, homophily (Axelrod 1997) and
factors from social cognitive theory (Rosenstock, Strecher,
and Becker 1988) can be incorporated.

2.2 Additional Definitions Related to the Model

For any SyDS S , the phase space of S is a directed graph
with one node for each possible configuration; there is a di-
rected edge from the node representing configuration C to
that representing configuration C′

if and only if C′
is the suc-

cessor of C. Since the domain is B = {0,1} and the under-
lying graph has n nodes, the number of nodes in the phase
space is 2n; thus, the size of the phase space is exponential
in the size of the SyDS.

For any deterministic SyDS, each configuration has a
unique successor. Thus, the outdegree of each node in the
phase space is 1. Each fixed point of a SyDS S is a self loop
in the phase space of S .

A BT-SyDS in which tup(v) = tdown(v) = 1 for each node
v is called a simple BT-SyDS. If at least one of the thresh-
old values in S is greater than 1, then S is referred to as a
complex BT-SyDS.

In this paper, we also use a slightly relaxed notion of fixed
points, namely pseudo fixed points, as defined below.

Definition 2.1 Given a SyDS S , a configuration C of S is a
pseudo fixed point if in the sequence of configurations ob-
tained from C, no node changes from 0 to 1.
Thus, starting from a pseudo fixed point, nodes may change
from 1 to 0; however, no node may change from 0 to 1. From
the above definition, it can be seen that each fixed point is
also a pseudo fixed point.

One can also define a pseudo fixed point from which the
only allowed change is from 0 to 1. In the applications that
motivated the BT-SyDS model, it is more natural to forbid 0
to 1 transitions rather than 1 to 0 transitions.

2.3 Critical Set Problem for BT-SyDSs

Many different computational problems have been consid-
ered for DDSs (e.g. (Barrett et al. 2006)). Here, our focus is
on a particular problem that deals with the conversion of a
given configuration into a pseudo fixed point by modifying
some nodes whose current state is 1. Here, “modifying” a
node involves two things: (i) the state of the node is changed
from 1 to 0 and (ii) the up threshold of the node is changed
to a high value (e.g. degree of the node + 1) so that the node
can never change to 1. We say that such a node is frozen at
0. The modified node is not removed from the network; it
remains in the network to allow more nodes to change from
1 to 0 in subsequent time steps. The set of nodes chosen
for modification is called the critical set. In social settings,
frozen nodes are a form of peer influence: they encourage
neighboring nodes to change to or remain in state 0. Only
those nodes whose current state is 1 can be part of the crit-
ical set. In the social network context, modifying a node
involves a cost. So, it is important to find a critical set of
minimum cost. A precise formulation of the corresponding
problem, called the Minimum Cost Critical Set (MCCS)
problem, is as follows.
Minimum Cost Critical Set (MCCS)
Instance: A BT-SyDS S , a configuration C of S , for each
node v ∈ V , the cost c(v) ≥ 0 for modifying v and a budget
β on the modification cost.
Question: Is there a critical set B such that the cost of B is
at most β and B modifies C into a pseudo fixed point?

We defined the MCCS problem using pseudo fixed points
for two reasons. First, the cost of converting a given con-
figuration to a pseudo fixed point is no more than that of
converting it to a fixed point (since every fixed point is also
a pseudo fixed point); in fact, one can construct examples
where the conversion to a fixed point is much more expen-
sive than the conversion to a pseudo fixed point. Second,
once a bi-threshold system reaches a pseudo fixed point, it
takes at most n additional transitions for the system to reach
a fixed point. In other words, pseudo fixed points offer all the
benefits of fixed points while incurring no additional cost.

3 Related Work

A number of references for simple and complex contagions,
ratcheted threshold systems, and application domains were
discussed in Section 1. Here we focus on three issues central
to this paper: computational complexity results, bi-threshold
systems, and mechanisms for inhibiting state transitions.
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v4v3v2v1

v5 v6

Initial Configuration: (1, 0, 0, 0, 0, 0)
Configuration at time 1: (0, 1, 0, 0, 0, 0)
Configuration at time 2: (1, 0, 1, 0, 1, 0)
Configuration at time 3: (0, 1, 0, 1, 0, 1)
Configuration at time 4: (1, 0, 1, 0, 1, 0)

Note: For each node, the up and down threshold values are 1. Each configuration has the form (s1, s2, s3, s4, s5, s6), where si is the state
of node vi, 1 ≤ i ≤ 6. From time step 2 onwards, the system cycles between the two configurations (1, 0, 1, 0, 1, 0) and (0, 1, 0, 1, 0, 1).

Figure 1: An example of a bi-threshold synchronous dynamical system.

Most complexity results are for the spread maximization
problem. The earliest results for complex contagions are
provided in (Kempe, Kleinberg, and Tardos 2003), and en-
hancements have been made up through (Mossel and Roch
2007). See the latter for intermediate references and a de-
scription of the incremental improvements made by each.
Maximizing influence in the voter model has been examined
(Even-Dar and Shapira 2007). The only work addressing
the complexity of thwarting diffusion is that of (Kuhlman
et al. 2010a), where a critical set problem in the context of
ratchet-up systems was investigated. The critical set prob-
lem is shown to be solvable in polynomial time for t = 1,
whereas for t ≥ 2, the problem is shown to be NP-hard. We
know of no comparable work for bi-threshold systems.

There are a few models that permit transitions back and
forth between two states. In the voter model each agent
changes state (to 0 or 1) by assuming the state of one ran-
domly selected neighbor; see (Even-Dar and Shapira 2007)
and references therein. Thus, all neighbors of an agent are
not utilized as in the bi-threshold model. In majority mod-
els (Dreyer and Roberts 2009), an agent switches to the state
of the majority of its neighbors. In contrast, state change in
the bi-threshold model may be induced by more or less than
one-half of its neighbors, so it is a generalization of a ma-
jority model. Perhaps the model closest to the bi-threshold
model is that of (Bischi and Merlone 2009) because it has up
and down threshold behavior. However, the uniform mixing
model assumes a completely connected population network,
where every agent influences every other agent in the same
fashion, and every agent has complete knowledge of the sys-
tem. The model makes no distinction among agents. Our
model accounts for local structure within the population,
where in general, each agent is only influenced by a sub-
set of the population. Among other differences, our agents
may have heterogeneous, history-dependent up-thresholds
and down-thresholds. We can also readily extend our work
to generalized contagion models, such as that of (Dodds and
Watts 2005), as we have done for ratchet-up systems.

The great majority of the work on thwarting diffusion
is confined to simple contagions in ratchet-up systems. In
(Chakrabarti et al. 2008), the maximum eigenvalue of the
adjacency matrix is used to identify the node that causes the
greatest decrease in the epidemic threshold. Reference (Eu-
bank et al. 2006) provides an approximation for minimiz-
ing the number of agents that transition to state 1. Vari-
ous methods for blocking in small networks have been stud-
ied (Borgatti 2006). Heuristics for stopping the diffusion
of simple contagions on static and dynamic networks were

investigated in (Habiba et al. 2008). Blocking of complex
contagions in ratchet-up systems using heuristics was inves-
tigated in (Kuhlman et al. 2010a) and it was shown that a
method that worked well for simple contagions (namely, set-
ting the highest degree nodes critical (Habiba et al. 2008))
performs poorly for complex contagions. The complex con-
tagion blocking scheme is only applicable to deterministic
diffusion. The approach herein is applicable to both deter-
ministic and stochastic diffusion.

4 Theoretical Results for the MCCS Problem

4.1 Preliminaries

In this section, we present complexity and approximability
results for the minimum cost critical set (MCCS) problem
for simple and complex contagions. For reasons of space,
proofs of some results are omitted and only sketches are in-
cluded for others. Detailed proofs appear in (Kuhlman et al.
2010b).

We assume throughout this section that the given BT-
SyDS does not have any node whose up threshold is 0. The
reason is that the 0 to 1 transitions of such nodes cannot be
controlled by their neighbors. The following lemma is used
throughout this section.

Lemma 4.1 Let S be a BT-SyDS where the up threshold of
each node is at least 1. Let C be a given configuration. The
problem of determining whether C is a pseudo fixed point
can be solved in polynomial time.

Proof sketch: The idea is to run S starting from the given
configuration C for n steps, where n is the number of nodes
in the underlying graph of S . Since the number of 1’s in C
that can change to 0 is at most n, if C is a pseudo fixed point,
S will reach a fixed point in at most n transitions. Thus, C
is not a pseudo fixed point if and only if some node changes
from 0 to 1 during these n transitions. �

4.2 Results for Simple BT-SyDSs

The results in this section rely on a structural property of
pseudo fixed points created by freezing certain nodes of a
simple BT-SyDS. Some terminology is needed to state this
property. Consider a simple BT-SyDS S with underlying
graph G(V,E). Suppose F ⊆ V is a nonempty subset
frozen nodes. Let C be a configuration of S such that for
each node v ∈ F , the state of v in C is 0. Each node w ∈ V
which is in state 1 in C is called a normal 1-node. Each
node w ∈ V − F which is in state 0 in C is called a normal
0-node. This following lemma provides a characterization
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of when C is a pseudo fixed point. A proof of this lemma
appears in (Kuhlman et al. 2010b).

Lemma 4.2 Suppose S is a simple BT-SyDS with underly-
ing graph G(V,E) and F ⊆ V is nonempty subset of frozen
nodes, Let C be a configuration of S such that for each node
v ∈ F , the state of v in C is 0. Configuration C is a pseudo
fixed point iff both of the following conditions hold: (i) No
normal 0-node is adjacent to a normal 1-node. (ii) Each
normal 1-node is adjacent to at least one node in F . �

The following result shows that the MCCS problem is
NP-complete for simple BT-SyDSs and that it cannot be ap-
proximated to within a factor o(log n).

Theorem 4.1 (a) The MCCS problem is NP-complete for
simple BT-SyDSs. (b) There is a constant c′ > 0 such that
the MCCS problem for simple BT-SyDSs with n nodes can-
not be approximated to within a factor less than c′ lnn, un-
less P = NP.

Proof sketch for Part (a): Using Lemma 4.1, it can be seen
that the MCCS problem is in NP. To prove NP-hardness,
we use a reduction from the Minimum Dominating Set
(MDS) problem which is known to be NP-complete (Garey
and Johnson 1979). Let an instance of the MDS problem be
given by the undirected graph G(V,E) and integer K. We
construct an instance of the MCCS problem for a simple
BT-SyDS S as follows. The underlying graph G′(V ′, E′) of
S consists of a copy of G plus three new nodes denoted by
x, y and z. There is an edge joining node x to one node,
say v1, of V . Two other edges {x, y} and {y, z} are also
added. So, E′ consists of all the edges of E plus the three
new edges added. The up and down threshold values for all
the nodes in V ′ are 1. In the chosen configuration C (which
needs to be converted into a pseudo fixed point), node z is in
state 0 and all the other nodes are in state 1. The modifica-
tion cost for each node of G′ is chosen as 1. This completes
the construction of the MCCS instance, and it is easy to see
that the construction can be done in polynomial time. It can
be shown using Lemma 4.2 that the graph G has a dominat-
ing set of size at most K if and only if the resulting MCCS
instance has a solution of cost at most K + 1.
Proof sketch for Part (b): We rely on the following result
from (Raz and Safra 1997): There is a constant c > 0 such
that the MDS problem cannot be approximated to within a
factor less than c lnn for n node graphs, unless P = NP. Us-
ing that result in conjunction with the reduction presented in
the proof of Part (a), we show that if there is an approxima-
tion algorithm for the MCCS problem with a performance
guarantee less than (c/4) lnn, then there is an approxima-
tion algorithm for the MDS problem with a performance
guarantee less than c lnn. �

Our next result shows that the MCCS problem can be
approximated to within a factor O(log n) for simple BT-
SyDSs. This result also relies on Lemma 4.2.

Theorem 4.2 There is an approximation algorithm with a
performance guarantee of O(log n) for simple BT-SyDSs
with n nodes.

Proof sketch: Our approximation algorithm chooses frozen
nodes in two stages. Frozen nodes chosen in the first stage

prevent nodes in state 0 from changing to 1. In the sec-
ond stage, the chosen nodes ensure that nodes which are in
state 1 cannot change to 0 during one transition and then
back to 1 in a later transition. This second stage relies on a
known O(log n) approximation algorithm for the Minimum
Set Cover problem (Vazirani 2001). The performance guar-
antee of the algorithm is determined by the second stage. �

4.3 Hardness and Approximation Results for
Complex BT-SyDSs

We show that the MCCS problem is computationally in-
tractable for complex BT-SyDSs.

Theorem 4.3 (i) The MCCS problem is NP-complete for
complex BT-SyDSs in which the maximum threshold value is
2 and all nodes have the same modification cost. (ii) Unless
P = NP, the MCCS problem for complex BT-SyDSs cannot
be approximated to within o(log n), where n is the number
of nodes in the given BT-SyDS.

Proof sketch – Part (i): Proof of membership in NP again
relies on Lemma 4.1. To prove NP-hardness, we use a
reduction from the Minimum Vertex Cover (MVC) prob-
lem which is known to be NP-complete (Garey and John-
son 1979). Let the given instance I of the MVC prob-
lem consist of graph G1(V1, E1) and integer K. Let V1 =
{v1, v2, . . . , vn} and E1 = {e1, e2, . . . , em}. We construct
a BT-SyDS S as follows. The underlying graph G(V,E) of
S has one node pi for each node vi of G1 (1 ≤ i ≤ n) and
one node qj for each edge ej of G1 (1 ≤ j ≤ m). If edge
ej joins nodes vx and vy in G1, then node qj is adjacent to
nodes px and py in G. The up and down thresholds for each
node pi are 1. The up threshold for each node qj is 2 and the
down threshold is 1. The cost of modifying any node is cho-
sen as 1. In the chosen configuration C, each node pi is set to
1 and each node qj is set to 0. The upper bound on the cost
of modification is set to K. This completes the construction
of the MCCS instance. We note that in the resulting MCCS
instance, each threshold value is at most 2 and all nodes have
the same modification cost. Obviously, the construction can
be carried out in polynomial time. It can be shown that G1

has a vertex cover of size at most K if and only if the MCCS
problem for S has a solution of cost at most K.
Proof sketch – Part (ii): We presented the above reduction
from MVC to MCCS to show that MCCS remains NP-
complete even for BT-SyDSs with a maximum threshold of
2. We can carry out a similar reduction from the Minimum
Set Cover (MSC) problem. The idea is to treat the base set
of the MSC instance similar to the edge set of the MVC
instance and each subset of the MSC instance similar to a
node of the MVC instance. Such a reduction shows that the
MSC problem has a solution of size at most K if and only if
the resulting MCCS instance has a solution of cost at most
K. This reduction in conjunction with the fact that the MSC
problem cannot be approximated to within a factor o(log n)
unless P = NP (Vazirani 2001), implies the result of Part (ii).
�

An examination of the reductions used in the proofs of
Parts (i) and (ii) of Theorem 4.3 shows that the initial con-
figuration C produced in the reduction has the following
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property: The nodes which are in state 1 in C form an in-
dependent set in the underlying graph; that is, for any pair
of nodes u and v which are in state 1 in C, the edge {u, v}
is not in the underlying graph. Thus, Part (ii) of Theo-
rem 4.3 points out that even such a restricted version of the
MCCS problem cannot be approximated to within a factor
o(log n) for complex BT-SyDSs. Our next result shows that
this restricted version can indeed be approximated to within
O(log n). This is done by reducing the problem in an ap-
proximation preserving manner to the Minimum Set Multi-
Cover problem (MSMC) defined below.
Minimum Set Multi-Cover (MSMC)
Instance: A base set U = {u1, u2, . . . , un}, a positive inte-
ger coverage requirement ri for each element ui, 1 ≤ i ≤ n,
a collection S = {S1, S2, . . . , Sm} of nonempty subsets of
U , a nonnegative cost cj for each set Sj , 1 ≤ j ≤ m, a cost
bound β.
Question: Is there a set multi-cover of cost at most β (i.e.,
is there a subcollection S′ ⊆ S such that the cost of S′ is at
most β and every element ui of U is covered by at least ri
sets in S′?

It is known that MSMC is NP-hard and that it can be ef-
ficiently approximated to within a factor of O(log n) (Vazi-
rani 2001). We obtain an approximation algorithm for the
restricted version of the MCCS problem by reducing it in
an approximation preserving manner to the MSMC prob-
lem. Some details of this reduction are given in the proof
sketch for the following theorem.

Theorem 4.4 Consider the restricted version of the MCCS
problem for complex BT-SyDSs where each node has an up
threshold of at least 1 and where the nodes in state 1 in the
given initial configuration form an independent set in the
underlying graph. This version of MCCS can be approxi-
mated to within a factor O(log n), where n is the number of
nodes in the underlying graph.

Proof sketch: We show how the restricted version of
the MCCS problem can be reduced to an instance of the
MSMC problem such that any solution of cost α to the
MCCS problem corresponds to a solution of cost α to the
MSMC instance and vice versa.

Let G(V,E) denote the underlying graph of S . Let V1 ⊆
V denote the subset of nodes whose values in C are 1 and let
V2 = V −V1. The set V2 represents the set of elements to be
covered in the MSMC instance. For each node u ∈ V1, we
construct a set Su of the neighbors of u from V2. The cost of
Su is the modification cost c(u) of u. For each node v ∈ V2,
let tup(v) denote its up threshold and let dv denote the num-
ber of neighbors of v from V1. The coverage requirement
rv for v is set to max{dv − tup(v) + 1, 0}. Elements with
coverage requirement of 0 can be deleted. We thus have an
instance of the MSMC problem. We now show that any so-
lution of cost α for the MSMC problem corresponds to a
solution of the same cost for the MCCS problem.

Suppose there is a solution of cost α for the MCCS prob-
lem. Let the set of frozen nodes in this solution be denoted
by V ′. Consider the solution to the MSMC problem by
choosing the set Su for each node u ∈ V ′. It can be verified

that this collection satisfies the multi-cover requirement and
that its cost is α.

Now, suppose there is a solution of cost α for the MSMC
problem. Construct the set of nodes frozen V ′ by adding
each node u such that the set Su is in the solution to the
MSMC problem. Consider the configuration C1 obtained
by freezing the nodes in V ′ to 0. Using the fact that nodes
which are in state 1 in C form an independent set, it can be
shown that the successor of C1 is the configuration in which
all nodes are in state 0. Since each node has an up threshold
of at least 1, the configuration of all 0’s is a fixed point for
S . It follows that C1 is a pseudo fixed point.

Thus, the required approximation algorithm for MCCS
first constructs an instance of the MSMC problem and uses
the known O(log n) approximation for that problem. �

Whether there is a good approximation algorithm for the
general version of the MCCS problem for complex BT-
SyDSs is open.

5 An Algorithm for Finding Critical Nodes

We reiterate that a critical set, for our purposes in this paper,
is a set of agents that behave in a desired way (correspond-
ing to state 0) and that do not deviate from this behavior.
They thus influence their neighbors to refrain from undesir-
able behaviors (state 1) such as excessive drinking, binge
eating, and smoking.

The approximation algorithm for the MCCS problem
mentioned in the proof of Theorem 4.4 is based on a greedy
approach which proceeds as follows (Vazirani 2001). In
each iteration, it chooses a set for which the unit cost of cov-
ering an element (i.e., the ratio of the cost of a set to the num-
ber of elements covered by the set) is a minimum among the
remaining sets. The algorithm terminates when the coverage
requirement for all the elements has been satisfied. In this
section, we use this approach to develop an efficient heuris-
tic (called Maximum Contributor Heuristic or MCH) to
compute a set B of critical nodes that attempts to eliminate
all 0 → 1 state transitions. An important advantage of MCH
is that it can be employed for both deterministic and proba-
bilistic diffusion. Also, our method increases the candidate
set of nodes from which critical sets are obtained, and thus
will perform at least as well and often better than a method
such as (Kuhlman et al. 2010a). For simplicity, it is assumed
all the nodes have the same modification cost. With this as-
sumption, the greedy approach has a simple interpretation:
in each iteration, choose a set that covers the maximum num-
ber of elements. The algorithm can be readily changed to
allow nodes to have different modification costs.

First we introduce a few definitions and notation, and de-
scribe the central aspect of the algorithm’s operation, fol-
lowed by the algorithm itself. We say a node v is affectable
at time i if at this time it is in state 0 and and at time i + 1
it transitions to state 1 (i.e., v has a number of neighbors in
state 1 such that nbr1(v) ≥ tup(v)). Let Ai be the set of
all affectable nodes at time i. If a neighbor y ∈ nbr1(v) is
chosen for the critical set B, so that y is frozen at 0, then
v may cease to be affectable because nbr1(v) is reduced.
If so, v is removed from Ai. A node umc

i is a maximum
contributor if it is in state 1 at time i and has the greatest
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number of neighbors that are affectable at time i. By defini-
tion, umc

i ∈ Qi, the set of all nodes that are in state 1 at time
i. Our goal is to select a minimum set of critical nodes from
Qi that reduces Ai to the empty set. We compute a critical
node set B for a diffusion instance using Algorithm 1. The
loop at line marker 1 is executed at each time i, and selects
a node umc

i and updates Ai and Qi as just described.

6 Networks and Experimental Parameters

Because a goal is to evaluate the influence of network struc-
ture on blocking behavior, the three networks of Figure 2
were chosen for study due to their ranges in properties such
as numbers of nodes and edges, average degree da, and av-
erage clustering coefficients cca. Variations from a factor of
2 (on numbers of edges and in da) to an order of magnitude
(in cca) were evaluated. We also wanted to investigate net-
works much larger than those of high school students used
in a youth smoking study (Kuhlman et al. 2011). All net-
works were taken as undirected so that diffusion can occur
between pairs of nodes in either direction.

Algorithm 1: Compute Critical Set For One Iteration

input : sequence of sets (Qi)
imax
i=1 of all nodes in state 1 at time i;

network G.
output : set of critical nodes B.

Determine from (Qi)
imax
i=1 the sequence of sets (Ai)

imax
i=1 .

Set r =MAX INT.
for (i = 1 to imax) do

// If the number of nodes in state 1 at time i is less than or equal to β, then
// this set is the critical set.
if (|Qi| ≤ β) then Set B = Qi; Return B.
// Execute greedy covering strategy.
Set Bi = ∅.
if (Ai is empty) then

Set B as the set of β nodes randomly chosen from Qi; Return B.

1 while ( (Ai not empty) and (|Bi| ≤ β) ) do

Identify and remove umc
i from Qi; add umc

i to Bi.
Remove all nodes v ∈ Ai where nbr1(v) < tup(v).

if (Ai is empty) then Return Bi.
else if (|Ai| < r) then Set ilow = i and r = |Ai|.

Return Bilow
.

Since a focus is stopping diffusion, we use an aggressive
seeding approach to strain the MCH critical node determi-
nation algorithm: we select seed nodes (i.e., nodes initially
in state 1) such that they form a connected subgraph of the
20-core of a network. That is, each seeded node is very well
connected, with at least 20 neighbors, to promote diffusion,
which is a more stringent condition than those used in other
works; e.g., (Habiba et al. 2008).

An iteration is a diffusion instance and a simulation is a
set of iterations. Each iteration of a simulation only varies
in the composition of the seed node set. For deterministic
simulations, 50 seed sets were used with each parameter set.
For probabilistic diffusion, 20 instances were completed for
each seed set to capture stochastic propagation, so 1000 iter-
ations (20×50) comprise one simulation. We chose breadth
(20 stochastic diffusion instances per experiment, for some
1600 parameter sets) over depth, which was justified by the

• Networks

1. epinions: edges represent trust relationships between reviewers on
Epinions.com; 75879 nodes, 405740 edges, da = 10.7, cca = 0.138.

2. slashdot: edges represent friend and foe relationships of participants
on Slashdot tech news; 77360 nodes, 469180 edges, da = 12.1, cca =

0.0555.

3. astroph: edges join coauthors of papers published on arXiv in the
Astro Physics category; 18771 nodes, 198050 edges, da = 21.1,
cca = 0.633.

• Study Parameters

1. networks: the 3 above.

2. threshold sets (tup, tdown): all combinations of values 1 to 3.

3. numbers of seed nodes ns: 2, 3, 5, 10, 20. (Seeding of 20-core.)

4. budgets on critical set sizes β: 16 values from 5 to 2000.

5. state transitions probabilities (pup, pdown): (0.5, 0.5), (1,1).

• Study Metrics

1. number of parameter sets: over 1600.

2. number of diffusion instances: over 570000.

3. number of critical sets determined: over 390000.

Figure 2: Networks (J. Leskovec website 2009), parameters,
and study metrics.

small average and maximum coefficient-of-variation (COV)
values (0.099 and 0.22, respectively) of computed critical
node sets over all experiments.

Simulations were first performed with no critical nodes
(i.e., β = 0). Results were used as input to Algorithm 1.
The critical node sets were then used in a second set of sim-
ulations to quantify the effect of critical nodes on diffusion
dynamics. For deterministic diffusion, there is one critical
node set for each seed node set; for probabilistic diffusion
we use a different approach described below with the results.

7 Simulation Results

We present empirical results from the simulation study. We
demonstrate fundamental differences between deterministic
and stochastic diffusion dynamics, but show that both sys-
tems will not reach a pseudo fixed point without an external
forcing mechanism. The mechanism we use is the introduc-
tion of critical nodes. With increasing numbers β of critical
nodes, transitions from state 0 to state 1 can be eliminated;
we implicitly assume that state 1 is undesirable and hence
we seek to minimize the numbers of nodes in this state, and
to ever reach state 1. Network structure plays a large role in
the dynamics: for small β, the connectedness of a network
as measured by the largest component of a k-core governs
behavior, while for large β, the number of nodes with large
degrees controls behavior. We also compare the efficacy of
deterministic, probabilistic, and hybrid probabilistic critical
node schemes and show that neither probabilistic scheme al-
ways outperforms the other. All data shown represent the
average of 50 and 1000 instances for deterministic and prob-
abilistic diffusion, respectively. Also, since pup = pdown for
all results, we use p for both.
Baseline behaviors for deterministic and stochastic diffu-
sion, and critical nodes. Network dynamics for determin-
istic and probabilistic diffusion within the slashdot net-
work are depicted in Figure 3 for ns = 2 seed nodes. Figure
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Figure 3: Dynamics for the slashdot network with tup =
tdown = 1 and ns = 2. (a) Fraction of nodes currently in
state 1 and transitioning to state 1 for p = 1 and β = 0 (blue
curve); fraction of nodes currently in state 1 for p = 0.5 and
β = 0 (green curve); and fraction of nodes transitioning to
state 1 for p = 0.5 and β = 0 (purple curve); and (b) fraction
of nodes currently in state 1 for p = 1 with critical nodes.

3(a) shows the fraction of nodes in state 1 for determinis-
tic diffusion (blue oscillating curve), which is also the frac-
tion of nodes transitioning to state 1 at each time step; i.e.,
once a node is in state 1, it changes state between 0 and 1
at every subsequent time step. Thus, a 2-cycle is formed
in phase space for deterministic diffusion. Also shown for
probabilistic diffusion are the fraction of nodes in state 1
(green curve), and fraction of nodes transitioning to state 1
(dashed purple curve). Although the extreme oscillations for
the deterministic results (blue curve) are probably unrealis-
tic for most practical applications, the point is that stochas-
ticity can markedly dampen these oscillations and can also
dramatically reduce the numbers of state transitions at each
time step (blue curve vs. purple curve).

Figure 3(b) shows the fraction of nodes in state 1 for dif-
ferent numbers of critical nodes. As β increases from 0 to
1000, the number of nodes in state 1 decreases and the os-
cillation amplitude also decreases.

Figure 3 shows that once a non-zero set of nodes reaches
state 1, a system will not drive itself to zero nodes in state
1. This holds for deterministic and probabilistic diffusion
(for probabilistic diffusion, at least not in the short-term).
The only way to achieve the objective of very few or zero
nodes in state 1 is to prevent nodes from ever reaching state
1. Controlling diffusion with critical nodes can accomplish
this goal. For networks of large maximum degree (herein,
maximum degrees can be as high as 3000), we see that the
needed number β of critical nodes can be larger than 500ns.

From a practical standpoint, this suggests that ab-
sent some intervention, in realistic populations where
tup, tdown ≈ 1 − 3, undesirable behaviors will not be natu-
rally driven from a system. Peer influence or some other fac-
tor such as an advertising campaign must be used to drive the
unwanted behavior from the population. Here we use peer
influence, through the MCH algorithm, in the form of indi-
viduals who exhibit a desired behavior, cannot be persuaded
to adopt an undesirable behavior, and hence who influence
others to adopt the wanted behavior.
Comparison of the MCH blocking algorithm with one for
simple contagions. We compare the efficacy of MCH for
selecting critical nodes with a strategy that works well in

determining critical nodes for simple contagions where the
only state transition is 0 → 1: setting high degree nodes as
critical (Habiba et al. 2008). We refer to this approach as the
high degree strategy (HDS). Table 1 summarizes the average
fraction of nodes ever reaching state 1 for the three networks
and 3 threshold sets. All results are for deterministic diffu-
sion. Numbers of critical nodes are also given as a fraction
of network nodes in column 3. The number of seed nodes
is 2; a smaller number means the driving force for diffusion
is smaller and hence easier to block, thereby enhancing the
effectiveness of HDS. The table shows, e.g., that for HDS
and threshold sets (1,1) and (1,2), 88% of astroph nodes
on average reach state 1; for MCH, no nodes reach state 1.

Table 1: Comparison of High Degree Strategy and Maxi-
mum Contributor Heuristic. The last two columns show the
fraction of network nodes that reach state 1. MCH is far
more effective in blocking diffusion.

Network Threshold
Num.
(and %)

Frac. Frac.

Sets,
(tup, tdown)

Critical
Nodes

MCH HDS

astroph (1,1), (1,2) 500 (3%) 0.00007 0.88
astroph (2,2) 50 (0.3%) 0.0001 0.64
slashdot (1,1), (1,2) 2000 (3%) 0.018 0.63
slashdot (2,2) 50 (0.1%) 0.00003 0.15
epinions (1,1), (1,2) 1000 (1%) 0.00002 0.76
epinions (2,2) 50 (0.1%) 0.00002 0.25

Performance of the MCH blocking algorithm. Fractions of
nodes ever reaching state 1 where ns = 20 and tdown = 1
are displayed in Figure 4. The first and second plots are for
tup = 2 and 3, respectively. Both plots show “crossover”
across the networks because of graph structure effects. For
small β, astroph has the greatest fraction of nodes reach-
ing state 1, and the largest t-core size for t-threshold diffu-
sion, while for larger β, the larger network with the greatest
degrees (i.e., epinions) enables diffusion to circumvent
the critical nodes using these “hub” nodes. These results il-
lustrate that as tup increases, the number of critical nodes
required to halt all diffusion decreases; e.g., the slashdot
network requires 1500 critical nodes when tup = 2 and 500
when tup = 3. In contrast, decreasing tdown (to promote
transitions to state 0) has little effect on critical set sizes (re-
sults not shown). These results are consistent with the intu-
itive notion that it may be easier for society to attack prob-
lems by increasing the threshold (or cost) for adoption; these
results help to quantify this qualitative observation. We re-
turn to the effect of tdown at the end of this section.

Interactions among seed set sizes, critical nodes, and de-
terministic and probabilistic diffusion are displayed in Fig-
ure 5 for the epinions network. The first plot shows de-
terministic diffusion results with tup = tdown = 2. For
ns = 20, roughly β = 100ns = 2000 critical nodes are
required to stop diffusion.

We compare deterministic and probabilistic diffusion and
blocking implementations in Figure 5(b). In the absence of
critical nodes, the discriminating factor in diffusion is deter-
ministic versus probabilistic state transitions; the seed sets
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Figure 4: Fraction of nodes ever to reach state 1 as a function
of β for the three networks where p = 1, tdown = 1, and
ns = 20; (a) tup = 2; and (b) tup = 3. Results are virtually
identical for tdown = 2, 3 and are not shown.

are the same in both sets of simulations. For deterministic
simulations, a critical node set is computed for each seed
set. For stochastic simulations, a critical set is determined
for each of the 20 instances that have the same seed node
set. The β nodes with the greatest frequency of occurrence
within the 20 sets are taken as the sole critical set and ap-
plied to all 20 iterations to assess their blocking capability.
Figure 5(b) illustrates differences between probabilistic and
deterministic diffusion (long dash vs. solid curves) for the
epinions network, for 3 critical set sizes. For β = 10,
probabilistic diffusion gives greater fractions of nodes reach-
ing state 1, while for β = 20 and 100 the deterministic and
probabilistic curves intersect. These behaviors are caused by
two competing mechanisms. On one hand, stochastic diffu-
sion has a driving force that is less than that for p = 1.
On the other hand, critical nodes are determined over 20
instances and represent an averaging process. The critical
node sets for deterministic diffusion, in contrast, are for a
particular seed set. Which factors dominate are a problem-
dependent function of network and diffusion process.
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Figure 5: For the epinions network, the fractions of
nodes ever in state 1 for different numbers of seed and crit-
ical nodes: (a) for p = 1, tup = tdown = 2; and (b) for
p = 0.5 and 1, tup = tdown = 3.

We also used the critical node sets from deterministic dif-
fusion in simulations of stochastic diffusion (short dashes
Figure 5(b)). The deterministic blocking nodes are less
effective, relative to the probabilistic critical nodes, for
β = 100, but are more effective for β = 10. As the
number of nodes ever reaching state 1 is driven to zero, the
two methods converge because all diffusion will be halted at
time step 1. Less computational effort is required to produce
the critical nodes for deterministic diffusion.

Effect of tdown in perpetuating an unwanted behavior. A
natural question is how large must tdown be to prohibit any
node from transitioning from state 1 to state 0, thereby
reducing the bi-threshold system to a ratchet-up system,
and “locking-in” the unwanted behavior. Clearly tdown =
dmax + 1, where dmax is the maximum degree of any node
in a network, will result in a system where the unwanted be-
havior is prevalent because no node has dmax+1 neighbors.
It turns out that much smaller values of tdown can suffice.

Figure 6(a) shows the fraction of nodes in state 1 for tdown

values ranging from 1 to 50. As tdown increases, the diffi-
culty in transitioning to state 0 increases. For tdown = 50,
all nodes move to and remain in state 1. Since tup = 1,
a connected graph will produce a cascade where all nodes
are in state 1, and hence the system will reach a fixed point.
If we take the mean of the steady state value of each curve
in Figure 6(a) and plot them against tdown, we obtain the
purple curve in Figure 6(b). The other curve is generated
from analogous data where tup = 2. The theoretical maxi-
mum in spread size can be computed based on k-cores and
is 49% of nodes for the epinions network and tup = 2,
which agrees with the experimental result. From these data,
we make two observations. First, since dmax = 3044 for
epinions, the system behaves as a ratchet-up system for
tdown � (dmax + 1). Second, by the time tdown increases
to 10 (< 50), these systems are asymptotically approach-
ing ratchet up systems. From a practical standpoint, these
results tell us that a large tdown must be reduced in order
for people to revert to state 0. This may be the case, for ex-
ample, for drug use, where reducing addiction may reduce
tdown. Thus, interventions may also be needed to reduce the
impediments to giving up undesirable behavior.
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Figure 6: For the epinions network: (a) the fraction of
nodes currently in state 1 for tup = 1, p = 1 and ns =
20; (b) mean fraction of nodes in state 1 at steady state as a
function of tdown for tup = 1 and tup = 2.

8 Summary and Conclusions

We presented theoretical and experimental results for un-
derstanding bi-threshold systems and blocking diffusion in
such systems. Investigation of the latter issue was specif-
ically called for in (Lopez 2008) where it was speculated
that peer influence may be used advantageously to stop the
spread of obesity. We defined the minimum cost critical set
(MCCS) problem for inhibiting the spread of undesirable
contagions and presented theoretical results for both sim-
ple and complex contagions. While the question of devising
an approximation algorithm with a provably good perfor-
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mance guarantee for the MCCS problem for complex BT-
SyDSs is open, we presented a heuristic algorithm to find
critical nodes for both deterministic and probabilistic diffu-
sion. We showed that our heuristic outperforms the strategy
of setting the highest degree nodes critical by multiple or-
ders of magnitude. In a companion work, the bi-threshold
model has been applied to study adolescent smoking behav-
ior (Kuhlman et al. 2011).
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