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Abstract 
The Odd One Out test of intelligence consists of 3x3 matrix 
reasoning problems organized in 20 levels of difficulty. Ad-
dressing problems on this test appears to require integration 
of multiple cognitive abilities usually associated with crea-
tivity, including visual encoding, similarity assessment, pat-
tern detection, and analogical transfer. We describe a novel 
fractal strategy for addressing visual analogy problems on 
the Odd One Out test. In our strategy, the relationship be-
tween images is encoded fractally, capturing important as-
pects of similarity as well as inherent self-similarity. The 
strategy starts with fractal representations encoded at a high 
level of resolution, but, if that is not sufficient to resolve 
ambiguity, it automatically adjusts itself to the right level of 
resolution for addressing a given problem. Similarly, the 
strategy starts with searching for fractally-derived similarity 
between simpler relationships, but, if that is not sufficient to 
resolve ambiguity, it automatically shifts to search for such 
similarity between higher-order relationships.  We present 
preliminary results and initial analysis from applying the 
fractal technique on nearly 3,000 problems from the Odd 
One Out test. 

 Computational Psychometrics   
Psychometrics entails the theory and technique of quantita-
tive measurement of intelligence, including factors such as 
personality, aptitude, knowledge, creativity, and academic 
achievement. AI research on "computational psychomet-
rics" dates at least as far back as Evan’s (1968) Analogy 
program, which addressed geometric analogy problems on 
the Miller Geometric Analogies test. Recently, Bringsjord 
& Schimanski (2003) have proposed psychometric AI, i.e., 
AI that can pass psychometric tests of intelligence, as a 
possible mechanism for measuring and comparing AI.  
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 Visual analogies are common on standardized intelli-
gence tests that measure personality, aptitude, knowledge, 
creativity, and academic achievement, such as the Miller’s 
Geometric Analogies test, the Wechsler’s intelligence test 
(Wechsler 1939), and the Raven’s Progressive Matrices 
test (Raven et al. 1998). Some tests of intelligence, such as 
the Wechsler’s, contain a mix of verbal and visual ques-
tions. Others, such as the Raven’s Progressive Matrices 
test, consist of purely visual analogy problems. There is 
general agreement that addressing the matrix reasoning 
problems on tests such as Raven’s requires integration of 
multiple abilities including visual encoding, pattern detec-
tion, rule integration, similarity assessment, analogical 
transfer, and problem solving. 
 Most computational models of the Raven’s intelligence 
test rely on propositional representations of the visual in-
puts (e.g., Bringsjord & Schimanski 2003; Carpenter, Just, 
& Shell 1990; Lovett, Forbus, & Usher 2007). Given that 
the inputs and outputs of all problems on the Raven’s test 
are visual, there have been have some recent attempts at 
building computational models based on purely visual rep-
resentations and reasoning  (Kunda, McGreggor, & Goel 
2010). The standard Raven’s test however consists of only 
60 problems. 
 In this paper, we present preliminary results and initial 
analysis from applying our technique to the much larger 
corpus of problems from the Odd One Out test of intelli-
gence containing nearly 3000 problems (Hampshire 2010). 
Like our prior work on Raven’s (McGreggor et al. 2011; 
Kunda et al. 2010), our technique here uses fractal repre-
sentations of the problems on the test. However, our work 
on the Odd One Out test develops also develops fractal 
representations into a cognitive strategy. Two of the advan-
tages of our new strategy are that (1) the technique starts 
with fractal representations encoded at a high level of reso-
lution, but, if that is not sufficient to resolve ambiguity, it 
automatically  adjusts itself to the right level of resolution 
for addressing a given problem, and (2) the strategy starts 
with searching for similarity between simpler relationships, 
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but, if that is not sufficient to resolve ambiguity, it auto-
matically shifts its searches for similarity between higher-
order relationships.  

Visual Analogies 
The main goal of our work is to evaluate whether visual 
analogy problems may be solved using purely imagistic 
representations, without converting the images into pro-
positional descriptions during any part of the reasoning 
process.  We use fractal representations, which encode 
transformations between images, as our primary non-
propositional imagistic representation. The representation 
is imagistic (or analogical) in that it has a structural corre-
spondence with the images it represents.  
 Analogies in general are based on similarity and repeti-
tion. Fractal representations capture self-similarity and 
repetition at multiple scales. Thus, we believe fractal repre-
sentations to be a good choice for addressing analogy prob-
lems. Our fractal technique is grounded in the mathemati-
cal theory of general fractals (Mandelbrot 1982) and spe-
cifically of fractal image compression (Barnsley & Hurd, 
1992). We are unaware of any previous work on using 
fractal representations to address either geometric analogy 
problems of any kind or other intelligence test problems. 
However, there has been some work in computer graphics 
on image analogies for texture synthesis in image render-
ing (Hertzmann et al. 2001).  

Fractal Representations 
Consider the general form of an analogy problem as being 
A : B :: C : D.  One can interpret this visually as shown in 
the example in Figure 1.  

Figure 1. An Example of Visual Analogy. 
 

For visual analogy, we can presume each of these analogy 
elements to be a single image. Some unknown transforma-
tion T can be said to transform image A into image B, and 
likewise, some unknown transformation T′ transforms im-
age C into the unknown answer image.  

Analogy, Similarity, and Features 
The central analogy in such a visual problem may then be 
imagined as requiring that T be analogous to T′; that is, the 
answer will be whichever image D yields the most analo-
gous transformation. That T and T’ are analogous may be 
construed as meaning that T is in some fashion similar to 
T’.  The nature of this similarity may be determined by a 
number of means, many of which associate visual or geo-
metric features to points in a coordinate space, and com-
pute similarity as a distance metric (Tversky 1977).  Tver-
sky developed an alternate approach by considering objects 
as collections of features, and similarity as a feature-
matching process.  We adopt Tversky’s interpretation, and 
using fractal representations, we shall define the most 
analogous transform T′ as that which shares the largest 
number of fractal features with the original transform T. 

Mathematical Basis 
The mathematical derivation of fractal image representa-
tion expressly depends upon the notion of real world im-
ages, i.e. images that are two dimensional and continuous 
(Barnsley & Hurd, 1992). A key observation is that all 
naturally occurring images we perceive appear to have 
similar, repeating patterns. Another observation is that no 
matter how closely you examine the real world, you find 
instances of similar structures and repeating patterns. 
These observations suggest that it is possible to describe 
the real world in terms other than those of shapes or tradi-
tional graphical elements—in particular, terms that capture 
the observed similarity and repetition alone.   
 Computationally, determining fractal representation of 
an image requires the use of the fractal encoding algorithm. 
The collage theorem (Barnsley & Hurd, 1992) at the heart 
of the fractal encoding algorithm can be stated concisely:  

For any particular real world image D, there exists 
a finite set of affine transformations T that, if ap-
plied repeatedly and indefinitely to any other real 
world image S, will result in the convergence of S 
into D. 

Although in practice one may begin with a particular 
source image and a particular destination image and derive 
the encoding from them, it is important to keep in mind 
that once the finite set of transformations T has been dis-
covered, it may be applied to any source image, and will 
converge onto the particular destination image.  The col-
lage theorem defines fractal encoding as an iterated func-
tion system (Barnsley & Hurd, 1992). 

The Fractal Encoding Algorithm 
Given an image D, the fractal encoding algorithm seeks to 
discover the set of transformations T. The algorithm is con-
sidered “fractal” for two reasons: first, the affine transfor-
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mations chosen are generally contractive, which leads to 
convergence, and second, the convergence of S into D can 
be shown to be the mathematical equivalent of considering 
D to be an attractor (Barnsley & Hurd, 1992). 

 
 Algorithm 1. Fractal Encoding 

The steps for encoding an image D in terms of another im-
age S are shown in Algorithm 1. The partitioning of D into 
smaller images can be achieved through a variety of meth-
ods. In our present implementation, we merely choose to 
subdivide D in a regular, gridded fashion. Alternatives 
could include irregular subdivisions, partitioning according 
to some inherent colorimetric basis, or levels of detail. 
 We note that the fractal encoding of the transformation 
from a particular source image S into a destination image 
D is tightly coupled with the partitioning P of the destina-
tion image D.   Thus, a stronger specification of the fractal 
encoding T may be thought of as a function: 

T( S, D, P ) = {T1, T2, T3, … }  
where the cardinality of the resulting set is determined 
solely by the partitioning P. 
Searching and Encoding 
As mentioned, a chosen partitioning scheme P extracts a 
set of smaller images di from the destination image D. In 
turn, the entire source image S is examined for a fragment 
that most closely matches that fragment di. The matching is 
performed by first transforming d, as described below, and 
then comparing photometric (or pixel) values.  A simple 
Euclidean distance metric is used for the photometric simi-
larity between the two fragments. 
 The search over the source image S for a matching 
fragment is exhaustive, in that each possible correspon-
dence si is considered regardless of its prior use in other 
discovered transforms. By allowing for such reuse, the en-
coding algorithm captures the important notion of repeti-

tion, one of the two key observations driving fractal encod-
ing. 
Similitude Transformations 
For each potential correspondence, the transformation of di 
via a restricted set of similitude transformations is consid-
ered. A similitude transformation is a composition of a di-
lation, orthonormal transformation, and translation. Our 
implementation presently examines each potential corre-
spondence under eight transformations, specifically dihe-
dral group D4, the symmetry group of a square. 
 We fix our dilation at a value of either 1.0 or 0.5, de-
pending upon whether the source and target image are dis-
similar or identical, respectively. The translation is found 
as a consequence of the search algorithm. 
Fractal Codes 
Once a transformation has been chosen for a fragment of 
the destination image, we construct a compact representa-
tion of that transformation called a fractal code.   
 A fractal code Ti is a six-tuple: 

Ti = < <ox,oy>,<dx,dy>, k, s, c, Op > 

with each member of the tuple defined as follows: 

 <ox,oy> is the origin of the source fragment;  
 <dx,dy> is the origin of the destination fragment di;  
 k ∈ { I,HF,VF,R90,R180,R270, RXY, RNXY }, one of 
the eight transformations;  
 s is the block sized used in the given partitioning;  
 c ∈ [ -255, 255 ] indicates the overall color shift to be   
used  uniformly to all elements in the block; and  
 Op is the pixel-level operation to be used when combin-
ing the color shift c onto pixels in the destination frag-
ment di. 

A fractal code thus collects the spatial and photometric 
properties necessary to transform a portion of a source im-
age into a destination.  
Arbitrary selection of source 
Note that the choice of source image S is arbitrary. Indeed, 
the image D can be fractally encoded in terms of itself, by 
substituting D for S in the algorithm. Although one might 
expect that this substitution would result in a trivial encod-
ing (in which all fractal codes correspond to an identity 
transform), in practice this is not the case, for we want a 
fractal encoding of D to converge upon D regardless of 
chosen initial image. For this reason, the size of source 
fragments considered is taken to be twice the dimensional 
size of the destination fragment, resulting in a contractive 
affine transform. Similarly, color shifts are made to con-
tract.  This contraction, enforced by setting the dilation of 
spatial transformations at 0.5, provides the second of the 
key fractal observations, that similarity and repetition oc-
cur at differing scales.  

Partition D into a set of smaller images, such that  
D = {d1, d2, d3, … }.  

For each image di:  

• Examine the entire source image S for an equiva-
lent image fragment si such that an affine trans-
formation of si will likely result in di.  

• Collect all such transforms into a set of candi-
dates C. 

• Select from the set C that transform which most 
minimally achieves its work, according to some 
predetermined metric. 

• Let Ti be the representation of the chosen trans-
formation associated with di. 

The set T = {T1, T2, T3, … } is the fractal encod-
ing of the image D. 
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Arbitrary nature of the encoding 
The cardinality of the resulting set of fractal codes which 
constitute the fractal encoding is determined solely by the 
partitioning of the destination image.  However, the ordi-
nality of that set is arbitrary.  The partitioning may be trav-
ersed in any order during the matching step of the encoding 
algorithm.  Similarly, once discovered, the individual 
codes may be applied in any order, so long as all of the 
codes are applied in any particular iteration, to satisfy the 
constraint of the Collage Theorem.  
 The fractal encoding algorithm, while computationally 
expensive in its exhaustive search, transforms any real 
world image into a much smaller set of fractal codes, 
which form, in essence, an instruction set for reconstituting 
the image.  

Determining Fractal Features 
As we have shown, the fractal representation of an image 
is an unordered set of specific similitude transformations, 
i.e. a set of fractal codes, which compactly describe the 
geometric alteration and colorization of fragments of the 
source image that will collage to form the destination im-
age. While it is tempting to treat contiguous subsets of 
these fractal codes as features, we note that their derivation 
does not follow strictly Cartesian notions (e.g. adjacent 
material in the destination might arise from strongly non-
adjacent source material). Accordingly, we consider each 
of these fractal codes independently, and construct candi-
date fractal features from the individual codes themselves. 
 Each fractal code yields a small set of features, formed 
by constructing subsets of the underlying six-tuple. These 
features are determined in a fashion to encourage both po-
sition-, affine-, and colorimetric-agnosticism, as well as 
specificity. Our algorithm creates features from fractal 
codes by constructing almost all possible subsets of each of 
the six members of the fractal code’s tuple (we ignore sin-
gleton sets as well as taking the entire tuple as a set).  
Thus, in the present implementation of our algorithm, we 
generate C(6,2)+C(6,3)+C(6,4)+C(6,5) = 106 distinct fea-
tures for each fractal code, where C(n, m) refers to the 
combination formula (“from n objects, choose m”). 

Mutuality  
The analogical relationship between source and destination 
images may be seen as mutual.  That is, the source is to the 
destination as the destination is to the source.  However, 
the fractal representation which entails encoding is decid-
edly one-way (e.g. from the source to the destination).  To 
capture the bidirectional, mutual nature of the analogy be-
tween source and destination, we now introduce the notion 
of a mutual fractal representation.  

Let us label the representation of the fractal transforma-
tion from image A to image B as TAB, as shown in Figure 

2.  Correspondingly, we would label the inverse represen-
tation as TBA.  

Figure 2. Mutual relationships. 

We shall define the mutual analogical relationship between 
A and B by the symbol MAB, given by this equation: 

MAB = TAB ∪ TBA 

By exploiting the set-theoretic nature of fractal representa-
tions TAB and TBA to express MAB as a union, we afford the 
mutual analogical representation the complete expressivity 
and utility of the fractal representation. 
 Thus, in a mutual fractal representation, we have the 
necessary apparatus for reasoning analogically about the 
relationships between images, in a manner which is de-
pendent upon only features which describe the mutual vis-
ual similarity present in those images. 

Figure 3. Odd One Out problems. 

The Odd One Out Problems 
The Odd One Out test of intelligence (Hampshire 2010) 
consists of 3x3 matrix reasoning problems organized in 20 
levels of difficulty.  In the test, a participant must decide 
which of the nine abstract figures in the matrix does not 
belong (the so-called “Odd One Out”).  Figure 3 shows a 
sampling of the problems, illustrating the nature of the 
task, and several levels of complexity. 
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From the computational perspective, one drawback of 
computationally modeling a visual analogy task such as the 
Raven’s test is that the algorithm for generating the prob-
lems on the test is not known; human examiners generate 
the test problems based on historical and empirical data.  In 
contrast, problems on the Odd One Out test are generated 
using a complex set of algorithms (Hampshire 2010).  
Thus, many tens of thousands of novel problems may be 
generated.  

Finding the Odd One Out, Fractally 
We now present our algorithm for tackling the Odd One 
Out problem, using the mutual fractal representation as a 
basis for visual reasoning.  The algorithm consists of three 
phases: segmentation, representation, and reasoning. 
The segmentation phase 
First, we must segment the problem image P into its nine 
constituent subimages, I1 through I9.  In the present imple-
mentation, the problems are given as a 478x405 pixel 
JPEG image, in the RGB color space.  The subimages are 
arrayed in a 3x3 grid within the problem image.  At this re-
solution, we have found that each subimage fits well within 
a 96x96 pixel image, as may be seen in Figure 4. 

Figure 4. Segmentation of an Odd One Out problem 

The representation phase 
We next must transform the problem into the domain of 
fractal representations.  Given the nine subimages, we 
group subimages into pairs, such that each subimage is 
paired once with the other eight subimages.  Thus, we form 
36 distinct pairings.  We then calculate the mutual fractal 
representation Mij for each pair of subimages Ii and Ij.  We 
determine the fractal transformation from Ii to Ij in the 
manner described in (McGreggor et al. 2011), then form 
the union of the sets of codes from the forward and back-
ward fractal transformation to construct Mij. 
 The block partitioning we use initially is identical to the 
largest possible block size (in this case, 96x96 pixels), but 
subsequent recalculation of Mij may be necessary using 
finer block partitioning (as proscribed in the reasoning 
phase).  In the present implementation, we conduct the 
finer partitioning by uniform subdivision of the images into 
block sizes of 48x48, 24x24, 12x12, 6x6, and 3x3. 

Extended Mutuality 
At this phase, we note that the mutual fractal representation 
of the pairings may be employed to determine similar mu-
tual representations of triplets or quadruplets of images.  
These subsequent representations may be required by the 
reasoning phase. As a notational convention, we construct 
these additional representations for triplets (Mijk) and quad-
ruplets (Mijkl) in this manner: 

Mijk = Mij ∪ Mjk ∪ Mik    

Mijkl = Mijk ∪ Mikl ∪ Mjkl ∪ Mijl  

 Visually, we may interpret these extended mutual repre-
sentations as shown in Figure 5.  

Figure 5. Mutuality in Pairs, Triplets, and Quadruplets  

The reasoning phase 
We shall determine the odd one out solely from the mutual 
fractal representations, without reference or consideration 
to the original imagery.  We start by considering groupings 
of representations, beginning with pairings, and, if neces-
sary, advance to consider other groupings.  
Reconciling Multiple Analogical Relationships  
For a chosen set of groupings, G, we must determine how 
similar each member is to each of its fellow members. We 
first derive the features present in each member, as de-
scribed above, and then calculate a measure of similarity as 
a comparison of the number of fractal features shared be-
tween each pair member (Tversky 1977).  
 We desire a metric of similarity which is normalized 
with respect to the number of features under consideration, 
and where the value 0.0 means entirely dissimilar and the 
value 1.0 means entirely similar.  Accordingly, in our pre-
sent implementation, we use the ratio model of similarity 
as described in (Tversky 1977).  According to the ratio 
model, the measure of similarity S between two representa-
tions A and B is calculated thusly: 

 S(A,B) = f(A ∩ B) / [f(A ∩ B) + αf(A-B) + βf(B-A)]  

where f(X) is the number of features in the set X.  Tversky 
notes that the ratio model for matching features generalizes 
several set-theoretical models of similarity proposed in the 
psychology literature, depending upon which values one 
chooses for the weights α and β. To favor features from ei-
ther image equally, we have chosen to set α = β = 1. 
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Relationship Space  
As we perform this calculation for each pair A and B taken 
from the grouping G, we determine for each member of G 
a set of similarity values. We consider the similarity of 
each analogical relationship as a value upon an axis in a 
large “relationship space” whose dimensionality is deter-
mined by the size of the grouping: for pairings, the space is 
36 dimensional; for triplets, the space is 84 dimensional; 
for quadruplets, the space is 126 dimensional.  
Treating Maximal Similarity as Distance  
To arrive at a scalar similarity score for each member of 
the group G, we construct a vector in this multidimensional 
relationship space and determine its length, using a Euclid-
ean distance formula. The longer the vector, the more simi-
lar two members are; the shorter the vector, the more dis-
similar two members are.  As the Odd One Out problem 
seeks to determine, literally, “the odd one out,” we seek to 
find the shortest vector, as an indicator of dissimilarity. 
Distribution of Similarity  
We have determined a score for the grouping G, but have 
not yet arrived at individual scores for the subimages.  To 
determine the subimage scoring, we distribute the similar-
ity equally among the participating subimages.  For each of 
the nine subimages, a score is generated which is propor-
tional to its participation in the similarity of the grouping’s 
similarity vectors.  If a subimage is one of the two images 
in a pairing, as an example, then the subimage’s similarity 
score receives one half of the pairing’s calculated similar-
ity score. 
 Once all of the similarity scores of the grouping have 
been distributed to the subimages, the similarity score for 
each subimage is known.  It is then a trivial matter to iden-
tify which one among the subimages has the lowest simi-
larity score.  As it turns out, this may not yet sufficient for 
solving the problem, as ambiguity may be present. 
Ambiguity   
Similarity scores for the subimages may vary widely. If the 
score for any subimage is unambiguously smaller than that 
of any other subimage, then the subimage is deemed “the 
odd one out.”  By unambiguous, we mean that there is no 
more than one score which is less than ε, which we may 
vary as a tuning mechanism for the algorithm, and which 
we see as a useful yet coarse approximation of the bound-
ary between the similar and the dissimilar in feature space.  
In practice, we calculate the deviation of each similarity 
measure from the average of all such measures, and use 
confidence intervals (as calculated from the standard de-
viation) as a means for indicating ambiguity.  
Refinement strategy 
However, if the scoring is inconclusive, then there are two 
readily available mechanisms at the algorithm’s disposal:  
to modify the grouping such that larger sets of subimages 

are considered simultaneously (from pairs to triplets, or 
from triplets to quadruplets), or to recalculate the fractal 
representations using a finer partitioning.  In our present 
implementation, we attempt bumping up the elements con-
sidered simultaneously as a first measure.  If after reaching 
a grouping based upon quadruplets the scoring remains in-
conclusive, then we consider that the initial representation 
level was too coarse, and rerun the algorithm using ever 
finer partitions for the mutual fractal representation.  If, af-
ter altering our considerations of groupings and examining 
the images at the finest level of resolution the scores prove 
inconclusive, the algorithm quits, leaving the answer un-
known. 

Example 
We now present an example of the algorithm, selected for 
its illustrative power, and not for its difficulty. The algo-
rithm begins by segmenting the image into the nine subi-
mages.  For convenience, let us label the images A through 
I, as shown in Figure 6.  Once segmented, fractal represen-
tations are formed for each possible pairing of the subi-
mages, for a total of 36 distinct representations.  The initial 
partitioning of the subimages for fractal encoding shall be 
at the coarsest possible level, 96x96 pixels. 

Figure 6. The example, segmented and labeled 

In this example, it is quite clear to the reader that there are 
pairings which are identical (e.g. {A,E}, {E, F}, {A, F}, 
{C, H}, {D, G}, {D, I}, and {G, I}).  The fractal represen-
tation of each of these pairings, at this coarsest level of par-
titioning (96x96) will yield the Identity transformation, 
with zero photometric correction.  Thus the similarity be-
tween these particular transform pairs will be 1.0.  These 
pairings we shall deem therefore to be perfectly analogous. 
However, not all of the representations will be similar. For 
example, the pairing of subimage C to any image other 
than subimage H will result in a substantially different 
fractal encoding than the {C,H} pairing.   

229



For each subimage, we calculate the similarities of all 
eight possible pairings of that subimage against all other 
unique pairings.  We next construct a similarity vector in 
36-space for each pairing. 
 We derive the length of the 36-tuple similarity vector,  
normalize the result, and distribute this value to each of the 
subimages involved in the pairing by summing.  In this ex-
ample, the length of the similarity vector for the pairing 
{A,B} is found to be 4.55, we divide by 6 (the length of a 
36-tuple with all entries 1.0), for a value of 0.7583.  This 
value is added to the current summation for subimages A 
and B.  At the close of this process, each subimage will 
have a score, representing the distributed similarity scores 
for all of the pairings in which it played a part. 
 The algorithm then examines the set of scores for all of 
the subimage, looking for ambiguity.  Our present imple-
mentation defines ambiguity as the data having more than 
one item which deviates from the mean by a value greater 
than the standard deviation of the data.  If this holds true, 
then the result is deemed ambiguous.   

 Table 1 illustrates the ambiguity found in using a 96x96 
partitioning of the subimages, with two values having a 
deviation of 1.713σ.  Thus, the algorithm must proceed to a 
finer partitioning in order to produce an unambiguous an-
swer.  Using a 48x48 partitioning, produces a single unam-
biguous result, with a deviation of 2.117σ. Accordingly, 
subimage B is selected as the Odd One Out. 

Results, Preliminary Analysis and Discussion 
We have run our algorithm against 2,976 problems of the 
Odd One Out.  These problems were randomly selected 
from a span of difficulty from the very easiest (level one) 
up to the most difficult (level 20).  The example problem 
presented in Figure 6 is a level 11 problem. 
 We restricted the algorithm to attend only to pairings of 
subimages, and to progress from an initial partitioning of 
96x96 blocks (essentially, the entire subimage) to no fur-
ther refinement of partitioning than 6x6.  We made these 
restrictions in order to fully exercise the strategic shifting 
in partitioning, to assess the similarity calculations, and to 
judge the effect of mutuality, at a tradeoff in execution 
time.  The results are presented in Table 2. 

  

Table 2. Scores for pairings of the OddOneOut. 

We note that there are quite clear degrees of performance 
variation generally grouped according to sets of levels 
(levels 1-4, 5-8, 9-12, 13-16, and 17-20). This is consistent 
with the (unknown both to us and to the algorithm) knowl-
edge that the problems at these levels were generated using 
varying rules.  Our algorithm at present does not carry 
forward information between its execution of each prob-
lem, let alone between levels of problems.  However, that 
the output illustrates such a strong degree of performance 
shift provides a further research opportunity in the areas of 
reflection, abstraction and meta-reasoning, in the context 
of the original fractal representations. 
 The rightmost five columns of the results data provide a 
breakdown of errors made at differing partitioning levels.  
Immediately the reader will note that the majority of errors 
occur when the algorithm stops at quite high levels of par-
titioning (96x96 or 48x48).  We interpret this as strong 
evidence that there exists levels-of-detail (or partitioning) 
which are too gross to allow for certainty in reasoning.  In-
deed, the data upon which decisions are made at these lev-
els are three orders of magnitude less than that which the 
finest partitioning affords (roughly 100 features at 96x96 
versus more than 107,000 features at 6x6).  We find an op-
portunity for a refinement of the algorithm to assess its cer-
tainty (and therefore, its halting) based upon a naturally 
emergent artifact of the representation. 
 A temptation might be to reverse the partitioning proc-
ess, beginning at the finest partition (6x6) and progress 
upward until ambiguity appears due to insufficient level of 
detail.  In an earlier test of this notion, using a random 
sampling of problems across a span of difficulty levels, we 
found that ambiguity existed at both small and large levels 
of detail; that is, that ambiguity exists at either too fine or 
too large a level of detail, and that an unambiguous answer 
arose once some sufficiency in level of detail was realized.  
It is important to note that the sufficient level of detail was 
discoverable by the algorithm, emerging from the features 
derived from the fractal representation.   

96x96

0.727 0.727 0.674

0.716 0.727 0.727

0.716 0.674 0.716

μ : 0.711, σ : 00.022

48x48

0.534 0.413 0.468

0.510 0.534 0.534

0.510 0.468 0.510

μ : 0..499, σ : 00.041

Table 1. Similarity scores for 96x96 and 48x48 partitions.
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 The errors which occurred at the finest level of partition-
ing (6x6) are caused not due to the algorithm reaching an 
incorrect unambiguous answer (though this is so in a few 
cases) but rather that the algorithm was unable to reach a 
sufficiently convincing or unambiguous answer.  As we 
noted, these results are based upon calculations involving 
considering shifts in partitioning only, using pair wise 
comparisons of subimages. Thus, there appear to be Odd 
One Out problems for which considering pairs of subi-
mages shall prove inconclusive (that is, at all available lev-
els of detail, the results will be found to be ambiguous).  It 
is this set of problems which we believe implies that a shift 
in grouping (from pairs to triplets, or from triplets to quad-
ruplets) must be undertaken to reach an unambiguous an-
swer. 

Conclusion 
We have described a new strategy employing fractal repre-
sentations for addressing visual analogy problems on the 
Odd One Out test of intelligence. This strategy uses a pre-
cise characterization of ambiguity which emerges from 
similarity measures derived from fractal features. When the 
fractal representation at a given scale results in an ambigu-
ous answer to an Odd One Out problem, our algorithm 
automatically shifts to a finer level of resolution, and con-
tinues this refinement step until it reaches an unambiguous 
answer.  If the answer remains ambiguous through all of 
the possible levels of resolution, then our algorithm shifts 
toward considering groups of triplets, and then quadru-
plets, working through each grouping from coarsest to fin-
est resolution as necessary. 
 Our analysis, while intriguing, is preliminary, and our 
observations are based upon results of running the algo-
rithm against a large (2,976) corpus of Odd One Out prob-
lems.   
 Fractal representations are imagistic (or analogical) in 
that they have a structural correspondence with the images 
they represent. Like other representations, fractal represen-
tation support inference and composition. As we men-
tioned in the introduction, we have earlier used a different 
fractal technique to address a subset of problems on Ra-
ven’s Standard Progressive Matrices Test (McGreggor et 
al. 2011; Kunda et al. 2010). That work, and the algorithm 
and results presented here, suggests a degree of generality 
to fractal representations for addressing visual analogy 
problems. 
 The fractal representation captures detail at multiple 
scales.  In doing so, it sanctions an iterative problem solv-
ing strategy. The twin advantages of the strategy are (1) to 
start at high level of resolution, but, if that is not sufficient 
to resolve ambiguity, to automatically  adjust to the right 
level of resolution for addressing a given problem, and (2) 

to start searching for similarity between simpler relation-
ships, but, if that is not sufficient to resolve ambiguity, to 
automatically search for similarity between progressively 
higher-order relationships. Cognitively, this is an  illustra-
tion of what Davis (et al. 1993) referred to as the deep, 
theoretic manner in which representation and reasoning are 
intertwined.  This powerful strategy emerges from using 
fractal representations of visual images. 
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