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Abstract 
As people engage in increasingly complex conversations 
with computers, the need for generality and flexibility in 
spoken dialogue systems becomes more apparent. This pa-
per describes how three different spoken dialogue systems 
for the same task reason with knowledge and certainty as 
they seek to understand what people want. It advocates sys-
tems that exploit partial understanding, consider credibility, 
and are aware both of what they know and of their certainty 
that it matches their users’ intent. 

Introduction   
In human-machine dialogue a person (the user) and a spo-
ken dialogue system (the SDS) communicate with speech 
to address a common task. Although they seek to under-
stand one another (i.e., to perceive each other’s intent), 
human-machine dialogue is often fraught with frustration 
for the human and uncertainty for the system. Our thesis is 
that a proficient system requires knowledge about how to 
agree with its user on exactly which objects are under dis-
cussion and what is to be done with them. This paper re-
ports on three SDSs that take different approaches to these 
challenges. The most promising employs a clearinghouse 
for knowledge about what the system knows, hypothesizes, 
and expects, along with an extensive variety of rationales 
that it learns how to use. This rich cognitive structure sup-
ports flexible reasoning and interaction during dialogue. 

Understanding benefits from a shared context, knowl-
edge that allows speakers to focus upon the same objects 
(targets) and ways to talk about them. Because human 
speech is ridden with disfluencies (e.g., filled pauses, repe-
titions and self-repairs), and because a description may not 
identify a unique object, people consistently assure one an-
other about their understanding, including which targets 
are in their common ground. This behavior, known as 
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grounding, uses vocal gestures (e.g., uh-huh), speech, and 
non-verbal cues to confirm mutual understanding (Clark 
and Schaefer, 1989). Confronted by partial or inaccurate 
information about a target, an SDS too may be able to use 
knowledge to collaborate on the common ground. 
 To understand its users, an SDS must advance well be-
yond speech recognition (translation from audio signal to 
text string). Dialogue for a complex task may include mul-
tiple subtasks and targets of different kinds. Moreover, if 
an SDS cedes to the user some of its control over the path 
dialogue may take (mixed initiative), the SDS must deter-
mine both the targets and how they relate to one another.  

An SDS misunderstands when it misinterprets what it 
has heard, and binds some target or target feature incor-
rectly. Misunderstanding is common in human-machine 
dialogue, but difficult to detect and recover from. A non-
understanding occurs when the SDS cannot go from an in-
put audio signal to a useful representation of what has been 
said. A typical commercial system’s response to a non-
understanding is to ask the user to repeat. Repeated non-
understandings can drive the system to end the dialogue.  

To guard against misunderstanding, a commercial SDS 
often grounds explicitly: it repeats what it believes the user 
has said and insists upon confirmation before it proceeds. 
That drive for accuracy (e.g., “I heard you say 17Z946-
AQ347R. Is that correct?”) annoys many users. Moreover, 
to prevent the user from saying the unexpected, the SDS 
often maintains system initiative, that is, determines what is 
under discussion, and even what may be said.  
  In response to these challenges, we advocate novel ap-
proaches to partial information and certainty for SDSs. We 
recently introduced partial understanding as a confident in-
terpretation of some part of the user’s intent, one that en-
genders a question whose answer could support and en-
hance that interpretation (Gordon, Epstein and Passonneau, 
2011). This paper elaborates on how partial understanding 
can avoid both non-understandings and misunderstandings. 
For example, given a person’s full name as a target, with 
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recognition confidence high for the last name but low for 
the first, a traditional SDS might re-prompt for the full 
name or signal non-understanding. Partial understanding 
would engage the user in a subdialogue that grounds the 
last name, and then elicits a first name consistent with the 
database and similar to the poorly-recognized first name. 

We describe three SDSs for the same task: book orders 
at the Heiskell Braille and Talking Book Library, part of 
the New York Public Library and the Library of Congress. 
Heiskell’s patrons order their books by telephone and re-
ceive them by mail. Book requests are by title or author, as 
often as by catalog number. All three SDSs have ample 
procedural knowledge about communication and dialogue. 
They know that speakers should take turns, and that listen-
ing provides a continuous audio signal, only some of which 
should be regarded as speech. They know that speech sig-
nals can be mapped to phonemes, and that only some se-
quences of phonemes are meaningful (known words). They 
know too that relevant word sequences provide possible 
bindings for targets or for indicators (e.g., yes, no).  
 To understand and respond to spoken input, commercial 
SDSs and applications where dialogue is subsidiary often 
rely on a pipeline architecture. A pipeline does best with 
well-recognized utterances about one class of objects over 
a limited vocabulary. In contrast, our library task is note-
worthy for its confusability (e.g., the same name could be a 
patron, a title, or an author), its unusually long and com-
plex responses (e.g., average title length of 6.4 words), and 
its scale: 5000 patrons plus a vocabulary of 54,448 words 
drawn from 71,166 books by 28,031 authors. Moreover, 
book titles are more like unrestricted language than like 
structured data, and more difficult to understand. This task 
also challenges automated speech recognition (ASR) with 
users’ diverse native language, and with transmission noise 
and background noise in the audio signal. The next section 
describes the pipeline. Subsequent sections describe our 
three SDSs for the library task, explain how they differ in 
their use of knowledge and certainty, and focus on ground-
ing. Finally, we discuss results and future work.  

Knowledge and error in a pipeline 
We take as a pipelined model Olympus/RavenClaw, an 
SDS architecture that has supported the development of 
more than a dozen spoken dialogue systems (Bohus and 
Rudnicky, 2009). When it detects voice activity in the in-
coming signal, such a system’s audio manager labels and 
segments it into frames (short intervals of signal analysis 
output), and judges when the user began and stopped 
speaking (endpointing). It forwards the frames to an inter-
action manager (IM) that determines whether the user in-
tends to continue speaking despite a pause. The IM also 
supervises while text strings from the speech recognizer 

are mapped to concepts by the subsequent natural language 
understanding (NLU) process. If the initial endpointing is 
not semantically coherent, the IM can override it (e.g., 
combine two speech segments into one utterance). 

To transcribe the speech signal into text, the ASR relies 
on an acoustic model that maps speech sounds to pho-
nemes, a lexicon that maps phoneme sequences to words, 
and a language model that indicates the probabilities of se-
quences of n words. The ASR forwards its output to a se-
mantic parser, where a concept is an attribute of an object 
(e.g., a book’s title). The parser tries to associate a given 
ASR text string with one or more concepts, and can skip 
words that cannot be parsed. A confidence annotator then 
selects at most one best parse.  

The pipeline forwards that parse with its confidence to 
the SDS’s dialogue manager. Given a confident parse, the 
dialogue manager performs one or more optional queries 
to backend databases, followed by a command to the natu-
ral language generator (NLG). For example, if the best 
parse indicated that the utterance was a book title, the dia-
logue manager could query the book database for similar 
titles, and then direct the NLG to formulate text to confirm 
the most similar (e.g., “Did you want Jane Eyre?”). The 
NLG forwards that text to the text-to-speech module, 
which in turn forwards the speech it generates to the inter-
action manager for transmission to the audio manager and 
then to the user. Given an unconfident parse or none at all, 
the dialogue manager invokes error handling appropriate to 
a misunderstanding or a non-understanding. 

Errors may arise at many points in this pipeline. The 
audio manager might improperly endpoint the speech sig-
nal, and the IM might be unable to correct it. The user’s 
words might not be in the system’s lexicon. Disfluencies 
might disrupt the structure of spoken dialogue (Jurafsky 
and Martin, 2008). The ASR might mismatch signal to 
phoneme, or phoneme sequence to words. Finally, even 
with perfect speech recognition, a string might have a best 
(or first) parse that is incorrect, or even no parse at all.  

Understanding in Three SDSs 
We have built three systems for the library task. The first 
two are full SDSs that accept telephoned orders for up to 
four books, and can reference copies of Heiskell’s entire 
book and (sanitized) patron databases. During a call, each 
dialogue addresses a sequence of subtasks: identify the 
user as a known patron, accept book requests, and offer an 
order summary. (Book requests are the most difficult.) De-
spite increasingly accurate ASR, deployed SDSs some-
times contend with word error rates (WER) as high as 68% 
(Raux et al., 2005). The work reported here has a similar 
WER to support research on strategies robust to poor ASR 
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The first SDS, CheckItOut, was developed with Olym-
pus/RavenClaw modules. CheckItOut’s decisions rely on 
PocketSphinx, a fast, efficient speech recognizer, and Wall 
Street Journal acoustic models. From a randomly-chosen 
subset of its database plus knowledge derived from its se-
mantic grammar, CheckItOut generates both its lexicon 
and its language models with the Logios language compila-
tion suite. Although its Phoenix parser is already robust to 
ASR noise, CheckItOut supplements it with productions 
derived from MICA dependency parses of book titles 
(Bangalore et al., 2009; Gordon and Passonneau, 2010). As 
a result, it can parse even poorly recognized title strings. 
Parses are scored by the Helios confidence annotator. The 
RavenClaw dialogue manager supplies task-independent 
error-handling mechanisms through a domain-dependent 
dialogue task tree (described below).  

The second SDS, CheckItOut+, is identical to the first 
except for its dialogue manager, which models how people 
solve the problems that confront the system. It relies on in-
formation from all stages of spoken language understand-
ing (SLU) to override the pipeline at three key decision 
points. While CheckItOut queries its database only when it 
understands (i.e., has a single confident parse whose slots 
match a known concept), CheckItOut+ queries with a full 
ASR text string (voice search), without recourse to Phoe-
nix or Helios. When CheckItOut does not understand, it 
asks the user to repeat, but CheckItOut+ asks questions. 
(Further details appear in the next section.) Finally, while 
CheckItOut ends a call after several consecutive non-
understandings, CheckItOut+ can move on, that is, ask the 
user to request another book and return to this one later.  

The third SDS, FX2, implements some of the functional-
ity of a full system with modules built from FORR, a cog-
nitive architecture for learning and problem solving 
(Epstein, 1994). Rather than postulate a single decision ra-
tionale (e.g., voice-search confidence), a FORR-based sys-
tem has Advisors, resource-bounded procedures that pro-
duce any number of comments. Each comment supports or 
opposes one action with a strength that reflects that Advi-
sor’s underlying rationale. (For example, comment strength 
may reflect the degree to which a match is the same length 
or sounds the same.) FX2 is built within FORRSooth, a 
new SDS architecture with six FORR-based services, each 
with its own set of heuristic dialogue Advisors. To make a 
decision, a service solicits comments about possible ac-
tions from its Advisors, tabulates a weighted combination 
of comment strengths that address each action, and identi-
fies actions with high support. FX2 conducts selected sub-
dialogues for the library task. FX2 also uses PocketSphinx 
but, like CheckItOut+, it is more resourceful in its re-
sponses to partial understanding and non-understanding. 
FX2 has a flexible dialogue representation, and a host of 
rationales with which to reason about what is expected, 
what it has hypothesized, and what has been said.  

Noteworthy differences 
An SDS should respond appropriately, effectively, and in 
real time to its user’s speech. SDS performance is gauged 
not only by success (task achievement) and cost to the user 
(e.g., elapsed time), but also by user satisfaction, a non-
trivial metric where faster and more accurate is not always 
better (Walker et al., 1997). All differences reported below 
are significant at the 95% confidence level under a t-test. 

Before each call in the full SDS experiments reported 
here, the user retrieved a randomly-generated assignment 
from our website: a patron identity and data on four books. 
The user was told to request one book by author, one by ti-
tle, one by catalogue number, and one by any method of 
her choice. (For a request by author, a query returns the 
three books by that author with the highest circulation.) 
Each experiment had 10 subjects make 50 calls each to the 
SDS. In the FX2 experiment, users interacted with the sys-
tem by microphone rather than telephone, and interactions 
were subdialogues for a concept, such as author identity.  

CheckItOut relies on matching 
Even among many choices, people can ferret out an object 
that corresponds to a speaker’s intent. Consider, for exam-
ple, a book title the recognizer reported as SOONER SHEEP 
MOST DIE. Our pilot study gave similarly noisy ASR for 50 
book titles, a plain text file of the library’s 71,166 titles, 
and unlimited time offline, to each of 3 subjects 
(Passonneau et al., 2009). They correctly matched 74% of 
the ASR strings to a listed title.  
 CheckItOut matches such noisy ASR against its data-
base with the Ratcliff/Obershelp similarity metric between 
two strings (R/O score): the ratio of the number of correct 
characters to the number of characters (Ratcliff and 
Metzener, 1988). (For example, the R/O score for Robert 
Lowell and ROLL DWELL is 0.61.) CheckItOut’s best 
matches for SOONER SHEEP MOST DIE are Soon She Must 
Die, Why Someone Had to Die, and The Messenger Must 
Die. Clearly, the first is the intended book. Indeed, given a 
single confident parse from noisy ASR for book titles (with 
a WER of about 70%), the search return with the top R/O 
score is the correct match about 65% of the time (Ligorio 
et al., 2010). A skilled human, however, can achieve 
85.5% accuracy at this task, as we shall see shortly. 
 When CheckItOut produces a single confident parse for 
a title or an author, its dialogue manager searches for it in 
the database with the parsed ASR words. It then offers the 
user the return with the top R/O score, as in Figure 1. Al-
though 65% accuracy is not satisfactory to people, another 
6% of the time the correct match is elsewhere in the top 10 
returns (Ligorio et al., 2010). For these cases CheckItOut+ 
and FX2 bring to bear additional knowledge already within 
the system, but with very different approaches. 
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CheckItOut+ tries harder 
CheckItOut+ processes a single confident parse the way 
CheckItOut does. In the absence of a single confident 
parse, when CheckItOut would have signaled non-under-
standing, CheckItOut+ uses three learned models to ad-
vance the dialogue. If it has at least one ASR text string but 
no confident parse, Model S (for search) decides whether 
the most confident ASR text string is good enough to use 
in voice search. If so, CheckItOut+ searches three times, 
because the utterance might refer to a book by title, author, 
or catalogue number. Model O (for offer) determines 
whether to offer the return with the highest R/O score, or to 
request additional information from the user. Otherwise, if 
CheckItOut+ did not do voice search, it uses its Model Q 
(for question) to decide whether to question the user about 
another way to identify the book or merely to signal non-
understanding. Figure 2(a) is an example of voice search; 
Figure 2(b) is a request for further description.  
 CheckItOut+’s models are the result of logistic regres-
sion on 163 features available at runtime. The models are 
based on data from an elaborate experiment that replaced 
CheckItOut’s dialogue manager with an ablated wizard, a 
person given the same input and query facility as the SDS, 
and restricted to a limited set of dialogue acts. The models 
were learned from system features and wizard actions 
logged during 913 dialogues (Ligorio, 2011).  

The knowledge embedded in these models supports a 
different kind of dialogue. The only subject who had called 
both CheckItOut and then, months later, called CheckI-
tOut+, commented on the change: “This new system just 
doesn’t let up on you.” CheckItOut+ is indeed persistent, 
resulting in dialogue like Figure 2(b).  

CheckItOut+’s models use 24 features in all, only 2 of 
which (author and title queries) are library-specific. An ad-
jacency pair is the portion of the dialogue from one system 
prompt to just before the next one; it may include multiple 
user utterances. Model S determines whether to search on 
the ASR; its features describe the current book request 
(number of adjacency pairs, number of database or title 
queries for it), the dialogue (number of questions thus far), 
the context (whether this adjacency pair was initiated by an 
explicit confirmation, whether or not a non-understanding 

had just occurred), the SLU (average ASR word confi-
dence, number of words covered by the best parse, number 
of parses for this ASR, whether this is the top grammar slot 
in the best parse tree), and the number of author queries in 
this request. Model O decides whether to offer a book, 
based on whether or not this is a new request, the total 
number of move ons, mean acoustic score, and mean and 
standard deviation of the R/O scores. Finally, Model Q de-
cides whether to ask the user a question given the number 
of user utterances in this adjacency pair and features that 
describe the current request: number of author queries for 
it, number of partial explicit confirmations for it, maximum 
ASR word confidence, overall acoustic model score, 
whether there was a title slot in the best parse, the number 
of words not covered by the best parse, and the confidence 
in the best parse. Model Q also shares three features with 
Model S: whether the current adjacency pair was initiated 
by an explicit confirmation, average ASR word confi-
dence, and number of author queries in this request.  
 CheckItOut+ improved task success. Throughput rose —
the number of ordered books increased from 3.22 with 
CheckItOut to 4.00 per call, while the elapsed time per or-
dered book decreased from 65.57 to 56.01 seconds. Costs 
rose too — the system spoke more, and the user had to 
speak more often. Total elapsed time per call rose from 
210.93 to 223.96 seconds, while the elapsed time per cor-
rect book decreased from 87.89 to 82.95. CheckItOut+ 
identified more books correctly on every call (2.70 instead 
of 2.40), but it also got more wrong, which forced the user 
to correct it more often.   
 To gauge user satisfaction, each subject completed the 
same questionnaire about her experience with CheckItOut 
or CheckItOut+ 3 times in the course of her 50 calls. Al-
though their answers were consistent (Cronbach’s α = .97), 

(a) CheckItOut+: What's the next book?  
ASR: .FOR. .NONDRIVERS. .SCHULLER. CHAPMAN  
CheckItOut+: Is the author Fern Schumer Chapman?  
ASR: YES  
CheckItOut+: Would you like Motherland beyond the Holo-
caust: A Mother-Daughter Journey to Reclaim the Past? 
ASR: YES  

 
(b) CheckItOut+: What's the next book?  

ASR: DUST .TO. DUNE  
CheckItOut+: Is the title Dust to Dust ? 
ASR: NO  
CheckItOut+: Sorry, I misunderstood. Can you repeat the title 
please? 
ASR: GOING THE .OTHER. ARETHA THAT  
CheckItOut+: Can you please give me the catalogue number?  
ASR: THREE ONE NINE NINE EIGHT  
CheckItOut+: Gorbachev: Heretic of the Kremlin. Got it! 

 
Figure 2: CheckItOut+ dialogue fragments harness partial under-
standing despite unconfident ASR (delimited by periods). (a) Use 
of voice search. (b) Request for further description. 

CheckItOut: Sorry, I misunderstood. Can you repeat the author? 
ASR: DIDN’T I AM THE .GOLDEN. ARM 
CheckItOut: Is the title The Man with the Golden Arm? 
ASR: NO 
CheckItOut: Sorry, I misunderstood. Can you repeat the title 
please? 
ASR: .A. .AMBLING. .THE. .GAME. .EDELMAN. STORY 
CheckItOut: Is the title Up and Running: The Jami Goldman 
Story? 
ASR: YES 
 
Figure 1: Part of a CheckItOut dialogue. ASR is in uppercase.  
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there was only one significant difference: CheckItOut+ us-
ers more often indicated that they had to pay close atten-
tion while using that system, probably because this SDS 
responds to partial understanding with a question, not a re-
quest to repeat. There was no statistically significant sup-
port, however, for user preference of one system over the 
other, even though CheckItOut+ identified more books cor-
rectly and processed individual book requests faster. 

FX2 constructs a dynamic representation 
As required by RavenClaw, CheckItOut’s dialogue man-
ager is a task tree, a hierarchy of pre-specified dialogue 
procedures (e.g., Login, in Figure 3(a)). Some leaf nodes 
(e.g., Get area code) issue prompts to determine values for 
concepts. The task tree is executed depth-first, but precon-
ditions on nodes can redirect it. For example, Inform 
lookup error will return control to Login if there is no 
match on the telephone number. The task tree effectively 
preprograms dialogue flow. (RavenClaw’s support for lim-
ited mixed initiative was not used here.) CheckItOut+ uses 
the CheckItOut task tree if there is a confident parse, and 
otherwise relies on its three models.  

Instead of a static task tree, in a FORRSooth SDS the 
SATISFACTION service maintains an agreement graph, a 
dynamic structure that represents what is under discussion. 
An agreement is a subdialogue to bind a target (e.g., the 
first book in an order). Initially, an agreement graph node 
represents a target or an attribute of a target as its child. An 
example for author appears in Figure 3(b). Each node also 

records progress toward its grounding, as described below. 
The graph retains partial understandings (e.g., a patron’s 
perfectly recognized first name) between user utterances.  

FORRSooth’s INTERPRETATION service constructs hy-
potheses (the system’s beliefs in possible values) for 
agreement nodes. Each of its nine matching Advisors rep-
resents a different way to formulate a hypothesis about 
what the user has said (Gordon, Passonneau and Epstein, 
2011). Resources for them include Olympus modules, and 
DoubleMetaphone representations of titles and authors. 
One matching Advisor simulates CheckItOut; it proposes 
top returns from a query based on Helios’ most confident 
parse. Two Advisors do not search at all; they propose hy-
potheses based on the parse of either all confident words, 
or all words, in the ASR. Another does voice search based 
on concepts identified by all parses, and re-ranks the re-
turns with strength proportional to the number of confident 
words. Two pairs of Advisors use R/O score with voice 
search in the database, against either the target values or 
their DoubleMetaphone representations. One pair does 
voice search in the title, author, and catalogue-number ta-
bles; the other pair searches them with the concatenated 
terminals from the Phoenix parses. Finally, one uses parses 
both to decide whether the request was a title, an author, or 
a catalogue number, and to rank the search returns.   

Comment strengths for voice-search Advisors are com-
puted from such metrics as R/O score, ASR word-level 
confidence, and relative position and edit distance between 
the ASR and a search return. Comment strengths for parse-
oriented Advisors are based on overall and word-level con-
fidence, and the number of words not covered by the parse. 
The merit of a hypothesis gauges the extent to which Advi-
sors’ comments support it over alternatives for that node. 
Merit equals the percentile into which the (normalized) 
strengths of the comments that support a hypothesis fall, 
relative to others for the same node. Based on matching 
Advisors’ comments, SATISFACTION records hypotheses 
with their merits on the corresponding agreement nodes.  

INTERPRETATION also has five merging Advisors that re-
vise merit or formulate new hypotheses for a node from ex-
isting hypotheses for the partial information in its attribute 
children. Based on R/O scores, two Advisors (one for pa-
trons and one for authors) propose full name hypotheses 
based on existing hypotheses for the first and last names. 
Two others formulate hypotheses from fragments of titles 
or telephone numbers with high R/O scores. The fifth 
merging Advisor revises the merits of existing hypotheses 
based on grounding status, described below. As with 
matching, voting determines a single action to take. FX2’s 
INTERPRETATION service produces relatively reliable hy-
potheses for patron names; their quality degrades grace-
fully as ASR performance declines (Gordon, Passonneau 
and Epstein, 2011).  

 

  
 
Figure 3: (a) Part of the task tree for CheckItOut. (b) A fragment 
of an FX2 agreement graph for author name. First and last are at-
tribute children; hypotheses appear with their respective merits. 
The node on the left represents a decision to ground. 

(a) 

(b) 
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Grounding supports understanding 
In both CheckItOut and CheckItOut+, grounding behavior 
is managed by Ravenclaw’s error-handling routines. When 
Helios identifies a sufficiently confident parse, those sys-
tems search on it, and then offer the best query result to the 
user. Both SDSs also retain at most one binding for a target 
between user turns. In contrast, a FORRSooth-based SDS 
entertains multiple hypotheses for agreement nodes, and 
retains some hypotheses until a node is bound.  

FORRSooth’s GROUNDING service monitors the merit 
values on the agreement graph, relying on learned Advisor 
weights (Gordon, Epstein and Passonneau, 2011). It pro-
poses node values to the user, and elicits corroboration, 
further information, or tacit agreement when it determines 
that a hypothesis requires no confirmation from the user 
(e.g., “Got it. Next book?”). These 23 Advisors reference 
such additional information as ASR word confidence, how 
long the dialogue has progressed, and whether a hypothesis 
is for a target node or its child. They seek to advance the 
dialogue with fewer questions and little chance of error. 
For example, when a hypothesis for the last name agree-
ment has very high merit but conflicts with an existing hy-
pothesis for the first name of the same target, FX2 detects 
the conflict and considers both hypotheses unconfident.  

If GROUNDING cannot bind an existing hypothesis to its 
target as a value, it considers how to discuss its uncertainty 
with the user. A grounding agreement either elicits con-
firmation for a particular hypothesis or seeks to disambigu-
ate between competing ones. A grounding agreement is at-
tached to a target or to an attribute node whose hypothesis 
it addresses. It has an expectation for its anticipated user 
response, and it specifies a grounding action. Grounding 
actions in FORRSooth include explicit confirmation (e.g., 
“Is the title Dust to Dust?”), implicit confirmation (e.g., 
“By John Wooden”), and disambiguation (e.g., “Was that 
‘Jane’ or ‘John’?”). Based on hypotheses, their merits, and 
expectations associated with grounding agreements, 23 ad-
ditional FX2 GROUNDING Advisors determine when and 
where to append a grounding agreement to the graph. They 
consider, for example, whether there are competing hy-
potheses for the same target, if a hypothesis is for a title or 
a subtitle, and if it is the first attempt to ground this node’s 
value. In Figure 4, FX2 finds two promising but competing 
hypotheses for the same target, and offers them to the user. 
Although the response matches the grounding agreement’s 
expectation, INTERPRETATION fails to understand the re-
sponse, and FX2 tries a different grounding action. 

FORRSooth is intended to learn rapidly to tailor an 
SDS’s responses to its task. The weights a FORR-based 
system uses to select an action are learned from labeled 
training examples. A FORRSooth-based SDS learns one 
set of weights for each service and each concept. We used 
FORR’s domain-independent RSWL (Relative Support 

Weight Learning) algorithm to learn weights for FX2’s 
GROUNDING and INTERPRETATION Advisors. Relative sup-
port for an action is the normalized difference between the 
comment strength with which an Advisor supports an ac-
tion and the strength with which it supports other actions. 
RSWL reinforces Advisors’ weights in proportion to their 
comment strengths (Petrovic and Epstein, 2007). 

In FORRSooth, learning is currently offline, with train-
ing examples gleaned from the system’s independent dia-
logues, and labels from user-supplied indicators or from 
wizard experiments. Because GROUNDING is essential to 
exploit partial understandings, FORRSooth provides a 
mechanism to extract preliminary training examples. In 
wizard mode, while a user speaks with the SDS, a GUI 
provides a human wizard with the SDS’s current hypothe-
ses and merits for all targets. Each time the wizard chooses 
whether to ground a target, and which grounding action to 
use on it, a training example is logged. 

FX2 begins with some prior knowledge about how to 
use its Advisors well. For the baseline version we learned 
preliminary INTERPRETATION weights on prerecorded de-
velopment data. (A training example was a target with its 
ASR and correct binding.) We gleaned training examples 
for GROUNDING in wizard mode while 4 subjects made 30 
calls to FX2, with hypotheses and merits produced under 
those weights. Finally, we retrained FX2 on the develop-
ment data and the new wizard-mode training examples ex-
tracted for both INTERPRETATION and GROUNDING, several 
hundred examples in all (Gordon, Epstein and Passonneau, 
2011). The resultant learned version of FX2 produced the 
dialogue in Figure 4. The learned version virtually elimi-
nates misunderstandings; it prefers to ground by disam-
biguation (52%) and repetition (32%), with occasional re-
course to confirmation (15%) and other strategies (1%). 

Four subjects had 30 subdialogues with the baseline ver-
sion and 30 with the learned version. We evaluated the two 
versions on subdialogues to bind either a book title or a pa-
tron name. The length of a subdialogue is measured here 
by the number of times the system spoke. Length improved 
from 4.36 in the baseline to 3.86 after learning. (In com-
parison, CheckItOut+ averaged length 6 for book titles.) If 
a subdialogue identifies the requested object it is correct. If 

FX2: What title would you like? 
User: Family and Friends 
ASR: FAMILY .FRIENDS. 
FX2: I have two guesses. The first is Family and Friends. The 
second is Family Happiness. Is it either of these? 
User: The first one 
ASR: .NEXT. .FIRST. 
FX2: Let’s try something else. Is the full title Family and 
Friends? 
User: Yes 
ASR: YES 
Figure 4: Grounding behavior in an FX2 dialogue fragment, with 
what the user actually said as well as what the system “heard.” 
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it identifies some object it is complete; otherwise it is in-
complete. Precision is the ratio of correct to completed 
subdialogues. Despite an estimated WER of 66%, preci-
sion rose with learning, from 0.65 in the baseline to a per-
fect 1.00 (n = 120) in the learned version. Recall is the ra-
tio of correct subdialogues to correct plus incomplete sub-
dialogues. Recall dropped somewhat with learning; it went 
from 0.78 in the baseline to 0.71. Finally, F is the har-
monic mean of precision and recall. F rose with learning, 
from 0.72 in the baseline to 0.83 in the learned version. 

Discussion 
Our three SDSs all rely on the same speech recognizer and 
databases, but FX2 uses them with considerably more suc-
cess. CheckItOut+ monitors its pipeline, and behaves dif-
ferently when it believes an error has arisen. FX2 employs 
a variety of rationales observed in human behavior during 
our pilot study and our wizard experiment, and learns to 
balance them, instead of pre-specifying their interaction.  
 Two of our systems take novel approaches to the role of 
certainty in SDS decision making. CheckItOut+ includes 
system-component confidence values and other metrics on 
performance accuracy (e.g., number of questions) to select 
its actions. Its models recognize when CheckItOut+ has a 
partial understanding, when it has a reasonable guess, and 
when it should seek another way to identify a target. These 
models are procedural metaknowledge learned from fea-
tures for components where SDS developers know that er-
rors are likely to arise. In contrast, FX2 scales certainty as 
merit, and represents partial information explicitly. It links 
targets in its agreement graph with plausible values, and 
formulates grounding behaviors for strong hypotheses. The 
agreement graph is a clearinghouse for commentary on 
what may or may not have been intended by the user, as 
construed by FX2’s Advisors. In this way, FX2 harnesses 
partial understanding and multiple perspectives to match 
spoken input and domain knowledge to targets. 
 Some of this work has appeared in venues for natural 
language processing, human cognition, or system design. 
Here, we have sought to compare and analyze it, primarily 
to clarify the role of knowledge and certainty in under-
standing during dialogue. Task-specific knowledge about 
objects often provides contextual data against which to 
match accurate input. Two SDSs here, however, use con-
textual data to generate plausible hypotheses from im-
perfect input. One learns models of human decision mak-
ing from thousands of instances. The other learns to com-
bine many rationales that were effectively gleaned from a 
few hundred instances of human behavior. FX2’s ration-
ales propose hypotheses, gauge their accuracy, and may 
confirm them with the user. They are knowledge about 
how to match and how to work toward common ground.  

 The agreement graph also represents the conversational 
state, that is, what dialogue utterances have contributed to 
the current common ground with respect to task objects. 
FX2 allows a new utterance to change an agreement graph 
for a target already addressed by an earlier utterance. It pe-
riodically removes weak hypotheses, and makes decisions 
based on the merits of those that remain.  
  Much of this work is task-independent, including merit, 
RSWL, and the agreement graph. Indeed, 52 of FX2’s 60 
INTERPRETATION and GROUNDING Advisors are provided 
by FORRSooth. The other eight, intended only for names, 
apply important ideas about the way attributes identify an 
object uniquely. Current work generalizes them for other 
concepts and other identifiers. Our best wizards’ problem-
solving behaviors are also task-independent (and likely to 
pertain to other cognitive systems as well): search before 
you reply, disambiguate among likely search returns, and 
notice when no match looks reasonable.  

Our experiments made clear that people want an SDS 
that is not only fast and effective, but also transparent and 
easy to converse with. Users also need confirmation, so 
that they know what the system believes. For example, 
even when a wizard was both certain and correct, several 
users complained that they were surprised at the end of the 
call to hear that the order summary they had demanded ac-
tually included the correct books. FX2’s fine-grained 
grounding provides more transparency than many SDSs 
about how the common ground evolves.  

FORRSooth extends FORR with parallel computation 
and the ability to propose hypotheses, but it remains a 
work in progress. FX2 is its first application, and some of 
its services (an INTERACTION manager, GENERATION of 
natural language, and DISCOURSE to focus of attention and 
manage objects) are not yet implemented. SATISFACTION 
requires further development.  

Human expertise inspires and supports FORRSooth in a 
variety of ways. To create Advisors and devise strengths 
for their comments, we continue to mine both commentar-
ies from subjects in the pilot study, and the features that 
drive CheckItOut+’s models. A FORR-based system tradi-
tionally uses a three-tiered hierarchy of Advisors; some are 
always correct, and others heuristically formulate behavior 
sequences. Both kinds are a focus of current work for 
every service. Subjects’ comments have also led to some 
Advisors that oppose actions (e.g., do not ground) as well 
as others that support them. There is even an INTERPRETA-
TION Advisor that simulates an expert CheckItOut wizard. 

Other cognitive architectures have also begun to address 
dialogue. CogX retains the pipeline; its perceptron learns 
to discriminate among the many more parses its relaxed 
grammar rules produce (Lison and Kruijff, 2009). Current 
work in SOAR uses written subdialogues to teach an ap-
prentice goal-oriented plans using an extendible, but thus 
far small, vocabulary (Assanie and Laird, 2011).   
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A machine’s context, however, is not a human one. We 
do not restrict FORRSooth to reasoning mechanisms and 
behaviors evidenced by people. After all, an SDS does not 
have the world and social knowledge that people do. 
FORRSooth’s Advisors also capture the perspective of the 
system. For example, one INTERPRETATION Advisor, before 
any database query, relies on a learned classifier to remove 
from the ASR tokens likely to correspond to noise. 
Whether or not people do this, an SDS certainly should. 

Conclusion 
As we demand more of them, SDSs will find it increas-
ingly difficult to understand their users. Future SDSs will 
have to detect and address subtasks, and consider how 
speech about attributes of objects can be exploited to iden-
tify those objects with certainty. People, meanwhile, will 
continue to expect the efficient, virtually error-free per-
formance traditional SDSs now produce when they receive 
short utterances from a limited vocabulary. 

CheckItOut+ models, to some extent, how people make 
the kinds of decisions an SDS must make. Some of its 
models’ features reference dialogue history, but it retains 
no partial information from one adjacency pair to the next. 
Making decisions like a person proves to be less effective 
than FX2’s ability to collaborate with the user on the 
common ground, and thereby minimize misunderstandings. 
Nonetheless, the features behind human decisions are a 
rich, task-independent resource for dialogue decision ra-
tionales, one that FORRSooth exploits to its advantage. 

FX2’s agreement graph is a dynamic representation of 
what it believes the user meant across multiple utterances, 
and its certainty in that information. It begins as a model of 
the task (a set of targets to be bound), but rapidly becomes 
a representation of what the system suspects, what it has 
confirmed, and what remains to be determined. The 
agreement graph makes it possible to tell the user what the 
system “thinks” (as in Figure 4), and FORRSooth’s Advi-
sors can explain why it thinks so (e.g., “this sounds like the 
first name and is similar to the last name”). FORRSooth’s 
services and most FX2 Advisors are task-independent pro-
cedures that capture a broad range of reasons to consider 
something a good match or worthy of consideration for 
binding. Together they use knowledge and certainty to 
support understanding with precision as good, or better 
than, the best of our human wizards.  
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