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Abstract

Common representation of the environment is usually
depicted as a global or local map. To increase robustness
of autonomous creation of such a representation, novel
datasets are required. We introduce a system to record
precise datasets targeting semi-structured environments
which is most likely to be encountered in USAR situa-
tions. The global positioning, recorded with a theodo-
lite, is precise in the order of millimeters. Extensive
field tests resulted in 4 datasets of challenging outdoor
and indoor environments.

Introduction

Team-work implies communication with shared references
and symbols. The collaboration between robot and human is
therefore highly dependent on a common representation of
the environment. Part of this representation is a map, either
global or local, that can serve both the robot to do its own
task and the human to increase his situation awareness, to
collaboratively plan and observe the evolution of a situation.
An important issue in mapping is therefore the consistency
of the map which relies, on a lower level, on the quality of
the registration.

Many registration solutions exist in the literature but few
of them were evaluated in 3D semi-structured environments.
The lack of dataset is mainly due to the fact that none of the
available point cloud datasets target those type of environ-
ments while, at the same time, providing reasonable ground
truth measurements.

In this article, we present datasets that highlight critical
situations for registration algorithms mainly targeting dy-
namic elements and semi-structured elements. We also ex-
plain the motivation behind the different location selection
and the methodology used to achieved millimeters precision
for the ground truth measurements in outdoor settings.

Related Work

The Iterative Closest Point (ICP) is among the most used
algorithm concerning point cloud registration. Although it
is a simple algorithm, it may often converge a local min-
ima when used in autonomous systems. Some limitations
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come from the hypothesis that the scanned environment
is mostly planar from which specialized registration error
metrics emerge. For example, the one of the earliest ICP
paper present a point-to-plane error (Chen and Medioni
1991) while recent work demonstrated plane-to-plane error
(Pathak et al. 2010). Forest with dense vegetation or other
environments with many small element can hardly be re-
sumed by plane. There is some needs for semi-structured
and unstructured datasets to challenge this hypothesis. An
other common hypothesis in registration is that the over-
lap between scans is constant, which can help to reject out-
lier matches like in (Chetverikov et al. 2002). Scanned vol-
ume can change rapidly within an environment and registra-
tion solutions should also adapt to those situations. Earlier
work also evaluates the robustness of ICP against low con-
strained environments (Rusinkiewicz and Levoy 2001). This
was mainly done in simulation so real word datasets target-
ing this limitations could bring the analysis farther. An other
problem, recently raised in vision registration (Mortensen,
Deng, and Shapiro 2005), is the problem of repetitive el-
ements in the environment which required more robust
matching algorithms. All those limitations can be hard to
achieved within one dataset so we believe that multiple tar-
geted and challenging datasets would ease the evaluation of
registration algorithm against challenging environments.

In the currently available datasets, different laser grade
can be found. Surveying equipment for architects now in-
cludes 3D scanners. The main advertised systems are the
Riegl series and the Leica HDS Laser Scanner series. They
provide accurate and long range measurements. This comes
with the inconvenient of high weight and low refreshing
rates. Cyberware systems target object scanners where it is
possible to turn around the subject. Those scanners also pro-
vide good precision and even globally consistent scans but
are hardly usable in large environments. Security systems
provided mainly by SICK also use laser range finders but
have typically small opening angle, which required some
modifications to create 3D point clouds. Among the most
popular laser range finders in Robotics, SICK, Hokuyo and
Velodyne are the most used now a day. Recently, the Mi-
crosoft Kinect was also used as range measurement systems
for autonomous systems (Pomerleau et al. 2011).

To enable registration evaluation, a ’ground truth’ evalu-
ation of the scanner pose must be provided. Some datasets
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provide positioning of the scanner based on registration pro-
cess using anchor points coupled with global minimization
of the alignment. Then, an expert proceeds to a visual as-
sessment of the data. Such global positioning makes the re-
sult dependent of an other registration method and it make
it harder to evaluate the achieved precision. Precise global
positioning can be reached using a fixed base with multiple
degrees of freedom arm holding a scanner, but this solution
offer a limited motion range. On the other side, GPS and
DGPS system can offer large range of motion but are lim-
ited to location having clear sky condition. The precision of
such systems can be at best in the range of decimeters in
good conditions, which limits the evaluation of registration
precision to that range.

Several point cloud datasets are available to researchers.
The most popular one is the Stanford 3D Scanning
Repository (http://graphics.stanford.edu/
data/3Dscanrep/) from which the bunny was reused
multiple times. The repository mainly aims at surface
reconstruction research. It provides precise ground truth
but on small scanned volumes. The Oakland 3D Point
Cloud Dataset (http://www.cs.cmu.edu/˜vmr/
datasets/oakland_3d/cvpr09/doc/) proposes
fixed lasers mounted on a car, which moved in an urban
environment. The global positioning of the scans was
insured using Trimble AgGPS 114 (Munoz et al. 2009).
The Kevin Lai’s Urban Scenes 3D Point Cloud Dataset
(http://www.cs.washington.edu/homes/
kevinlai/datasets.html) mainly aims at urban
object recognition and proposed point cloud without
overlapping and no global positioning information is
available (Lai and Fox 2010). The Rawseeds project
(http://www.rawseeds.org) was created specially
to provide common comparison basis for registration
algorithms for indoor and outdoor environments. For
the outdoor dataset, the global positioning information
is provided by using a Trimble 5700 GPS receiver with
Zephyr GPS antenna. The 3D scans were achieved with
fixed lasers (Hokuyo URG-04LX and Sick LMS200 and
LMS291) on a moving platform (Ceriani et al. 2009). In
the same order of idea, the Robotic 3D Scan Repository
(http://kos.informatik.uni-osnabrueck.
de/3Dscans/) provides multiple datasets among which
precise scans using surveying equipments is present. The
global positioning information was realized with reflective
marker and registration algorithms evaluated by an expert.

System description

Sensors

The main sensor of the scanner is its laser range finder. We
designed the tilting base to handle 4 main laser systems:
Hokuyo URG-04LX, Hokuyo UTM-30LX, SICK LMS100
serie and the Microsoft Kinect. Surveying lasers were re-
jected from the selection mainly because of their weight.
They can be used one at the time and metal guides ensure
that the laser will always be fixed at the same position. On
the left side of the tilting axis, a Point Grey Flea2 color cam-
era is installed to provide texture information and to aug-

ment the reach of recorded datasets to visual mapping. Grav-
ity vector, magnetic north position and GPS information are
provided by an Xsens Mtig Inertial Measurement Unit.

The precise control of the motor is ensured by a Maxon
Motor EPOS controller. The control system put in place use
a dual regulation loop based on 2 encoders. One encoder is
located directly to the motor shaft to provide stability while
the second is located at the end of the transmission block
allowing precise position control. Encoders has respectively
2000 and 48000 tick count. The system is self-powered with
two 50Wh lithium-polymer batteries.

Theodolite

To achieve a global positioning method independent of reg-
istration algorithm, we used the TS15, a theodolite from Le-
ica Geosystems. Theodolites are used in road and building
surveys and the system used ensures 1 mm precision over 1
kilometer distance. A theodolite only measures a position, so
3 measurements are necessary to retrieve the complete pose
(translation and orientation). A specialized reflective prism
is mounted on a pole, which can be secured at 3 different
location on the scan, namely p0, p1 and p2 (see fig. 1). The
pole is higher than the scanner to enhance visibility from the
theodolite.

Figure 1: Perspective view of the scanner with positions of
the 3 prisms used to reconstruct the global pose of the scan-
ner. The dashed line correspond to the rotation axis.

The translation components are selected to be the center
of mass of the 3 points. Defining the vectors v21 = p2 −
p1 and v01 = p0 − p1, we express the rotation matrix R,
defining the scanner orientation, as followed:

vy = v21
vz = vy × v01
vx = vy × vz
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R =
[
vTx vTy vTz

]

We evaluated the precision of this positioning method
over 181 scanner positions. We moved the scanner over dif-
ferent types of ground. For every pose, we measured the po-
sition of p0, p1 and p2 to evaluate the stability of distances
between the 3 prisms (d01, d02 and d12). The mean and stan-
dard deviation (std) for every segment are presented in Table
1.

Table 1: Precision of the distances between the prisms.

Mean Std
d01 534.4 mm 1.4 mm
d02 503.5 mm 1.4 mm
d12 412.5 mm 1.2 mm

Fig.2 shows the estimate Gaussian distributions against
the sampled distributions. The std can mainly be due to ma-
nipulation errors and can exceed the manufacturer specifica-
tion. The scanner can move while the prism is installed to
another position, the pole supporting the prism can vibrate,
the person moving the prism can confuse the sequence of
position, etc. Several systems were set in place to minimize
the impact of those phenomenas. The weight of the scan-
ner has been increased to augment its inertia. The feet of the
scanner can either be 5 cm spikes for soft ground or rubber
disks for hard ground. A software monitors the theodolite
readings and rejects every sequence of 3 points if the dis-
tance variations is larger than 3.5 mm. Moreover, since the
mean distance between the prism is significantly different,
the expected sequence of measurements can be validated by
removing the chances of confusing the order of 2 positions
while changing the prism position. All those elements in-
sure a high precision measurement of the scanner pose in a
multitude of environments.

Sometimes, a sequence of scanner poses cannot be mea-
sured from a single theodolite position. For example, this
happens when the scanner needs to turn a corner. To over-
come this limitation, we use the scanner as a marker to relo-
calize the theodolite in its new pose. This increases slightly
the localization error due to cumulation but the precision is
still in the range of millimeters.

Calibration

As presented in fig. 4, several transformation frames need
to be computed in order to achieve reasonable consistency
of the measurements. The transformation between the Axis
and the Base TB←A is insured by the rotational encoder po-
sitioned at the end of the transmission system to avoid any
dead zone in the reading that could be caused be gear play
or flexible transmission chain. This encoder gives us a pre-
cision of 0.00013 radian. Moreover, the homing procedure,
which transforms the relative measurement of ticks in an ab-
solute reading, is done using one special marked tick of that
encoder, which also insures a precision of 0.00013 radian
during the calibration.
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Figure 2: Gaussian estimations (red line) compared to real
distributions (blue bars) of measurements obtained with the
theodolite. Top: distances between p0 and p1. Middle: dis-
tances between p0 and p2. Bottom: distances between p1 and
p2. Distances are in meter.

Figure 3: Front view of the scanner with its different refer-
ence frames. The dashed line correspond to the rotation axis.
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One of the weakest link of the calibration procedure is
the transformation between the Laser to the Axis TA←L.
The laser was aligned by construction but the center of the
Hokuyo laser is not defines in their documentation as op-
posed to SICK LSM151. In order to find the height of the
beam, we used a camera without the infrared filter, which
enables us to detect the laser and measures its position in
the range of millimeters. The origin of the 3D point clouds
is Base, which is constructed with the transformation chain
TB←L = TB←A · TA←L for every 2D scan received.

Our global pose is given with respect to the frame
Theodolite while the point cloud are constructed in the ref-
erence frame Base. To compute the fixed correction between
those two frames, we scanned a corridor room several times
and computed the global pose of Base as if the transforma-
tion TB←T would equal the identity matrix. We then com-
puted the alignment error ealign using an Iterative Closest
Point Algorithm (Pomerleau et al. 2011). A global mini-
mization algorithm reduces that error, which gives us the
transformation between those frames:

TB←T = argmin(ealign)

Fig 4 presents the impact of the calibration procedure. The
color represents 3D scans of the same corridor with different
poses. Given that the calibration environment is controlled,
the ICP results ease the evaluation of the calibration but fur-
ther experiments are needed to assess the precision of this
calibration procedure.

Figure 4: Positioning of the 3D scans. Right: before calibra-
tion. Left: after calibration.

Results

We present here the first results recorded with the scanner.
Those datasets will be available publicly. The aim is to pro-
vide unregistered data for researcher willing to evaluate their
registration solutions on a common base. The environments
were selected in order to highlight difficult situations where
the registration could fail. At this point, we focus mostly on
static environments where the configuration is expected to
be challenging. The point clouds are provided in local co-
ordinates, which can be compared to the measured global
path on processed. We also provide globally consistent point
clouds for researchers doing environment modeling.

Our preliminary datasets described bellow target explic-
itly: rapid variation of scanning volume, semi-structured en-
vironments, unstructured environments and repetitive ele-
ments.

Rapid variation of scanning volume

The dataset named Stairs aimed at evaluating the robustness
of registration algorithms facing rapid variation of scanning
volume. This can typically happen when entering in a room
from a long corridor. The scanned volume will rapidly drop
from the size of the corridor to the size of the doorway, to
finally augment to the size of the room. Fig. 5 highlights 3
main zones with different volumes: a large corridor, a small
staircase and an open zone with the building facade. Two
small doorways separate those zones.

Figure 5: Top view of the dataset with the up left section
being an indoor corridor, the middle part a staircase and the
bottom left the outdoor facade of the building.

This environment is highly structured and the selected
path for the scanner crosses stairs. Fig. 6 presents a cut view
of the staircase, which is the zone where the scanner changes
progressively its height of about half a floor. The total path
length is about 9 m long on which the stairs are climbed.
Once outdoor, the path turns at 90 degrees and continues for
an other 3 m.

Figure 6: A cut view of the staircase with the scanned path
(greed balls and yellow tube).
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Repetitive elements

The dataset named ETH was recorded inside the main build-
ing of ETH Zurich. It consists mainly of a straight path fol-
lowing a balcony surrounding the central exhibition hall.
The ceiling is curved and, from Fig. 7, we can observe 2
different types of repeating elements: 1) large piers support-
ing arches, and 2) smaller piers supporting the fence. The
realized path is about 25 m long.

Figure 7: A cut view of the dataset with the realized path
(balls with tube) and highlighting the arches and piers.

Semi-structured environment

The dataset named Gazebo makes the transition from struc-
tured to semi-structured environments. The selected path is
a loop around one of the piers supporting a wooden gazebo.
Grapevines surround the gazebo under which there is a
bench and a paved road. Fig. 8 highlights a part of the dataset
where one can see the gazebo, but the complete dataset also
includes grass and trees as showed in Fig. 9. The path covers
a zone of 4 by 5 m.

Figure 8: A cut view representing the realized path (tube)
under a gazebo.

Unstructured environment

The dataset named Wood targets unstructured environments
and is mainly constituted of vegetation, from small bushes
to big trees. The selected path, presented in Fig. 10, starts
under trees that are located on the top left side, and quickly

Figure 9: A cut view of the dataset highlighting a tree.

reaches a small road surrounded by dense vegetation. The
total path length is around 20 m long.

Figure 10: A top view of the realized path (yellow tube) with
the ground represented in blue and the vegetation in red.

Conclusion

In this paper, we introduced new datasets aiming at evalu-
ating registration solutions in challenging environments. We
achieved global localization of the scanner using a theodo-
lite, which gives us the ability the record datasets in GPS
denial environments, indoors or outdoors. The precision
achieved is also higher than when using datasets that are al-
ready available to the community, which leads to the evalu-
ation of registration algorithms.

While the recorded datasets now mainly cover unstruc-
tured and semi-structured environments, we will soon aim
at more dynamic environments. The overviewed calibration
procedure using ICP in a controlled environment will also
be quantified to evaluate its precision in future works.
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